WATER in the ATMOSPHERE Mixing Ratio (W) Is the Amount of Water Vapor That Is in the Air
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Local Large Hail Probability Equation for Columbia, Sc
EASTERN REGION TECHNICAL ATTACHMENT NO. 98-6 AUGUST, 1998 A LOCAL LARGE HAIL PROBABILITY EQUATION FOR COLUMBIA, SC Mark DeLisi NOAA/National Weather Service Forecast Office West Columbia, SC Editor’s Note: The author’s current affiliation is NWSFO Mt. Holly, NJ. 1. INTRODUCTION Skew-T/Hodograph Analysis and Research Program, or SHARP (Hart and Korotky Billet et al. (1997) derived a successful 1991). The dependent variable, hail diameter probability of large hail (diameter greater than or the absence of hail, was derived from or equal to 0.75 inch) equation as an aid in spotter reports for the CAE warning area from National Weather Service (NWS) severe May, 1995 through September, 1996. There thunderstorm warning operations. Hail of that were 136 cases used to develop the regression diameter or larger requires a severe equation. thunderstorm warning be issued by NWS offices. Shortly thereafter, a Weather The LPLH was verified using 69 spotter Surveillance Radar-1988 Doppler (WSR- reports from the period September, 1996 88D) radar probability of severe hail (POSH) through September, 1997. The POSH was became available for warning operations (Witt verified as well. Verification statistics et al. 1998). This study recreates the steps included the Brier score and the chi-square taken in Billet et al. (1997) to derive a local (32) statistic. probability of large hail equation (LPLH) for the Columbia, SC National Weather Service The goal of this study was to develop an Forecast Office (CAE) warning area, and it objective method to estimate the probability assesses the utility of the LPLH relative to the of large hail for use in forecast operations. -
Chapter 5 Measures of Humidity Phases of Water
Chapter 5 Atmospheric Moisture Measures of Humidity 1. Absolute humidity 2. Specific humidity 3. Actual vapor pressure 4. Saturation vapor pressure 5. Relative humidity 6. Dew point Phases of Water Water Vapor n o su ti b ra li o n m p io d a a at ep t v s o io e en s n d it n io o n c freezing Liquid Water Ice melting 1 Coexistence of Water & Vapor • Even below the boiling point, some water molecules leave the liquid (evaporation). • Similarly, some water molecules from the air enter the liquid (condense). • The behavior happens over ice too (sublimation and condensation). Saturation • If we cap the air over the water, then more and more water molecules will enter the air until saturation is reached. • At saturation there is a balance between the number of water molecules leaving the liquid and entering it. • Saturation can occur over ice too. Hydrologic Cycle 2 Air Parcel • Enclose a volume of air in an imaginary thin elastic container, which we will call an air parcel. • It contains oxygen, nitrogen, water vapor, and other molecules in the air. 1. Absolute Humidity Mass of water vapor Absolute humidity = Volume of air The absolute humidity changes with the volume of the parcel, which can change with temperature or pressure. 2. Specific Humidity Mass of water vapor Specific humidity = Total mass of air The specific humidity does not change with parcel volume. 3 Specific Humidity vs. Latitude • The highest specific humidities are observed in the tropics and the lowest values in the polar regions. -
Insar Water Vapor Data Assimilation Into Mesoscale Model
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 1 InSAR Water Vapor Data Assimilation into Mesoscale Model MM5: Technique and Pilot Study Emanuela Pichelli, Rossella Ferretti, Domenico Cimini, Giulia Panegrossi, Daniele Perissin, Nazzareno Pierdicca, Senior Member, IEEE, Fabio Rocca, and Bjorn Rommen Abstract—In this study, a technique developed to retrieve inte- an extremely important element of the atmosphere because its grated water vapor from interferometric synthetic aperture radar distribution is related to clouds, precipitation formation, and it (InSAR) data is described, and a three-dimensional variational represents a large proportion of the energy budget in the atmo- assimilation experiment of the retrieved precipitable water vapor into the mesoscale weather prediction model MM5 is carried out. sphere. Its representation inside numerical weather prediction The InSAR measurements were available in the framework of the (NWP) models is critical to improve the weather forecast. It is European Space Agency (ESA) project for the “Mitigation of elec- also very challenging because water vapor is involved in pro- tromagnetic transmission errors induced by atmospheric water cesses over a wide range of spatial and temporal scales. An vapor effects” (METAWAVE), whose goal was to analyze and pos- improvement in atmospheric water vapor monitoring that can sibly predict the phase delay induced by atmospheric water vapor on the spaceborne radar signal. The impact of the assimilation on be assimilated in NWP models would improve the forecast the model forecast is investigated in terms of temperature, water accuracy of precipitation and severe weather [1], [3]. -
Use Style: Paper Title
Environmental Conditions Producing Thunderstorms with Anomalous Vertical Polarity of Charge Structure Donald R. MacGorman Alexander J. Eddy NOAA/Nat’l Severe Storms Laboratory & Cooperative Cooperative Institute for Mesoscale Meteorological Institute for Mesoscale Meteorological Studies Studies Affiliation/ Univ. of Oklahoma and NOAA/OAR Norman, Oklahoma, USA Norman, Oklahoma, USA [email protected] Earle Williams Cameron R. Homeyer Massachusetts Insitute of Technology School of Meteorology, Univ. of Oklhaoma Cambridge, Massachusetts, USA Norman, Oklahoma, USA Abstract—+CG flashes typically comprise an unusually large Tessendorf et al. 2007, Weiss et al. 2008, Fleenor et al. 2009, fraction of CG activity in thunderstorms with anomalous vertical Emersic et al. 2011; DiGangi et al. 2016). Furthermore, charge structure. We analyzed more than a decade of NLDN previous studies have suggested that CG activity tends to be data on a 15 km x 15 km x 15 min grid spanning the contiguous delayed tens of minutes longer in these anomalous storms than United States, to identify storm cells in which +CG flashes in most storms elsewhere (MacGorman et al. 2011). constituted a large fraction of CG activity, as a proxy for thunderstorms with anomalous vertical charge structure, and For this study, we analyzed more than a decade of CG data storm cells with very low percentages of +CG lightning, as a from the National Lightning Detection Network throughout the proxy for thunderstorms with normal-polarity distributions. In contiguous United States to identify storm cells in which +CG each of seven regions, we used North American Regional flashes constituted a large fraction of CG activity, as a proxy Reanalysis data to compare the environments of anomalous for storms with anomalous vertical charge structure. -
Chapter 8 Atmospheric Statics and Stability
Chapter 8 Atmospheric Statics and Stability 1. The Hydrostatic Equation • HydroSTATIC – dw/dt = 0! • Represents the balance between the upward directed pressure gradient force and downward directed gravity. ρ = const within this slab dp A=1 dz Force balance p-dp ρ p g d z upward pressure gradient force = downward force by gravity • p=F/A. A=1 m2, so upward force on bottom of slab is p, downward force on top is p-dp, so net upward force is dp. • Weight due to gravity is F=mg=ρgdz • Force balance: dp/dz = -ρg 2. Geopotential • Like potential energy. It is the work done on a parcel of air (per unit mass, to raise that parcel from the ground to a height z. • dφ ≡ gdz, so • Geopotential height – used as vertical coordinate often in synoptic meteorology. ≡ φ( 2 • Z z)/go (where go is 9.81 m/s ). • Note: Since gravity decreases with height (only slightly in troposphere), geopotential height Z will be a little less than actual height z. 3. The Hypsometric Equation and Thickness • Combining the equation for geopotential height with the ρ hydrostatic equation and the equation of state p = Rd Tv, • Integrating and assuming a mean virtual temp (so it can be a constant and pulled outside the integral), we get the hypsometric equation: • For a given mean virtual temperature, this equation allows for calculation of the thickness of the layer between 2 given pressure levels. • For two given pressure levels, the thickness is lower when the virtual temperature is lower, (ie., denser air). • Since thickness is readily calculated from radiosonde measurements, it provides an excellent forecasting tool. -
Impacts of Anthropogenic Aerosols on Fog in North China Plain
BNL-209645-2018-JAAM Journal of Geophysical Research: Atmospheres RESEARCH ARTICLE Impacts of Anthropogenic Aerosols on Fog in North China Plain 10.1029/2018JD029437 Xingcan Jia1,2,3 , Jiannong Quan1 , Ziyan Zheng4, Xiange Liu5,6, Quan Liu5,6, Hui He5,6, 2 Key Points: and Yangang Liu • Aerosols strengthen and prolong fog 1 2 events in polluted environment Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing, China, Brookhaven National Laboratory, • Aerosol effects are stronger on Upton, NY, USA, 3Key Laboratory of Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University microphysical properties than of Information Science and Technology, Nanjing, China, 4Institute of Atmospheric Physics, Chinese Academy of Sciences, macrophysical properties Beijing, China, 5Beijing Weather Modification Office, Beijing, China, 6Beijing Key Laboratory of Cloud, Precipitation and • Turbulence is enhanced by aerosols during fog formation and growth but Atmospheric Water Resources, Beijing, China suppressed during fog dissipation Abstract Fog poses a severe environmental problem in the North China Plain, China, which has been Supporting Information: witnessing increases in anthropogenic emission since the early 1980s. This work first uses the WRF/Chem • Supporting Information S1 model coupled with the local anthropogenic emissions to simulate and evaluate a severe fog event occurring Correspondence to: in North China Plain. Comparison of the simulations against observations shows that WRF/Chem well X. Jia and Y. Liu, reproduces the general features of temporal evolution of PM2.5 mass concentration, fog spatial distribution, [email protected]; visibility, and vertical profiles of temperature, water vapor content, and relative humidity in the planetary [email protected] boundary layer throughout the whole period of the fog event. -
GEOGRAPHY OPTIONAL by SHAMIM ANWER
GEOGRAPHY OPTIONAL by SHAMIM ANWER LEARNING GEOGRAPHY - A NEVER BEFORE EXPERIENCE PREP SUPPLEMENT CLIMA T OLOGY NOT FOR SALE | Off : 57/17 1st Floor, Old Rajender Nagar 8026506054, 8826506099 | Above Dr, Batra’s Delhi - 110060 Also visit us on www.keynoteias.com | www.facebook.com/keynoteias.in KEYNOTE IAS PHYSICAL GEOGRAPHY CLIMATOLOGY INDEX 1. CIRCULATION OF THE ATMOSPHERE ................................................................1-13 Local Winds; Observed Distribution of Pressure and Winds and Idealized Zonal Pressure Belts; Monsoons, Westerlies and Jet Streams; EL Nino and La Nina. 2. MOISTURE AND ATMOSPHERIC STABILITY ..................................................14-24 Atmospheric Stability and Instability 3. FORMS OF CONDENSATION AND PRECIPITATION ........................................25-38 Types and Global Distribution of Precipitation 4. AIR MASSES...........................................................................................................39-53 Polar-Front Theory; Fronts; Cyclone Formation; Cyclonic and Anticyclonic Circulation PREP-SUPPLEMENT: CLIMATOLOGY 1 1. CIRCULATION OF THE ATMOSPHERE Atmospheric circulation and wind Macroscale Winds: The largest wind patterns, called macroscale winds, are exemplified by the Winds are generated by pressure differences that westerlies and trade winds. These planetary-scale arise because of unequal heating of Earth's surface. flow patterns extend around the entire globe and Global winds are generated because the tropics can remain essentially unchanged for weeks at -
Atmospheric Stability Atmospheric Lapse Rate
ATMOSPHERIC STABILITY ATMOSPHERIC LAPSE RATE The atmospheric lapse rate ( ) refers to the change of an atmospheric variable with a change of altitude, the variable being temperature unless specified otherwise (such as pressure, density or humidity). While usually applied to Earth's atmosphere, the concept of lapse rate can be extended to atmospheres (if any) that exist on other planets. Lapse rates are usually expressed as the amount of temperature change associated with a specified amount of altitude change, such as 9.8 °Kelvin (K) per kilometer, 0.0098 °K per meter or the equivalent 5.4 °F per 1000 feet. If the atmospheric air cools with increasing altitude, the lapse rate may be expressed as a negative number. If the air heats with increasing altitude, the lapse rate may be expressed as a positive number. Understanding of lapse rates is important in micro-scale air pollution dispersion analysis, as well as urban noise pollution modeling, forest fire-fighting and certain aviation applications. The lapse rate is most often denoted by the Greek capital letter Gamma ( or Γ ) but not always. For example, the U.S. Standard Atmosphere uses L to denote lapse rates. A few others use the Greek lower case letter gamma ( ). Types of lapse rates There are three types of lapse rates that are used to express the rate of temperature change with a change in altitude, namely the dry adiabatic lapse rate, the wet adiabatic lapse rate and the environmental lapse rate. Dry adiabatic lapse rate Since the atmospheric pressure decreases with altitude, the volume of an air parcel expands as it rises. -
Atmospheric Thermal and Dynamic Vertical Structures of Summer Hourly Precipitation in Jiulong of the Tibetan Plateau
atmosphere Article Atmospheric Thermal and Dynamic Vertical Structures of Summer Hourly Precipitation in Jiulong of the Tibetan Plateau Yonglan Tang 1, Guirong Xu 1,*, Rong Wan 1, Xiaofang Wang 1, Junchao Wang 1 and Ping Li 2 1 Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, China; [email protected] (Y.T.); [email protected] (R.W.); [email protected] (X.W.); [email protected] (J.W.) 2 Heavy Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province, Institute of Plateau Meteorology, China Meteorological Administration, Chengdu 610072, China; [email protected] * Correspondence: [email protected]; Tel.: +86-27-8180-4913 Abstract: It is an important to study atmospheric thermal and dynamic vertical structures over the Tibetan Plateau (TP) and their impact on precipitation by using long-term observation at represen- tative stations. This study exhibits the observational facts of summer precipitation variation on subdiurnal scale and its atmospheric thermal and dynamic vertical structures over the TP with hourly precipitation and intensive soundings in Jiulong during 2013–2020. It is found that precipitation amount and frequency are low in the daytime and high in the nighttime, and hourly precipitation greater than 1 mm mostly occurs at nighttime. Weak precipitation during the daytime may be caused by air advection, and strong precipitation at nighttime may be closely related with air convection. Both humidity and wind speed profiles show obvious fluctuation when precipitation occurs, and the greater the precipitation intensity, the larger the fluctuation. Moreover, the fluctuation of wind speed Citation: Tang, Y.; Xu, G.; Wan, R.; Wang, X.; Wang, J.; Li, P. -
Atmospheric Instability Parameters Derived from Msg Seviri Observations
P3.33 ATMOSPHERIC INSTABILITY PARAMETERS DERIVED FROM MSG SEVIRI OBSERVATIONS Marianne König*, Stephen Tjemkes, Jochen Kerkmann EUMETSAT, Darmstadt, Germany 1. INTRODUCTION K-Index: Convective systems can develop in a thermo- (Tobs(850)–Tobs(500)) + TDobs(850) – (Tobs(700)–TDobs(700)) dynamically unstable atmosphere. Such systems may quickly reach high altitudes and can cause severe Lifted Index: storms. Meteorologists are thus especially interested to Tobs - Tlifted from surface at 500 hPa identify such storm potentials when the respective system is still in a preconvective state. A number of Maximum buoyancy: obs(max betw. surface and 850) obs(min betw. 700 and 300) instability indices have been defined to describe such Qe - Qe situations. Traditionally, these indices are taken from temperature and humidity soundings by radiosondes. As (T is temperature, TD is dewpoint temperature, and Qe radiosondes are only of very limited temporal and is equivalent potential temperature, numbers 850, 700, spatial resolution there is a demand for satellite-derived 300 indicate respective hPa level in the atmosphere) indices. The Meteorological Product Extraction Facility (MPEF) for the new European Meteosat Second and the precipitable water content as additionally Generation (MSG) satellite envisages the operational derived parameter. derivation of a number of instability indices from the brightness temperatures measured by certain SEVIRI 3. DESCRIPTION OF ALGORITHMS channels (Spinning Enhanced Visible and Infrared Imager, the radiometer onboard MSG). The traditional 3.1 The Physical Retrieval physical approach to this kind of retrieval problem is to infer the atmospheric profile via a constrained inversion An iterative solution to the inversion equation (e.g. and compute the indices then directly from the obtained Ma et al. -
ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere. -
Basic Features on a Skew-T Chart
Skew-T Analysis and Stability Indices to Diagnose Severe Thunderstorm Potential Mteor 417 – Iowa State University – Week 6 Bill Gallus Basic features on a skew-T chart Moist adiabat isotherm Mixing ratio line isobar Dry adiabat Parameters that can be determined on a skew-T chart • Mixing ratio (w)– read from dew point curve • Saturation mixing ratio (ws) – read from Temp curve • Rel. Humidity = w/ws More parameters • Vapor pressure (e) – go from dew point up an isotherm to 622mb and read off the mixing ratio (but treat it as mb instead of g/kg) • Saturation vapor pressure (es)– same as above but start at temperature instead of dew point • Wet Bulb Temperature (Tw)– lift air to saturation (take temperature up dry adiabat and dew point up mixing ratio line until they meet). Then go down a moist adiabat to the starting level • Wet Bulb Potential Temperature (θw) – same as Wet Bulb Temperature but keep descending moist adiabat to 1000 mb More parameters • Potential Temperature (θ) – go down dry adiabat from temperature to 1000 mb • Equivalent Temperature (TE) – lift air to saturation and keep lifting to upper troposphere where dry adiabats and moist adiabats become parallel. Then descend a dry adiabat to the starting level. • Equivalent Potential Temperature (θE) – same as above but descend to 1000 mb. Meaning of some parameters • Wet bulb temperature is the temperature air would be cooled to if if water was evaporated into it. Can be useful for forecasting rain/snow changeover if air is dry when precipitation starts as rain. Can also give