Analysis of Stability Parameters in Relation to Precipitation Associated with Pre-Monsoon Thunderstorms Over Kolkata, India

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of Stability Parameters in Relation to Precipitation Associated with Pre-Monsoon Thunderstorms Over Kolkata, India Analysis of stability parameters in relation to precipitation associated with pre-monsoon thunderstorms over Kolkata, India H P Nayak and M Mandal∗ Centre for Oceans, Rivers, Atmosphere and Land Sciences, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India ∗Corresponding author. e-mail: [email protected] The upper air RS/RW (Radio Sonde/Radio Wind) observations at Kolkata (22.65N, 88.45E) during pre- monsoon season March–May, 2005–2012 is used to compute some important dynamic/thermodynamic parameters and are analysed in relation to the precipitation associated with the thunderstorms over Kolkata, India. For this purpose, the pre-monsoon thunderstorms are classified as light precipitation (LP), moderate precipitation (MP) and heavy precipitation (HP) thunderstorms based on the magnitude of associated precipitation. Richardson number in non-uniformly saturated (Ri*) and saturated atmosphere (Ri); vertical shear of horizontal wind in 0–3, 0–6 and 3–7 km atmospheric layers; energy-helicity index (EHI) and vorticity generation parameter (VGP) are considered for the analysis. The instability measured ∗ in terms of Richardson number in non-uniformly saturated atmosphere (Ri ) well indicate the occurrence of thunderstorms about 2 hours in advance. Moderate vertical wind shear in lower troposphere (0–3 km) and weak shear in middle troposphere (3–7 km) leads to heavy precipitation thunderstorms. The wind shear in 3–7 km atmospheric layers, EHI and VGP are good predictors of precipitation associated with thunderstorm. Lower tropospheric wind shear and Richardson number is a poor discriminator of the three classified thunderstorms. 1. Introduction high socio-economic impact, thunderstorms are of serious concern to researchers and meteorologists. Thunderstorm is a severe weather phenomenon Extensive research has been carried out in the accompanied by strong winds, lightning, thun- last nine decades, to investigate various aspects der, rainfall and sometime hail. The Gangetic of thunderstorms (Normand 1921; Sohoni 1928; West Bengal gets affected by thunderstorms dur- Koteswaram and Srinivasan 1958;Koteswaram ing the pre-monsoon season (March–May) every and De 1959;Srinivasanet al. 1973; Chatterjee year. These thunderstorms cause damage to prop- et al. 1995; Sadhukhan and De 1998;Sadhukhan erty and crops; human and animal fatalities, and et al. 2000; Mukhopadhyay et al. 2005;Ghoshet al. also aviation hazards. The precipitation associated 2008). Several studies have been conducted to with the thunderstorms is very useful as it provides investigate the efficiency of various stability para- temporary relief from the summer heat and sup- meters and indices in representing the convec- plies much needed water to crops. Because of their tive environment leading to the occurrence of Keywords. Atmospheric instability; stability indices; Richardson number; vertical wind shear; energy-helicity index; vorticity generation parameter. J. Earth Syst. Sci. 123, No. 4, June 2014, pp. 689–703 c Indian Academy of Sciences 689 690 H P Nayak and M Mandal thunderstorms (Schultz 1989;Raviet al. 1999; Schultz (1989) tested seven stability indices for Kunz 2007;Dhawanet al. 2008; Tyagi et al. 2011). convective development over northeast Colorado A probabilistic model has also been developed and inferred that severe weather threat (SWEAT) to predict lightning over southeast India using index is the best indicator of severe weather. It dynamical and thermo-dynamical parameters as may be mentioned that among those seven indices predictors (Rajeevan et al. 2012). The model is SWEAT index was the only index which takes based on perfect prognostic method and has rea- wind shear into account. Rasmussen and Blanchard sonable skill in predicting lightning events over (1998) showed that energy helicity index (EHI) and the reason. But limited studies are conducted on vorticity generation parameter (VGP) can well dis- the analysis of stability parameters in relation to the criminate ordinary, super-cell and tornadic thun- precipitation associated with the thunderstorms. derstorms. Savvidou et al. (2010), in their study In the present study, several stability parameters of extreme and non-extreme thunderstorms over have been analysed in relation to the precipitation Cyprus illustrated that VGP can be used as a good associated with the pre-monsoon thunderstorms predictor for classified thunderstorms. over Kolkata during the period 2005–2012. In the present study, analysis of Richardson Richardson number (Ri) is a useful index in esti- number, vertical wind shear, EHI and VGP is con- mating the dynamic instability of the atmosphere ducted in relation to the precipitation associated that combines thermal instability with vertical with thunderstorms over Kolkata. General synop- wind shear (Shou et al. 2003). It helps in diagnos- tic conditions over the study area are explained in ing the genesis and development of severe weather section 2. The upper air observations, radar phenomena, and constructing different stability imageries and information regarding the occur- criteria (Gao and Cao 2007). Zhao et al. (2010) rence of thunderstorm used in the study are introduced a new Richardson number (Ri*) for discussed in section 3. Mathematical relation non-uniformly saturated atmosphere in which local used in computation of dynamic/thermodynamic Brunt Vaisala frequency was computed using gene- parameters and classification of pre-monsoon ralised potential temperature instead of potential thunderstorm is discussed in section 4.Resultsare temperature or equivalent potential temperature. discussed in section 5 and summary of the study is Cao et al. (2011) investigated atmospheric stabi- giveninsection6. lity associated with torrential rain events and heat wave events over north China and concluded that generalised potential temperature (θ∗) has greater 2. Synoptic situation over the Kolkata utility in representing dynamic instability in moist region during pre-monsoon period weather. In computation of local Brunt Vaisala fre- quency, equivalent potential temperature (θe)is The Gangetic West Bengal, is frequently affected appropriate for completely saturated atmosphere by thunderstorms in the pre-monsoon season. whereas potential temperature (θ) is appropriate Although thunderstorm is a mesoscale pheno- for dry atmosphere. Since real atmosphere is menon, its occurrence depends on the large scale neither absolutely dry nor entirely saturated, flow and the prevailing synoptic situations. The Ri* for non-uniformly saturated atmosphere is Gangetic West Bengal is surrounded by the Bay expected to provide a better measure of instability of Bengal in the south and Chota Nagpur plateau in real atmosphere. Observations suggest that con- in the west. During the pre-monsoon season, low densation might occur even when relative humidity pressure prevails over Chota Nagpur plateau and is over 78%. the adjoining areas, which gets intensified and Several previous studies (Malkus 1952;Newton extended in the afternoon (Srinivasan et al. 1973). and Newton 1959;Asai1964; Robe and Emanuel The well marked seasonal high pressure system 2001) showed that vertical shear of horizontal forms over the Bay of Bengal (Weston 1972). The wind plays an important role in convective deve- large scale circulation over the region is charac- lopment. Weisman and Klemp (1982) suggested terised by ascending motion over the landmass that in a given buoyant environment, weak ver- and descending motion over the adjoining sea. As tical wind shear generates short-lived single-cell a result, moisture incursion takes place from the thunderstorms, weak to moderate shear gene- Bay of Bengal along the eastern coast. This is rates multi-cell thunderstorms and moderate to reflected in the large scale circulation pattern with strong shear generates super-cell thunderstorms. a shallow layer of southerly/southwesterly flow over Fankhauser (1971, 1988) showed that strong ver- the Gangetic West Bengal and the adjoining area tical wind shear favours strong mean tropospheric near the surface and dry westerly aloft. The sta- wind and hence faster movement of storms. The ble transition layer between the two air streams study also suggested that strong wind shear leads in which moisture decreases rapidly with height to reduction of precipitation efficiency of the storm. plays an important role in the formation of severe Analysis of stability parameters in relation to precipitation 691 thunderstorms. Its presence prevents penetration Table 1. Classification of LP, MP and HP thunderstorms. of convection into the layer above and hence No. of Precipitation Thunderstorm the moisture and warmth in the layer increases. sounding (mm) classification This favours the outbreak of severe thunderstorms (Joseph et al. 2005). The thunderstorms formed 48 0–10 Light precipitation (LP) under this condition are known as Nor’westers 10 11–39 Moderate precipitation (MP) as they come from the northwest. Besides 6 ≥40 Heavy precipitation (HP) Nor’westers, another type of less intense thunder- storm also occurs over this region, which is termed for analysis. The accumulated precipitation asso- as sea breeze generated or southerly thunderstorm ciated with these thunderstorms is shown in (Lohar and Pal 1995; Dalal et al. 2012). figure 1. The observed upper air profile is verti- cally interpolated to generate a profile at every 3. Data used 25 hPa. The Richardson number for entirely sat- urated atmosphere and non-uniformly saturated The 12 UTC upper air RS/RW (Radio
Recommended publications
  • Laboratory Studies of Turbulent Mixing J.A
    Laboratory Studies of Turbulent Mixing J.A. Whitehead Woods Hole Oceanographic Institution, Woods Hole, MA, USA Laboratory measurements are required to determine the rates of turbulent mixing and dissipation within flows of stratified fluid. Rates based on other methods (theory, numerical approaches, and direct ocean measurements) require models based on assumptions that are suggested, but not thoroughly verified in the laboratory. An exception to all this is recently provided by direct numerical simulations (DNS) mentioned near the end of this article. Experiments have been conducted with many different devices. Results span a wide range of gradient or bulk Richardson number and more limited ranges of Reynolds number and Schmidt number, which are the three most relevant dimensionless numbers. Both layered and continuously stratified flows have been investigated, and velocity profiles include smooth ones, jets, and clusters of eddies from stirrers or grids. The dependence of dissipation through almost all ranges of Richardson number is extensively documented. The buoyancy flux ratio is the turbulent kinetic energy loss from raising the potential energy of the strata to loss of kinetic energy by viscous dissipation. It rises from zero at small Richardson number to values of about 0.1 at Richardson number equal to 1, and then falls off for greater values. At Richardson number greater than 1, a wide range of power laws spanning the range from −0.5 to −1.5 are found to fit data for different experiments. Considerable layering is found at larger values, which causes flux clustering and may explain both the relatively large scatter in the data as well as the wide range of proposed power laws.
    [Show full text]
  • Impacts of Anthropogenic Aerosols on Fog in North China Plain
    BNL-209645-2018-JAAM Journal of Geophysical Research: Atmospheres RESEARCH ARTICLE Impacts of Anthropogenic Aerosols on Fog in North China Plain 10.1029/2018JD029437 Xingcan Jia1,2,3 , Jiannong Quan1 , Ziyan Zheng4, Xiange Liu5,6, Quan Liu5,6, Hui He5,6, 2 Key Points: and Yangang Liu • Aerosols strengthen and prolong fog 1 2 events in polluted environment Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing, China, Brookhaven National Laboratory, • Aerosol effects are stronger on Upton, NY, USA, 3Key Laboratory of Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University microphysical properties than of Information Science and Technology, Nanjing, China, 4Institute of Atmospheric Physics, Chinese Academy of Sciences, macrophysical properties Beijing, China, 5Beijing Weather Modification Office, Beijing, China, 6Beijing Key Laboratory of Cloud, Precipitation and • Turbulence is enhanced by aerosols during fog formation and growth but Atmospheric Water Resources, Beijing, China suppressed during fog dissipation Abstract Fog poses a severe environmental problem in the North China Plain, China, which has been Supporting Information: witnessing increases in anthropogenic emission since the early 1980s. This work first uses the WRF/Chem • Supporting Information S1 model coupled with the local anthropogenic emissions to simulate and evaluate a severe fog event occurring Correspondence to: in North China Plain. Comparison of the simulations against observations shows that WRF/Chem well X. Jia and Y. Liu, reproduces the general features of temporal evolution of PM2.5 mass concentration, fog spatial distribution, [email protected]; visibility, and vertical profiles of temperature, water vapor content, and relative humidity in the planetary [email protected] boundary layer throughout the whole period of the fog event.
    [Show full text]
  • Boundary Layer Verification
    Boundary Layer Verification ECMWF training course April 2015 Maike Ahlgrimm Aim of this lecture • To give an overview over strategies for boundary layer evaluation • By the end of this session you should be able to: – Identify data sources and products suitable for BL verification – Recognize the strengths and limitations of the verification strategies discussed – Choose a suitable verification method to investigate model errors in boundary layer height, transport and cloudiness. smog over NYC Overview • General strategy for process-oriented model evaluation • What does the BL parameterization do? • Broad categories of BL parameterizations • Which aspects of the BL can we evaluate? – What does each aspect tell us about the BL? • What observations are available – What are the observations’ advantages and limitations? • Examples – Clear convective BL – Cloud topped convective BL – Stable BL Basic strategy for model evaluation and improvement: Observations Identify discrepancy Model Output Figure out source of model error Improve parameterization When and where does error occur? Which parameterization(s) is/are involved? What does the BL parameterization do? Attempts to integrate Turbulence transports effects of small scale temperature, moisture and turbulent motion on momentum (+tracers). prognostic variables at grid resolution. Stull 1988 Ultimate goal: good model forecast and realistic BL Broad categories of BL parameterizations Unified BL schemes Specialized BL scheme •Attempt to integrate BL (and •One parameterization for each shallow cloud) effects in one discrete BL type scheme to allow seamless transition •Simplifies parameterization for •Often statistical schemes (i.e. each type, parameterization for making explicit assumptions about each type ideally suited PDFs of modelled variables) using •Limitation: must identify BL type moist-conserved variables reliably, is noisy (lots of if •Limitation: May not work well for statements) mixed-phase or ice •Example: Met-Office (Lock et al.
    [Show full text]
  • GEOGRAPHY OPTIONAL by SHAMIM ANWER
    GEOGRAPHY OPTIONAL by SHAMIM ANWER LEARNING GEOGRAPHY - A NEVER BEFORE EXPERIENCE PREP SUPPLEMENT CLIMA T OLOGY NOT FOR SALE | Off : 57/17 1st Floor, Old Rajender Nagar 8026506054, 8826506099 | Above Dr, Batra’s Delhi - 110060 Also visit us on www.keynoteias.com | www.facebook.com/keynoteias.in KEYNOTE IAS PHYSICAL GEOGRAPHY CLIMATOLOGY INDEX 1. CIRCULATION OF THE ATMOSPHERE ................................................................1-13 Local Winds; Observed Distribution of Pressure and Winds and Idealized Zonal Pressure Belts; Monsoons, Westerlies and Jet Streams; EL Nino and La Nina. 2. MOISTURE AND ATMOSPHERIC STABILITY ..................................................14-24 Atmospheric Stability and Instability 3. FORMS OF CONDENSATION AND PRECIPITATION ........................................25-38 Types and Global Distribution of Precipitation 4. AIR MASSES...........................................................................................................39-53 Polar-Front Theory; Fronts; Cyclone Formation; Cyclonic and Anticyclonic Circulation PREP-SUPPLEMENT: CLIMATOLOGY 1 1. CIRCULATION OF THE ATMOSPHERE Atmospheric circulation and wind Macroscale Winds: The largest wind patterns, called macroscale winds, are exemplified by the Winds are generated by pressure differences that westerlies and trade winds. These planetary-scale arise because of unequal heating of Earth's surface. flow patterns extend around the entire globe and Global winds are generated because the tropics can remain essentially unchanged for weeks at
    [Show full text]
  • On the Computation of Planetary Boundary-Layer Height Using the Bulk Richardson Number Method
    Geosci. Model Dev., 7, 2599–2611, 2014 www.geosci-model-dev.net/7/2599/2014/ doi:10.5194/gmd-7-2599-2014 © Author(s) 2014. CC Attribution 3.0 License. On the computation of planetary boundary-layer height using the bulk Richardson number method Y. Zhang1, Z. Gao2, D. Li3, Y. Li1, N. Zhang4, X. Zhao1, and J. Chen1,5 1International Center for Ecology, Meteorology & Environment, Jiangsu Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China 2State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China 3Program of Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ 08540, USA 4School of Atmospheric Sciences, Nanjing University, Nanjing, 210093, China 5Department of Geography, Michigan State University, East Lansing, MI 48824, USA Correspondence to: Z. Gao ([email protected]) Received: 15 March 2014 – Published in Geosci. Model Dev. Discuss.: 24 June 2014 Revised: 12 September 2014 – Accepted: 22 September 2014 – Published: 10 November 2014 Abstract. Experimental data from four field campaigns are 1 Introduction used to explore the variability of the bulk Richardson num- ber of the entire planetary boundary layer (PBL), Ribc, which The planetary boundary layer (PBL), or the atmospheric is a key parameter for calculating the PBL height (PBLH) boundary layer, is the lowest part of the atmosphere that is in numerical weather and climate models with the bulk directly influenced by earth’s surface and has significant im- Richardson number method. First, the PBLHs of three differ- pacts on weather, climate, and the hydrologic cycle (Stull, ent thermally stratified boundary layers (i.e., strongly stable 1988; Garratt, 1992; Seidel et al., 2010).
    [Show full text]
  • Atmospheric Stability Atmospheric Lapse Rate
    ATMOSPHERIC STABILITY ATMOSPHERIC LAPSE RATE The atmospheric lapse rate ( ) refers to the change of an atmospheric variable with a change of altitude, the variable being temperature unless specified otherwise (such as pressure, density or humidity). While usually applied to Earth's atmosphere, the concept of lapse rate can be extended to atmospheres (if any) that exist on other planets. Lapse rates are usually expressed as the amount of temperature change associated with a specified amount of altitude change, such as 9.8 °Kelvin (K) per kilometer, 0.0098 °K per meter or the equivalent 5.4 °F per 1000 feet. If the atmospheric air cools with increasing altitude, the lapse rate may be expressed as a negative number. If the air heats with increasing altitude, the lapse rate may be expressed as a positive number. Understanding of lapse rates is important in micro-scale air pollution dispersion analysis, as well as urban noise pollution modeling, forest fire-fighting and certain aviation applications. The lapse rate is most often denoted by the Greek capital letter Gamma ( or Γ ) but not always. For example, the U.S. Standard Atmosphere uses L to denote lapse rates. A few others use the Greek lower case letter gamma ( ). Types of lapse rates There are three types of lapse rates that are used to express the rate of temperature change with a change in altitude, namely the dry adiabatic lapse rate, the wet adiabatic lapse rate and the environmental lapse rate. Dry adiabatic lapse rate Since the atmospheric pressure decreases with altitude, the volume of an air parcel expands as it rises.
    [Show full text]
  • Atmospheric Thermal and Dynamic Vertical Structures of Summer Hourly Precipitation in Jiulong of the Tibetan Plateau
    atmosphere Article Atmospheric Thermal and Dynamic Vertical Structures of Summer Hourly Precipitation in Jiulong of the Tibetan Plateau Yonglan Tang 1, Guirong Xu 1,*, Rong Wan 1, Xiaofang Wang 1, Junchao Wang 1 and Ping Li 2 1 Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, China; [email protected] (Y.T.); [email protected] (R.W.); [email protected] (X.W.); [email protected] (J.W.) 2 Heavy Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province, Institute of Plateau Meteorology, China Meteorological Administration, Chengdu 610072, China; [email protected] * Correspondence: [email protected]; Tel.: +86-27-8180-4913 Abstract: It is an important to study atmospheric thermal and dynamic vertical structures over the Tibetan Plateau (TP) and their impact on precipitation by using long-term observation at represen- tative stations. This study exhibits the observational facts of summer precipitation variation on subdiurnal scale and its atmospheric thermal and dynamic vertical structures over the TP with hourly precipitation and intensive soundings in Jiulong during 2013–2020. It is found that precipitation amount and frequency are low in the daytime and high in the nighttime, and hourly precipitation greater than 1 mm mostly occurs at nighttime. Weak precipitation during the daytime may be caused by air advection, and strong precipitation at nighttime may be closely related with air convection. Both humidity and wind speed profiles show obvious fluctuation when precipitation occurs, and the greater the precipitation intensity, the larger the fluctuation. Moreover, the fluctuation of wind speed Citation: Tang, Y.; Xu, G.; Wan, R.; Wang, X.; Wang, J.; Li, P.
    [Show full text]
  • Atmospheric Instability Parameters Derived from Msg Seviri Observations
    P3.33 ATMOSPHERIC INSTABILITY PARAMETERS DERIVED FROM MSG SEVIRI OBSERVATIONS Marianne König*, Stephen Tjemkes, Jochen Kerkmann EUMETSAT, Darmstadt, Germany 1. INTRODUCTION K-Index: Convective systems can develop in a thermo- (Tobs(850)–Tobs(500)) + TDobs(850) – (Tobs(700)–TDobs(700)) dynamically unstable atmosphere. Such systems may quickly reach high altitudes and can cause severe Lifted Index: storms. Meteorologists are thus especially interested to Tobs - Tlifted from surface at 500 hPa identify such storm potentials when the respective system is still in a preconvective state. A number of Maximum buoyancy: obs(max betw. surface and 850) obs(min betw. 700 and 300) instability indices have been defined to describe such Qe - Qe situations. Traditionally, these indices are taken from temperature and humidity soundings by radiosondes. As (T is temperature, TD is dewpoint temperature, and Qe radiosondes are only of very limited temporal and is equivalent potential temperature, numbers 850, 700, spatial resolution there is a demand for satellite-derived 300 indicate respective hPa level in the atmosphere) indices. The Meteorological Product Extraction Facility (MPEF) for the new European Meteosat Second and the precipitable water content as additionally Generation (MSG) satellite envisages the operational derived parameter. derivation of a number of instability indices from the brightness temperatures measured by certain SEVIRI 3. DESCRIPTION OF ALGORITHMS channels (Spinning Enhanced Visible and Infrared Imager, the radiometer onboard MSG). The traditional 3.1 The Physical Retrieval physical approach to this kind of retrieval problem is to infer the atmospheric profile via a constrained inversion An iterative solution to the inversion equation (e.g. and compute the indices then directly from the obtained Ma et al.
    [Show full text]
  • Static Stability (I) the Concept of Stability (Ii) the Parcel Technique (A
    ATSC 5160 – supplement: static stability Static stability (i) The concept of stability The concept of (local) stability is an important one in meteorology. In general, the word stability is used to indicate a condition of equilibrium. A system is stable if it resists changes, like a ball in a depression. No matter in which direction the ball is moved over a small distance, when released it will roll back into the centre of the depression, and it will oscillate back and forth, until it eventually stalls. A ball on a hill, however, is unstably located. To some extent, a parcel of air behaves exactly like this ball. Certain processes act to make the atmosphere unstable; then the atmosphere reacts dynamically and exchanges potential energy into kinetic energy, in order to restore equilibrium. For instance, the development and evolution of extratropical fronts is believed to be no more than an atmospheric response to a destabilizing process; this process is essentially the atmospheric heating over the equatorial region and the cooling over the poles. Here, we are only concerned with static stability, i.e. no pre-existing motion is required, unlike other types of atmospheric instability, like baroclinic or symmetric instability. The restoring atmospheric motion in a statically stable atmosphere is strictly vertical. When the atmosphere is statically unstable, then any vertical departure leads to buoyancy. This buoyancy leads to vertical accelerations away from the point of origin. In the context of this chapter, stability is used interchangeably
    [Show full text]
  • Basic Features on a Skew-T Chart
    Skew-T Analysis and Stability Indices to Diagnose Severe Thunderstorm Potential Mteor 417 – Iowa State University – Week 6 Bill Gallus Basic features on a skew-T chart Moist adiabat isotherm Mixing ratio line isobar Dry adiabat Parameters that can be determined on a skew-T chart • Mixing ratio (w)– read from dew point curve • Saturation mixing ratio (ws) – read from Temp curve • Rel. Humidity = w/ws More parameters • Vapor pressure (e) – go from dew point up an isotherm to 622mb and read off the mixing ratio (but treat it as mb instead of g/kg) • Saturation vapor pressure (es)– same as above but start at temperature instead of dew point • Wet Bulb Temperature (Tw)– lift air to saturation (take temperature up dry adiabat and dew point up mixing ratio line until they meet). Then go down a moist adiabat to the starting level • Wet Bulb Potential Temperature (θw) – same as Wet Bulb Temperature but keep descending moist adiabat to 1000 mb More parameters • Potential Temperature (θ) – go down dry adiabat from temperature to 1000 mb • Equivalent Temperature (TE) – lift air to saturation and keep lifting to upper troposphere where dry adiabats and moist adiabats become parallel. Then descend a dry adiabat to the starting level. • Equivalent Potential Temperature (θE) – same as above but descend to 1000 mb. Meaning of some parameters • Wet bulb temperature is the temperature air would be cooled to if if water was evaporated into it. Can be useful for forecasting rain/snow changeover if air is dry when precipitation starts as rain. Can also give
    [Show full text]
  • NOAA Technical Memorandum NWS WR-221 UTILIZATION of the BULK RICHARDSON NUMBER, HELICITY and SOUNDING MODIFICATION in the ASSESS
    NOAA Technical Memorandum NWS WR-221 UTILIZATION OF THE BULK RICHARDSON NUMBER, HELICITY AND SOUNDING MODIFICATION IN THE ASSESSMENT OF THE SEVERE CONVECTIVE STORMS OF 3 AUGUST 1992 ~ \ Eric C. Evenson Weather Service Forecast Office Great Falls, Montana November 1993 u.s. DEPARTMENT OF I National Oceanic and National Weather COMMERCE Atmospheric Administration I Service 75 A Study of the Low Level Jet Stream of the San Joaqnin Valley. Ronald A Wlllis and NOAA TECHNICAL MEMORANDA Philip Williams, Jr., May 1972. (COM 72 10707) National Weather Service, Western Region Subseries 76 Monthly Climatological Charta of the Behavior of Fog and Low Stratus at Los Angeles International Airport. Donald M. Gales, July 1972. (COM 72 11140) The National Weather Service (NWS) Western Region (WR) Subseries provi~es an informal 77 A Study of Radar Echo Distribution in Arizona During July and August. John E. Hales, Jr.. medium for the documentation and quick dissemination of results not. appropnate, or not ~et July 1972. (COM 72 11136) ready, for formal publication. The series is used to report. o'! work '-? progreas, to des~ 78 Forecasting Precipitation at Bakersfield, California, Using Preasure Gradient Vectors. Earl technical procedures and practices, or. to relate progre_as ~ a limited. audience. These Techrucal T. Riddiough, July 1972. (COM 72 11146) Memoranda will report on investigations devoted primarily to regtonal and local problems of 79 Climate of Stockton, California. Robert C. Nelson, July 1972. (COM 72 10920) interest mainly to penionnel, and hence will not be widely distributed. 60 Estimation of Number of Days Above or Below Selected Temperatures. Clarence M.
    [Show full text]
  • The Effect of Stable Thermal Stratification on Turbulent Boundary
    The effect of stable thermal stratifcation on turbulent boundary layer statistics O.Williams, T. Hohman, T. Van Buren, E. Bou-Zeid and A. J. Smits May 22, 2019 Abstract The effects of stable thermal stratifcation on turbulent boundary layers are ex- perimentally investigated for smooth and rough walls. Turbulent stresses for weak to moderate stability are seen to scale with the wall-shear stress compensated for changes in fuid density in the same manner as done for compressible fows, sug- gesting little change in turbulent structure within this regime. At higher levels of stratifcation turbulence no longer scales with the wall shear stress and turbu- lent production by mean shear collapses, but without the preferential damping of near-wall motions observed in previous studies. We suggest that the weakly sta- ble and strongly stable (collapsed) regimes are delineated by the point where the turbulence no longer scales with the local wall shear stress, a signifcant departure from previous defnitions. The critical stratifcation separating these two regimes closely follows the linear stability analysis of Schlichting (1935) [Schlichting, Hauptaufs¨atze. Turbulenz bei W¨armeschichtung, ZAMM-J. of App. Math. and Mech., vol 15, 1935 ] for both smooth and rough surfaces, indicating that a good predictor of critical stratifcation is the gradient Richardson number evaluated at the wall. Wall-normal and shear stresses follow atmospheric trends in the local gradient Richardson number scaling of Sorbjan (2010) [Sorbjan, Gradient-based scales and similarity laws in the stable boundary layer, Q.J.R. Meteorological Soc., vol 136, 2010], suggesting that much can be learned about stratifed atmo- spheric fows from the study of laboratory scale boundary layers at relatively low Reynolds numbers.
    [Show full text]