Lecture 7: 9/7 Kinetics and Regulation

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 7: 9/7 Kinetics and Regulation Lecture 7: 9/7 CHAPTER 7 Kinetics and Regulation Chapter 7 Outline The rate or velocity of an enzymatic reaction Consider a simple reaction: The velocity or rate of the reaction is determined by measuring how much A disappears as a function of time or how much B appears as a function of time. Suppose that we can readily measure the disappearance of A. The velocity of the reaction is given by the formula below, where k is a proportionality constant. When the velocity of a reaction is directly proportional to reactant concentration, the reaction is called a first‐order reaction and the proportionality constant has the units s‐1. Many important biochemical reactions are biomolecular or second‐order reactions. or The rate equations for these reactions are: and The proportionality constant for second‐order reactions has the units M‐1s‐1. A common means of investigating enzyme kinetics to measure velocity as a function of substrate concentration with a fixed amount of enzyme. Consider a simple reaction in which the enzyme E catalyzes the conversion of SP. with k1, k2 being the rate constant for the indicated reaction steps. So as to ignore the reverse reaction of PS, we measure activity when [P] ≈ 0. Under these conditions, the velocity is called the initial velocity or Vo. Reaction velocity versus substrate concentration in an enzyme‐catalyzed reaction An enzyme‐catalyzed reaction approaches a maximal velocity when the enzyme is saturated with substrate. The initial velocity is determined by measuring product formation as a function of time, and then determining the velocity soon after the reaction has started. Determining initial velocity The amount of product formed at different substrate concentrations is plotted as a function of time. Leonor Michaelis and Maud Menten derived an equation to describe the initial reaction velocity as a function of substrate concentration. where and When Vo = ½ Vmax, KM =[S]. Thus, KM is the substrate concentration that yields ½ Vmax. Michaelis–Menten kinetics A plot of the reaction velocity, V0, as a function of the substrate concentration, [S], for an enzyme that obeys Michaelis–Menten kinetics shows that the maximal velocity, Vmax, is approached asymptotically. The Michaelis constant, KM, is the substrate concentration yielding a velocity of Vmax /2. [S]/Km= ? Two enzymes play a key role in the metabolism of alcohol. Some people respond to alcohol consumption with facial flushing and rapid heart beat, symptoms caused by excessive amounts of acetaldehyde in the blood. There are two different acetaldehyde dehydrogenases in most people, one with a low KM and one with a high KM. The low KM enzyme is inactivated in susceptible individuals. The enzyme with the high KM cannot process all of the acetaldehyde, and so some acetaldehyde appears in the blood. The Michaelis‐Menten equation can be manipulated into one that yields a straight‐line plot. This double‐reciprocal equation is called the Lineweaver‐Burke equation. y=mx+b X‐axis Y‐axis A double‐reciprocal, or Lineweaver‐Burk, plot y=mx+b KM values for enzymes vary widely and evidence suggests that the KM value is approximately the substrate concentration of the enzyme in vivo. If the enzyme concentration, [E]T, is known, then and K2, also called kcat, is the turnover number of the enzyme, which is the number of substrate molecules converted into product per second. If [S]<<KM, we can assume that free enzyme [E] ≈ [E]T. The Michaelis‐Menten equation can be manipulated to yield: Under these conditions, is a measure of catalytic efficiency because it takes into account both the rate of catalysis (kcat) and nature of the enzyme substrate interaction (KM). Examination of the kcat/KM ratio reveals that some enzymes approach catalytic perfection. Expanding the equation for kcat/KM shows that k1, the rate of formation of the enzyme‐ substrate complex, is the rate limiting step. Diffusion (≈108‐109 s‐1 M‐1) limits the value of k1. Yet, the kcat/KM of some enzymes approaches the rate of diffusion. Multiple substrate reactions can be divided into two groups. Sequential reactions are characterized by formation of a ternary complex consisting of the two substrates and the enzyme. Double‐displacement reactions are characterized by the formation of a substituted enzyme intermediate. Double‐displacement reactions are also called ping‐pong reactions. or ping‐pong reactions Allosteric enzymes control the flux of biochemical reactions in metabolic pathways. Because of their regulatory properties, allosteric enzymes allow for the generation of complex metabolic pathways. The conversion of A to B is the committed step, because once this occurs, B is committed to being converted into F. Allosteric enzymes catalyze the committed step of metabolic pathways. Michaelis‐Menten enzymes facilitate the remaining steps. The amount of F synthesized can be regulated by feedback inhibition. The pathway product F inhibits enzyme e1 by binding to a regulatory site on the enzyme that is distinct from the active site. The regulation of metabolic pathways can be quite complex. Allosteric enzymes may be inhibited or stimulated by several regulatory molecules. The reaction velocity of allosteric enzymes displays a sigmoidal relationship to substrate concentration. Kinetics for an allosteric enzyme All allosteric enzymes display quaternary structure with multiple active sites and regulatory sites. One model that explains the behavior of allosteric enzymes is the concerted model. Features of the concerted model: 1. The enzyme exists into two different quaternary structures, designated T(tense) and R (relaxed). 2. T and R are in equilibrium, with T being the more stable state. 3. The R state is enzymatically more active than the T state. 4. All active sites must be in the same state. The binding of substrate to one active site traps the other active sites in the R state and removes the substrate‐bound enzyme from the T<‐>R equilibrium. This disruption of the T<‐>R equilibrium by the binding of substrate favors the conversion of more enzymes to the R state. The concerted model for allosteric enzymes Allosteric enzymes are more sensitive to changes in substrate concentration near their KM values than are Michaelis‐Menten enzymes. This sensitivity is called the threshold effect. Allosteric enzymes display threshold effects Allosteric regulators disrupt the R<‐>T equilibrium when they bind the enzyme. Inhibitors stabilize the T state while activators stabilize the R state. The disruption of the T<‐>R equilibrium by substrates is called the homotropic effect. The disruption of the T<‐>R equilibrium by regulators is called the heterotrophic effect. The sequential model for allosteric enzymes proposes that subunits undergo sequential changes in structure. The sequential model Phosphoribosylpyrophosphate synthetase (PRS) is an allosteric enzyme in the purine nucleotide synthesis pathway. A mutation leading to the loss of regulatory control without an effect on catalytic activity leads to the overproduction of purine nucleotides. The overproduction results in the painful disease gout. Studies of individual enzyme molecules suggest that some enzymes may exist in multiple conformations that are in equilibrium. These different conformations may have different catalytic or regulatory properties. Single‐molecule studies can reveal molecular heterogeneity This figure shows an enzyme that display molecular heterogeneity. Each form represent the fraction of the total enzyme population. That means that an enzyme with three forms that catalyze the same reaction but different rates. A schematic View of Enzyme Activity in Ensemble Studies Enzyme activity under a set of conditions with an assumption that all the enzyme molecules are the same or similar. A schematic View of Single‐Molecule Experiment Each peak represents a different kind of molecular forms of enzyme Lecture 8: 9/9 CHAPTER 8 Mechanisms and Inhibitors.
Recommended publications
  • Statistical Mechanics of Allosteric Enzymes
    Statistical Mechanics of Allosteric Enzymes Tal Einav,† Linas Mazutis,‡ and Rob Phillips∗,¶ Department of Physics, California Institute of Technology, Pasadena, California 91125, United States, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania, and Department of Applied Physics and Division of Biology, California Institute of Technology, Pasadena, California 91125, United States E-mail: [email protected] Abstract The concept of allostery in which macromolecules switch between two different conforma- tions is a central theme in biological processes ranging from gene regulation to cell signaling to enzymology. Allosteric enzymes pervade metabolic processes, yet a simple and unified treatment of the effects of allostery in enzymes has been lacking. In this work, we take the first step towards this goal by modeling allosteric enzymes and their interaction with two key molecular players - allosteric regulators and competitive inhibitors. We then apply this model to characterize existing data on enzyme activity, comment on how enzyme parameters (such as substrate binding affinity) can be experimentally tuned, and make novel predictions on how to control phenomena such as substrate inhibition. arXiv:1701.03988v1 [q-bio.SC] 15 Jan 2017 ∗To whom correspondence should be addressed †Department of Physics, California Institute of Technology, Pasadena, California 91125, United States ‡Institute of Biotechnology, Vilnius University, Vilnius, Lithuania ¶Department of Applied Physics and Division of Biology, California Institute
    [Show full text]
  • Lec-08-Handout
    NPTEL VIDEO COURSE – PROTEOMICS PROF. SANJEEVA SRIVASTAVA HANDOUT LECTURE-08 ENZYME: BASIC CONCEPTS, CATALYTIC AND REGULATORY STRATEGIES Slide 1 Today, we will talk about enzyme: basic concepts, catalytic and regulatory strategies. Slide 2 Lecture outline: • Basic concepts of enzyme including enzyme kinetics, energetics and enzyme inhibition. • Different type of catalytic strategies and regulatory strategies. Slide 3 So as you all know, enzymes play very important role in biochemistry All enzymes are proteins therefore it will essential to study about enzymes while studying basic concepts of amino acids and proteins. Although it may not be directly linked to the proteomics but understanding of enzyme and proteins is very fundamental for the advanced understanding of concepts related to proteomics. Slide 4 So what are enzymes? • Enzymes are molecular catalysts. • Almost all enzymes are proteins and as we have discussed in the previous lecture there are twenty amino acids that make up the basic building blocks of all proteins. • Enzymes can accelerate a given reaction up to million folds. Let’s take an example of carbonic anhydrase which catalyzes hydration of carbon di oxide. Now this enzyme can catalyze 106 molecules per second. • Enzymes are highly specific and catalyze single or closely related reaction. DEPARTMENT OF BIOSCIENCES & BIOENGINEERING INDIAN INSTITUTE OF TECHNOLOGY (IIT) BOMBAY, MUMBAI, INDIA Page 1 NPTEL VIDEO COURSE – PROTEOMICS PROF. SANJEEVA SRIVASTAVA Slide 5 In terms of enzyme specificity, let me give you few examples- • Trypsin- it is highly specific, it cleaves peptide on carboxyl side of Lys/Arg. • Another enzyme thrombin, which participates in blood clotting, it is even more specific that trypsin.
    [Show full text]
  • Structure and Evolution of Protein Allosteric Sites
    Structure and evolution of protein allosteric sites by Alejandro Panjkovich Thesis submitted to Universitat Aut`onoma de Barcelona in partial fulfillment of the requirements for the degree of Doctor of Philosophy Director - Prof. Xavier Daura Tesi Doctoral UAB/ANY 2013 Ph.D. Program - Protein Structure and Function Institut de Biotecnologia i Biomedicina caminante, no hay camino, se hace camino al andar Antonio Machado,1912 Acknowledgements First of all I would like to thank my supervisor and mentor Prof. Xavier Daura for his consistent support and trust in my work throughout these years. Xavi, I deeply appreciate the freedom you gave me to develop this project while you were still carefully aware of the small details. Working under your supervision has been a rich and fulfilling experience. Of course, thanks go as well to current and past members of our institute, especially Rita Rocha, Pau Marc Mu˜noz,Oscar Conchillo, Dr. Mart´ınIndarte, Dr. Mario Ferrer, Prof. Isidre Gibert, Dr. Roman Affentranger and Dr. Juan Cedano for their technical and sometimes philo- sophical assistance. Help from the administrative staff was also significant, I would like to thank in particular Eva, Alicia and Miguel who where always ready to help me in sorting out unexpected bureaucratic affairs. I would also like to thank Dr. Mallur Srivatasan Madhusudhan and his group (especially Kuan Pern Tan, Dr. Minh Nguyen and Binh Nguyen), and also Dr. Gloria Fuentes, Cassio Fernandes, Youssef Zaki, Thijs Kooi, Rama Iyer, Christine Low and many others at the Bioinformatics Institute BII - A∗STAR in Singapore for the many interesting discussions and support during my stage over there.
    [Show full text]
  • Metabolism of Glycogen Glycogenesis
    LEC: 10Biochemistry Dr. Anwar J Almzaiel Metabolism of glycogen Glycogen is the major storage form of carbohydrate in animal and corresponds to starch in plant. It occurs mainly in liver (up to 6%) and muscle(up to 1%). However, because of great mass, muscle represents some 3-4 times as much as glycogen store as liver. It is branched polymer of α- glucose. The function of muscle glycogen is to act as a readily available source of hexose units for glycolysis within the muscle itself. Liver glycogen is largely concerned with storage and export of hexose units for maintenance of the blood glucose, particularly between meals. After (12-18 hours) of fasting, the liver becomes almost totally depleted of glycogen, whereas muscle glycogen is only depleted significantly after prolonged various exercise. Why the cell can store glycogen but not glucose? Because when glucose increased, osmatic pressure in the cell increase, causing water movement toward the cell and leading to burst so when glucose accumulates in the cell, it will convert to glycogen which consists of branched series of glucose. Glycogenesis The process of glycogenesis start when glucose-6-phosphat is changed to glucose-1-phosphate by mutase mutas glucose-6-phosphatglucosee 1-phosphate The reaction is reversible and depends on concentration of substrate (glucose- 6-phosphat), if there is a large amount or quantities of glucose-6-phosphat will lead to formation of glucose 1-phosphate and the opposite is right. No loss in the energy in this reaction As glucose 1-phosphate formed, it will react with high energy compound UTP (uradin triphosphate), which react with glucose to give UDP glucose (uradin diphosphate glucose) and pyrophosphate released glucose 1-phosphate is high energetic compound and called (active glucose molecule), this reaction is carried by (UDP glucose pyrophosphorylase) 1 LEC: 10Biochemistry Dr.
    [Show full text]
  • Allosteric Enzymes: Properties and Mechanism | Microbiology
    Allosteric Enzymes: Properties and Mechanism | Microbiology In this article we will discuss about the properties and mechanisms of action of allosteric enzymes. Properties of Allosteric Enzymes: Allosteric or Regulatory enzymes have multiple subunits (Quaternary Structure) and multiple active sites. Allosteric enzymes have active and inactive shapes differing in 3D structure. Allosteric enzymes often have multiple inhibitor or activator binding sites involved in switching between active and inactive shapes. Allosteric enzymes have characteristic “S”-shaped curve for reaction rate vs. substrate concentration. Why? Because the substrate binding is “Cooperative.” And the binding of first substrate at first active site stimulates active shapes, and promotes binding of second substrate. A modulator is a me-tabolite, when bound to the allosteric site of an enzyme, alters its kinetic characteristics. The modulators for allosteric enzyme may be ei-ther stimulatory or inhibitory. A stimulator is often the sub-strate itself. The regulatory enzymes for which substrate and modulator are identical are called homo-tropic. When the modulator has a structure different then the substrate, the enzyme is called heterotropic. Some enzymes have more then one modulators. The allosteric enzymes also have one or more regulatory or aliosteric sites for binding the modulator. Enzymes with several modulators generally have different specific binding sites for each (Fig. 12.15). The sigmoid curve is given by homo-tropic enzymes in which the substrate also serve as a positive (stimulator) modu-lator (12.16). Curve for the non-regulatory enzymes is hy-perbolic, as also predicted by the Michaelis-Menten equa-tion, whereas allosteric en-zymes do not show Michaelis- Menten relationship because their kinetic behaviour is greatly altered by variation in the concentration of modula-tors.
    [Show full text]
  • COOPERATIVITY and ALLOSTERISM Dr. Tijani A. S
    COOPERATIVITY AND ALLOSTERISM Dr. Tijani A. S. Learning Objectives At the end of this topic, the student should be acquainted with: Enzyme Cooperativity Description of Allosterism Models of Allosterism and Kinetics of Allosteric Enzymes Cooperativity Cooperativity is a phenomenon displayed by enzymes or receptors that have multiple binding sites. Cooperativity involves an interconversion of the monomer subunits between a tense form (less active subunits) and a relaxed form (more active subunits). Cooperativity can be positive or negative. Positive cooperativity: ligand binding at one site increases the affinity of the other sites. E. g binding of oxygen to hemoglobin Negative cooperativity the affinity of other sites is decreased by ligand binding to the first site. This concept of transmitted structural changes in the protein, resulting in long- distance communication between sites, has been termed allostery, and enzymes that display these effects are known as allosteric enzymes Cooperativity The first description of cooperative binding to a multi-site protein was developed by A.V. Hill The Sigmoid Plot and the Hill Equation Non-allosteric enzyme V0 = Vmax [S] . Hyperbolic plot Km + [S] . MM Kinetics n n Ý = [L] = [L] n n n Allosteric enzyme Kd + [L] K a + [L] ………..Hill Eqn. Sigmoidal plot . Non MM kinetics n = Hill coefficient (sometimes written as nH ) Value gives a measure of cooperativity n = 1: No cooperativity, graph is hyperbolic n > 1: + ve Cooperativity, sigmoidal curve n < 1: - ve Cooperativity, sigmoidal curve Hill Plot Hill plot" is obtained by plotting log Ý vs log [L] . 1- Ý Hill plot of the Hill equation in red, showing the slope of the curve being the Hill coefficient and the intercept with the x-axis providing the apparent dissociation constant.
    [Show full text]
  • MCAT Psychology, Potomac Watch -The Insula of the Brain Is Implicated in Conscious Urges and Emotions
    MCAT Psychology, Potomac Watch -The insula of the brain is implicated in conscious urges and emotions. Therefore smokers with brain damage involving the insula would be more likely to quit smoking more easily without relapse than smokers without brain damage to the insula -Avolition, Avolition amounts to the overall lack of drive to perform activities and pursue objectives. For example, people with this symptom may not have the will to run errands or perform a task, even when those tasks will bring obvious advantages to their lives (e.g., cooking). It is thus a negative symptom -An allosteric enzyme has a site other than the one for the substrate at which a molecule (not the substrate) that directs the function of the enzyme can bind -oxygen in H2O is δ- and thus will be attracted to a δ+ atom. The carbon double bonded to the nitrogen must be δ+ -First, exactly why is DNA negatively charged? The reason why DNA is negatively charged is the phosphate group that makes up every nucleotide (pentose + nitrogenous base + phosphate). When forming part of the phosphodiester bond, the phosphate group (circled in blue below) retains 1 of 2 negatively charges (the other being lost to form the other ester bond to a new pentose, which is the reason for the name "phospho-di-ester") Brain Functioning Heart Physics Senses, Eyes, Ears, Tongue, Skin Sleep Stages, Radiation Waves Lengths Chemistry Nomenclature (Zcis, Etrans) (R Clockwise, S Counterclockwise) DNA Structure, Amino Acids, DNA Nitrogen Bases (AG, TUC) ATP Cycles, Phosphagen Glycolytic Oxidative Colligative Properties gamma > beta > alpha Homophily, Relationships from Shared Characteristics Avolition amounts to the overall lack of drive to perform activities and pursue objectives.
    [Show full text]
  • Chapter 6: an Introduction to Proteins
    NAME ________________________________ EXAM III I. __________________/45 November 6, 2000 Biochemistry I II. __________________/35 III. __________________/25 TOTAL /100 I. MULTIPLE CHOICE. (45 points; 3 points each) Choose the BEST answer to the question by circling the appropriate letter. 1. In competitive inhibition, an inhibitor: A. binds at several different sites on an enzyme. B. binds reversibly at the active site. C. binds only to the ES complex. D. binds covalently to the enzyme. E. lowers the characteristic Vmax of the enzyme. 2. In a plot of l/V against 1/[S] for an enzyme-catalyzed reaction, the presence of a competitive inhibitor will alter the: A. Vmax. B. intercept on the l/V axis. C. intercept on the l/[S] axis. D. curvature of the plot. E. pK of the plot. 3. Enzyme X exhibits maximum activity at pH = 6.9. X shows a fairly sharp decrease in its Vmax when the pH goes much lower than 6.4. One likely interpretation of this pH activity is that: A. a residue with a pKa of 6.4 is involved in binding B. a His residue on the enzyme is involved in the reaction. C. a Glu residue on the enzyme is involved in the reaction. D. the enzyme is found in gastric secretions. E. the enzyme has a metallic cofactor. 4. An average protein will not be denatured by: A. sodium dodecyl sulfate. B. pH 10. C. heating to 90 °C. D. urea. E. iodoacetic acid. 5. Which of the following is false about the catalytic mechanism of acetoacetate decarboxylase? A.
    [Show full text]
  • Is Allostery an Intrinsic Property of All Dynamic Proteins?
    PROTEINS: Structure, Function, and Bioinformatics 57:433–443 (2004) REVIEW Is Allostery an Intrinsic Property of All Dynamic Proteins? K. Gunasekaran,1 Buyong Ma,1 and Ruth Nussinov1,2* 1Basic Research Program, SAIC-Frederick, Inc., Laboratory of Experimental and Computational Biology, National Cancer Institute-Frederick, Bldg 469, Rm 151, Frederick, Maryland 2Sackler Institute of Molecular Medicine, Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel ABSTRACT Allostery involves coupling of con- positive feedback regulation or negative inhibition.1–4 In formational changes between two widely separated 1965, Monod et al. analyzed 24 allosteric enzyme systems binding sites. The common view holds that alloste- and proposed a “plausible model on the nature of allosteric ric proteins are symmetric oligomers, with each transition” (the “concerted” or “MWC” model).5 The propo- subunit existing in “at least” two conformational sition was inspired by the observation of two conforma- states with a different affinity for ligands. Recent tional states of deoxy- and oxyhemoglobin. The MWC observations such as the allosteric behavior of myo- model suggested that allosteric proteins are symmetric globin, a classical example of a nonallosteric pro- oligomers with identical protomers. Each protomer exists tein, call into question the existing allosteric dogma. in “at least” two conformational states (tense, T; relaxed, Here we argue that all (nonfibrous) proteins are R) with different affinities for ligands.5 The basic assump- potentially allosteric. Allostery is a consequence of tion of the model is that the protein interconverts between re-distributions of protein conformational en- two conformations, R and T, in a concerted manner.
    [Show full text]
  • Enzyme & Coenzyme
    King Saud University Foundation Block Enzyme & Coenzyme Lecture 7 + 8 Color Index: Important ⇒ Red Explanation ⇒ Orange Additional ⇒ Purple Mind Map that محفز They are biological catalysts - speed up the rate of a reaction without being consumed by the reaction. - All enzymes are proteins, but not all proteins are enzymes. Substrate is the substance that enzymes act on, and convert it into products. Classification of Enzymes Enzymes are classified into 6 classes according to the reaction catalyzed Classification Type of Reaction Catalyzed 1 Oxidoreductases Oxidation-Reduction reactions 2 Transferases Transfer of functional groups 3 Hydrolases Hydrolysis reaction 4 Lyases Group elimination to form double bonds 5 Isomerases Isomerization 6 Ligases Bond formation + ATP hydrolysis Enzyme Nomenclature (Naming) Enzyme Nomenclature is based on the rules given by EC 3.4.17.1 (Carboxypeptidase) IUBMB (International Union of Biochemistry and EC = Enzyme Commission Molecular Biology. Class.subclass.subsubclass.Enzyme number Properties of Enzymes Active Site Regulation Specificity - The region of - Enzymes can be - Enzymes bind to enzyme that binds activated or their specific with substrate inhibited so that substrates in the the rate of product active site to - Where Catalysis formation convert them to occur responds to the products need of the cell. - All enzymes have - Enzymes are 1 or more active highly specific sites - They interact with only one or few substrates - Catalyze only one reaction Enzyme-Substrate Binding Lock and Key Binding Induces Fit Binding The enzyme has an active site In this case, after binding to the that fits the exact dimensions of substrate, the enzyme changes its the substrate.
    [Show full text]
  • Modulating Protein Activity Using Tethered Ligands with Mutually Exclusive Binding Sites
    ARTICLE Received 28 Nov 2014 | Accepted 16 Jun 2015 | Published 22 Jul 2015 DOI: 10.1038/ncomms8830 OPEN Modulating protein activity using tethered ligands with mutually exclusive binding sites Alberto Schena1,2,3,*, Rudolf Griss1,2,3,* & Kai Johnsson1,2,3 The possibility to design proteins whose activities can be switched on and off by unrelated effector molecules would enable applications in various research areas, ranging from biosensing to synthetic biology. We describe here a general method to modulate the activity of a protein in response to the concentration of a specific effector. The approach is based on synthetic ligands that possess two mutually exclusive binding sites, one for the protein of interest and one for the effector. Tethering such a ligand to the protein of interest results in an intramolecular ligand–protein interaction that can be disrupted through the presence of the effector. Specifically, we introduce a luciferase controlled by another protein, a human carbonic anhydrase whose activity can be controlled by proteins or small molecules in vitro and on living cells, and novel fluorescent and bioluminescent biosensors. 1 E´cole Polytechnique Fe´de´rale de Lausanne, Institute of Chemical Sciences and Engineering, Avenue Forel 2, EPFL SB ISIC LIP BCH-4303, CH-1015 Lausanne, Switzerland. 2 E´cole Polytechnique Fe´de´rale de Lausanne, Institute of Bioengineering, CH-1015 Lausanne, Switzerland. 3 National Centre of Competence in Research in Chemical Biology, CH-1015 Lausanne, Switzerland. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to K.J. (email: kai.johnsson@epfl.ch).
    [Show full text]
  • Bioreaction Kinetics 2
    BioreactionBioreactionBioreactionKineticsKinetics Kinetics 222 20042004 SeungwookSeungwookKim Kim Chem.Chem. && Bio.Bio. Eng.Eng. ReferenceReference z Chemistry and the Living Organism, 6th edition, Molly M. Bloomfield, Lawrence J. Stephens, John Wiley & Sons, Inc. EnzymesEnzymes 1. Most enzymes are protein catalysts in biological systems. 2. For an enzyme to catalyze a reaction, the substrate must attach to the surface of the enzyme in a region called the active site. 3. Enzyme activity can be inhibited in several ways. 4. Metabolic processes are the result of sequences of enzyme-catalyzed reactions called multienzyme systems. 5. Enzyme activity in an organism is regulated at many levels, both inside and outside the cell. WhatWhat IsIs Metabolism?Metabolism? z Metabolism : all the enzyme-catalyzed reactions in the cell. z Two types { Catabolic reactions : Molecules are broken down to produce smaller molecules and energy. { Anabolic reactions (Biosynthetic reaction) : The cell uses energy to produce the molecules it needs for growth and repair. EnzymesEnzymes (Biological(Biological catalysts)catalysts) z The largest and most highly specialized class of proteins. z Water-soluble globular proteins that carry out their functions in body fluids or bound to the membranes of the cell. z Molecular weight from 12,000 to over 1 million. z A simple single polypeptide chain or a more complex molecule composed of several polypeptide chains and other nonprotein parts. z Examples { Ribonuclease : A single polypeptide chain of 124 aa Molecular mass: About 13,700 daltons(1 dalton = 1 amu) { Pyruvate dehydrogenase : Macromolecular complex containing 42 individual molecules Molecular mass: About 10 million daltons Important terms used in the study of enzymes.
    [Show full text]