Statistical Mechanics of Allosteric Enzymes Tal Einav,† Linas Mazutis,‡ and Rob Phillips∗,¶ Department of Physics, California Institute of Technology, Pasadena, California 91125, United States, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania, and Department of Applied Physics and Division of Biology, California Institute of Technology, Pasadena, California 91125, United States E-mail:
[email protected] Abstract The concept of allostery in which macromolecules switch between two different conforma- tions is a central theme in biological processes ranging from gene regulation to cell signaling to enzymology. Allosteric enzymes pervade metabolic processes, yet a simple and unified treatment of the effects of allostery in enzymes has been lacking. In this work, we take the first step towards this goal by modeling allosteric enzymes and their interaction with two key molecular players - allosteric regulators and competitive inhibitors. We then apply this model to characterize existing data on enzyme activity, comment on how enzyme parameters (such as substrate binding affinity) can be experimentally tuned, and make novel predictions on how to control phenomena such as substrate inhibition. arXiv:1701.03988v1 [q-bio.SC] 15 Jan 2017 ∗To whom correspondence should be addressed †Department of Physics, California Institute of Technology, Pasadena, California 91125, United States ‡Institute of Biotechnology, Vilnius University, Vilnius, Lithuania ¶Department of Applied Physics and Division of Biology, California Institute