AC28 Doc. 22.5
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dietary Behavior of the Mangrove Monitor Lizard (Varanus Indicus)
DIETARY BEHAVIOR OF THE MANGROVE MONITOR LIZARD (VARANUS INDICUS) ON COCOS ISLAND, GUAM, AND STRATEGIES FOR VARANUS INDICUS ERADICATION A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI’I AT HILO IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN TROPICAL CONSERVATION BIOLOGY AND ENVIRONMENTAL SCIENCE MAY 2016 By Seamus P. Ehrhard Thesis Committee: William Mautz, Chairperson Donald Price Patrick Hart Acknowledgements I would like to thank Guam’s Department of Agriculture, the Division of Aquatic and Wildlife Resources, and wildlife biologist, Diane Vice, for financial assistance, research materials, and for offering me additional staffing, which greatly aided my fieldwork on Guam. Additionally, I would like to thank Dr. William Mautz for his consistent help and effort, which exceeded all expectations of an advisor, and without which I surely would have not completed my research or been inspired to follow my passion of herpetology to the near ends of the earth. 2 Abstract The mangrove monitor lizard (Varanus indicus), a large invasive predator, can be found on all areas of the 38.6 ha Cocos Island at an estimated density, in October 2011, of 6 V. Indicus per hectare on the island. Plans for the release of the endangered Guam rail (Gallirallus owstoni) on Cocos Island required the culling of V. Indicus, because the lizards are known to consume birds and bird eggs. Cocos Island has 7 different habitats; resort/horticulture, Casuarina forest, mixed strand forest, Pemphis scrub, Scaevola scrub, sand/open area, and wetlands. I removed as many V. Indicus as possible from the three principal habitats; Casuarina forest, mixed scrub forest, and a garbage dump (resort/horticulture) using six different trapping methods. -
Observations on Varanus S. Salvator in North Sulawesi
ARTICLES Biawak 1(2): 59-66 © 2007. International Varanid Interest Group Observations on Varanus s. salvator in North Sulawesi HAROLD F. DE LISLE P.O. Box 1975 Twentynine Palms, CA 92277, US [email protected] Abstract: Asian Water Monitors (Varanus s. salvator) are widespread on the main island of Sulawesi, Indonesia, but rather rare in the province of North Sulawesi because of human predation. This study documents observations on the daily behavior of a small coastal population over a two week period. Observations of aquatic behavior led to discussion of the possibility that this population is able to catch live fish in a particular coastal lagoon. Introduction The Asian Water Monitor (Varanus salvator salvator) is perhaps the most wide-spread of all varanids. It is found from Sri Lanka, northern India, Bangladesh, Burma, Vietnam and Hainan (China) through Malaysia east to the Indonesian islands of Sulawesi and Wetar (De Lisle, 1996). Its ability to colonize the remote islands of Malaysia and Indonesia might be due to its adaptability towards freshwater and saltwater (Traeholt, 1994a), and also its large size is an advantage, giving both the energy reserves and power to survive an extended sea voyage and a greater potential to actually achieve a landfall. Backwash from tsunamis could start this process frequently enough. Figures 1A and B. Remnant primary forest on North Sulawesi Biawak 2007 Vol. 1 No. 2 60 Figure 2. Coastal stream, North Sulawesi Figure 3. Coast of the Moluccan Sea In March 2001, a month was spent in North Sulawesi Province, Indonesia (island of Sulawesi) to observe the northeastern-most populations of the Asian Water Monitor (V. -
A Redescription and Phylogenetic Analysis of the Cretaceous Fossil Lizard Polyglyphanodon Sternbergi Gilmore, 1940
A Redescription and Phylogenetic Analysis of the Cretaceous Fossil Lizard Polyglyphanodon sternbergi Gilmore, 1940 by Meredith Austin Fontana B.S. in Biology, May 2011, The University of Texas at Austin A Thesis submitted to The Faculty of The Columbian College of Arts and Sciences of The George Washington University in partial fulfillment of the requirements for the degree of Master of Science August 31, 2014 Thesis directed by James M. Clark Ronald Weintraub Professor of Biology © Copyright 2014 by Meredith Austin Fontana All rights reserved ii This thesis is dedicated to the memory of my grandmother, Lee Landsman Zelikow – my single greatest inspiration, whose brilliant mind and unconditional love has profoundly shaped and continues to shape the person I am today. iii ACKNOWLEDGEMENTS I am deeply grateful to my graduate advisor Dr. James Clark for his support and guidance throughout the completion of this thesis. This work would not have been possible without his invaluable assistance and commitment to my success, and it has been a privilege to be his student. I would also like to express my appreciation to the additional members of my Master’s examination committee, Dr. Alexander Pyron and Dr. Hans-Dieter Sues, for generously contributing their knowledge and time toward this project and for providing useful comments on the manuscript of this thesis. I am especially grateful to Dr. Sues for allowing me access to the exquisite collection of Polyglyphanodon sternbergi specimens at the National Museum of Natural History. I am also extremely thankful to the many faculty members, colleagues and friends at the George Washington University who have shared their wisdom and given me persistent encouragement. -
Diversificação Morfológica E Molecular Em Lagartos Dactyloidae Sul-Americanos
MUSEU PARAENSE EMÍLIO GOELDI UNIVERSIDADE FEDERAL DO PARÁ PROGRAMA DE PÓS-GRADUAÇÃO EM ZOOLOGIA CURSO DE DOUTORADO EM ZOOLOGIA DIVERSIFICAÇÃO MORFOLÓGICA E MOLECULAR EM LAGARTOS DACTYLOIDAE SUL-AMERICANOS ANNELISE BATISTA D’ANGIOLELLA Belém - PA 2015 ANNELISE BATISTA D’ANGIOLELLA DIVERSIFICAÇÃO MORFOLOGICA E MOLECULAR EM LAGARTOS DACTYLOIDAE SUL-AMERICANOS Tese apresenta ao Programa de Pós-Graduação em Zoologia do convênio Universidade Federal do Pará e Museu Paraense Emílio Goeldi, para obtenção do título de doutora em zoologia. Orientadora: Dra. Tereza Cristina Ávila Pires Co-Orientadora: Dra. Ana Carolina Carnaval Belém - PA 2015 “É capaz quem pensa que é capaz.” ii Agradecimento Ao CNPq pela concessão da minha bolsa de pesquisa. A Capes pela Bolsa de Doutorado Sanduiche no exterior. À Teresa Avila-Pires, minha orientadora, por estar sempre disponível para ajudar, escutar e puxar a orelha! A minha co-orientadora Carol Carnaval, por ter me recebido de braços abertos em seu lab e por toda confiança e apoio. A Ana Prudente pelo passe livre à Coleção e sugestões dadas ao trabalho de hemipenis. Ao Tibério Burlamaqui por toda a ajuda com as análises moleculares e momentos de descontração! A todo o pessoal do laboratório de Herpetologia do MPEG pela companhia e troca de ideias, sempre ajudando quando possível. Ao lab de molecular que foi a minha casa nesses últimos quatro anos e a todos que por ele passaram e contribuíram de alguma forma com meu conhecimento, em especial a Áurea, Geraldo, e Joice. Aos meus filhos de quatro patas Pukey e Bingo por me amarem incondicionalmente. A dança, por ser meu refúgio e por não ter me deixado pirar! Ao meu amor, Bruno, por me inspirar diariamente a ser uma pessoa melhor! Por me impulsionar a ir além e por simplesmente existir em minha vida.. -
An Intial Estimation of the Numbers and Identification of Extant Non
Answers Research Journal 8 (2015):171–186. www.answersingenesis.org/arj/v8/lizard-kinds-order-squamata.pdf $Q,QLWLDO(VWLPDWLRQRIWKH1XPEHUVDQG,GHQWLÀFDWLRQRI Extant Non-Snake/Non-Amphisbaenian Lizard Kinds: Order Squamata Tom Hennigan, Truett-McConnell College, Cleveland, Georgia. $EVWUDFW %LRV\VWHPDWLFVLVLQJUHDWÁX[WRGD\EHFDXVHRIWKHSOHWKRUDRIJHQHWLFUHVHDUFKZKLFKFRQWLQXDOO\ UHGHÀQHVKRZZHSHUFHLYHUHODWLRQVKLSVEHWZHHQRUJDQLVPV'HVSLWHWKHODUJHDPRXQWRIGDWDEHLQJ SXEOLVKHGWKHFKDOOHQJHLVKDYLQJHQRXJKNQRZOHGJHDERXWJHQHWLFVWRGUDZFRQFOXVLRQVUHJDUGLQJ WKHELRORJLFDOKLVWRU\RIRUJDQLVPVDQGWKHLUWD[RQRP\&RQVHTXHQWO\WKHELRV\VWHPDWLFVIRUPRVWWD[D LVLQJUHDWIOX[DQGQRWZLWKRXWFRQWURYHUV\E\SUDFWLWLRQHUVLQWKHILHOG7KHUHIRUHWKLVSUHOLPLQDU\SDSHU LVmeant to produce a current summary of lizard systematics, as it is understood today. It is meant to lay a JURXQGZRUNIRUFUHDWLRQV\VWHPDWLFVZLWKWKHJRDORIHVWLPDWLQJWKHQXPEHURIEDUDPLQVEURXJKWRQ WKH $UN %DVHG RQ WKH DQDO\VHV RI FXUUHQW PROHFXODU GDWD WD[RQRP\ K\EULGL]DWLRQ FDSDELOLW\ DQG VWDWLVWLFDO EDUDPLQRORJ\ RI H[WDQW RUJDQLVPV D WHQWDWLYH HVWLPDWH RI H[WDQW QRQVQDNH QRQ DPSKLVEDHQLDQOL]DUGNLQGVZHUHWDNHQRQERDUGWKH$UN,WLVKRSHGWKDWWKLVSDSHUZLOOHQFRXUDJH IXWXUHUHVHDUFKLQWRFUHDWLRQLVWELRV\VWHPDWLFV Keywords: $UN(QFRXQWHUELRV\VWHPDWLFVWD[RQRP\UHSWLOHVVTXDPDWDNLQGEDUDPLQRORJ\OL]DUG ,QWURGXFWLRQ today may change tomorrow, depending on the data Creation research is guided by God’s Word, which and assumptions about that data. For example, LVIRXQGDWLRQDOWRWKHVFLHQWLÀFPRGHOVWKDWDUHEXLOW naturalists assume randomness and universal 7KHELEOLFDODQGVFLHQWLÀFFKDOOHQJHLVWRLQYHVWLJDWH -
The Sclerotic Ring: Evolutionary Trends in Squamates
The sclerotic ring: Evolutionary trends in squamates by Jade Atkins A Thesis Submitted to Saint Mary’s University, Halifax, Nova Scotia in Partial Fulfillment of the Requirements for the Degree of Master of Science in Applied Science July, 2014, Halifax Nova Scotia © Jade Atkins, 2014 Approved: Dr. Tamara Franz-Odendaal Supervisor Approved: Dr. Matthew Vickaryous External Examiner Approved: Dr. Tim Fedak Supervisory Committee Member Approved: Dr. Ron Russell Supervisory Committee Member Submitted: July 30, 2014 Dedication This thesis is dedicated to my family, friends, and mentors who helped me get to where I am today. Thank you. ! ii Table of Contents Title page ........................................................................................................................ i Dedication ...................................................................................................................... ii List of figures ................................................................................................................. v List of tables ................................................................................................................ vii Abstract .......................................................................................................................... x List of abbreviations and definitions ............................................................................ xi Acknowledgements .................................................................................................... -
Multi-National Conservation of Alligator Lizards
MULTI-NATIONAL CONSERVATION OF ALLIGATOR LIZARDS: APPLIED SOCIOECOLOGICAL LESSONS FROM A FLAGSHIP GROUP by ADAM G. CLAUSE (Under the Direction of John Maerz) ABSTRACT The Anthropocene is defined by unprecedented human influence on the biosphere. Integrative conservation recognizes this inextricable coupling of human and natural systems, and mobilizes multiple epistemologies to seek equitable, enduring solutions to complex socioecological issues. Although a central motivation of global conservation practice is to protect at-risk species, such organisms may be the subject of competing social perspectives that can impede robust interventions. Furthermore, imperiled species are often chronically understudied, which prevents the immediate application of data-driven quantitative modeling approaches in conservation decision making. Instead, real-world management goals are regularly prioritized on the basis of expert opinion. Here, I explore how an organismal natural history perspective, when grounded in a critique of established human judgements, can help resolve socioecological conflicts and contextualize perceived threats related to threatened species conservation and policy development. To achieve this, I leverage a multi-national system anchored by a diverse, enigmatic, and often endangered New World clade: alligator lizards. Using a threat analysis and status assessment, I show that one recent petition to list a California alligator lizard, Elgaria panamintina, under the US Endangered Species Act often contradicts the best available science. -
Do Worm Lizards Occur in Nebraska? Louis A
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Herpetology Papers in the Biological Sciences 1993 Do Worm Lizards Occur in Nebraska? Louis A. Somma Florida State Collection of Arthropods, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/biosciherpetology Part of the Biodiversity Commons, and the Population Biology Commons Somma, Louis A., "Do Worm Lizards Occur in Nebraska?" (1993). Papers in Herpetology. 11. http://digitalcommons.unl.edu/biosciherpetology/11 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Herpetology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. @ o /' number , ,... :S:' .' ,. '. 1'1'13 Do Mono Li ••rel,. Occur ill 1!I! ..br .... l< .. ? by Louis A. Somma Department of- Zoology University of Florida Gainesville, FL 32611 Amphisbaenids, or worm lizards, are a small enigmatic suborder of reptiles (containing 4 families; ca. 140 species) within the order Squamata, which include~ the more speciose lizards and snakes (Gans 1986). The name amphisbaenia is derived from the mythical Amphisbaena (Topsell 1608; Aldrovandi 1640), a two-headed beast (one head at each end), whose fantastical description may have been based, in part, upon actual observations of living worm lizards (Druce 1910). While most are limbless and worm-like in appearance, members of the family Bipedidae (containing the single genus Sipes) have two forelimbs located close to the head. This trait, and the lack of well-developed eyes, makes them look like two-legged worms. -
Habitat Selection of the Desert Night Lizard (Xantusia Vigilis) on Mojave Yucca (Yucca Schidigera) in the Mojave Desert, California
Habitat selection of the desert night lizard (Xantusia vigilis) on Mojave yucca (Yucca schidigera) in the Mojave Desert, California Kirsten Boylan1, Robert Degen2, Carly Sanchez3, Krista Schmidt4, Chantal Sengsourinho5 University of California, San Diego1, University of California, Merced2, University of California, Santa Cruz3, University of California, Davis4 , University of California, San Diego5 ABSTRACT The Mojave Desert is a massive natural ecosystem that acts as a biodiversity hotspot for hundreds of different species. However, there has been little research into many of the organisms that comprise these ecosystems, one being the desert night lizard (Xantusia vigilis). Our study examined the relationship between the common X. vigilis and the Mojave yucca (Yucca schidigera). We investigated whether X. vigilis exhibits habitat preference for fallen Y. schidigera log microhabitats and what factors make certain log microhabitats more suitable for X. vigilis inhabitation. We found that X. vigilis preferred Y. schidigera logs that were larger in circumference and showed no preference for dead or live clonal stands of Y. schidigera. When invertebrates were present, X. vigilis was approximately 50% more likely to also be present. These results suggest that X. vigilis have preferences for different types of Y. schidigera logs and logs where invertebrates are present. These findings are important as they help in understanding one of the Mojave Desert’s most abundant reptile species and the ecosystems of the Mojave Desert as a whole. INTRODUCTION such as the Mojave Desert in California. Habitat selection is an important The Mojave Desert has extreme factor in the shaping of an ecosystem. temperature fluctuations, ranging from Where an animal chooses to live and below freezing to over 134.6 degrees forage can affect distributions of plants, Fahrenheit (Schoenherr 2017). -
Changes to CITES Species Listings
NOTICE TO THE WILDLIFE IMPORT/EXPORT COMMUNITY December 21, 2016 Subject: Changes to CITES Species Listings Background: Party countries of the Convention on International Trade in Endangered Species (CITES) meet approximately every two years for a Conference of the Parties. During these meetings, countries review and vote on amendments to the listings of protected species in CITES Appendix I and Appendix II. Such amendments become effective 90 days after the last day of the meeting unless Party countries agree to delay implementation. The most recent Conference of the Parties (CoP 17) was held in Johannesburg, South Africa, September 24 – October 4, 2016. Action: Except as noted below, the amendments to CITES Appendices I and II that were adopted at CoP 17, will be effective on January 2, 2017. Any specimens of these species imported into, or exported from, the United States on or after January 2, 2017 will require CITES documentation as specified under the amended listings. The import, export, or re-export of shipments of these species that are accompanied by CITES documents reflecting a pre-January 2 listing status or that lack CITES documents because no listing was previously in effect must be completed by midnight (local time at the point of import/export) on January 1, 2017. Importers and exporters can find the official revised CITES appendices on the CITES website. Species Added to Appendix I . Abronia anzuetoi (Alligator lizard) . Abronia campbelli (Alligator lizard) . Abronia fimbriata (Alligator lizard) . Abronia frosti (Alligator lizard) . Abronia meledona (Alligator lizard) . Cnemaspis psychedelica (Psychedelic rock gecko) . Lygodactylus williamsi (Turquoise dwarf gecko) . Telmatobius coleus (Titicaca water frog) . -
Animal Information Natural Treasures Reptiles (Non-Snakes)
1 Animal Information Natural Treasures Reptiles (Non-Snakes) Table of Contents Red-footed Tortoise…………….………………………………………………………..2 Argentine Black and white Tegu.………………….………………………..……..4 Madagascar Giant Day Gecko.……………………………………….……..………5 Henkel’s Leaf-Tailed Gecko……………………………………………………………6 Panther Chameleon………………………………………………………………………8 Prehensile-tailed Skink………………………………………….……………………..10 Chuckwalla………………………………………………………….……………………….12 Crevice Spiny Lizard……………………………………………………………………..14 Gila Monster……………………………………………..………………………………...15 Dwarf Caiman………….…………………………………………………………………..17 Spotted Turtle……………………………………………………………………………..19 Mexican Beaded Lizard………………………………………………………………..21 Collared Lizard………………………………………………………………………....…23 Red-footed Tortoise Geocheloidis carbonaria 2 John Ball Zoo Habitat – Depending on whether they can be found either in the Natural Treasures Building or outside in the children’s zoo area across from the Budgie Aviary. Individual Animals: 1 Male, 1 Female Male – Morty (Smooth shell) o Age unknown . Records date back to 1985 o Arrived October 11, 2007 o Weight: 8.5lbs Female - Ethel o Age unknown o Arrived June 02, 2011 o Weight: 9.5-10lbs Life Expectancy Insufficient data Statistics Carapace Length – 1.6 feet for males, females tend to be smaller Diet – Frugivore – an animal that mainly eats fruit Wild – Fruit during the wet season and flowers during the dry season o Some soil and fungi Zoo – Salad mix (greens, fruits, veggies) hard boiled eggs, and fish o Fed twice a week Predators Other than humans, there is no information available concerning predators. Habitat Tropical, terrestrial Rainforests and savanna areas. It prefers heavily forested, humid habitats but avoids muddy areas due to low burrowing capacity of these habitats. Region Throughout the South American mainland and North of Argentina. Red-footed Tortoise 3 Geocheloidis carbonaria Reproduction – Polygynous (having more than one female as a mate at a time). -
Iguanid and Varanid CAMP 1992.Pdf
CONSERVATION ASSESSMENT AND MANAGEMENT PLAN FOR IGUANIDAE AND VARANIDAE WORKING DOCUMENT December 1994 Report from the workshop held 1-3 September 1992 Edited by Rick Hudson, Allison Alberts, Susie Ellis, Onnie Byers Compiled by the Workshop Participants A Collaborative Workshop AZA Lizard Taxon Advisory Group IUCN/SSC Conservation Breeding Specialist Group SPECIES SURVIVAL COMMISSION A Publication of the IUCN/SSC Conservation Breeding Specialist Group 12101 Johnny Cake Ridge Road, Apple Valley, MN 55124 USA A contribution of the IUCN/SSC Conservation Breeding Specialist Group, and the AZA Lizard Taxon Advisory Group. Cover Photo: Provided by Steve Reichling Hudson, R. A. Alberts, S. Ellis, 0. Byers. 1994. Conservation Assessment and Management Plan for lguanidae and Varanidae. IUCN/SSC Conservation Breeding Specialist Group: Apple Valley, MN. Additional copies of this publication can be ordered through the IUCN/SSC Conservation Breeding Specialist Group, 12101 Johnny Cake Ridge Road, Apple Valley, MN 55124. Send checks for US $35.00 (for printing and shipping costs) payable to CBSG; checks must be drawn on a US Banlc Funds may be wired to First Bank NA ABA No. 091000022, for credit to CBSG Account No. 1100 1210 1736. The work of the Conservation Breeding Specialist Group is made possible by generous contributions from the following members of the CBSG Institutional Conservation Council Conservators ($10,000 and above) Australasian Species Management Program Gladys Porter Zoo Arizona-Sonora Desert Museum Sponsors ($50-$249) Chicago Zoological