Carbohydrates II
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Paul Ehrlich
Paul Ehrlich Paul Ehrlich (geboren am 14. März 1854 in Strehlen, Regierungsbezirk Breslau, Provinz Schlesien; gestorben am 20. August 1915 in Bad Homburg vor der Höhe[1]) war ein deutscher Mediziner und Forscher. Durch seine Färbemethoden unterschied er verschiedene Arten von Blutzellen, wodurch die Diagnose zahlreicher Blutkrankheiten ermöglicht wurde. Mit seiner Entwicklung einer medikamentösen Behandlung der Syphilis begründete er die moderne Chemotherapie. Außerdem war er entscheidend an der Entwicklung des Heilserums gegen Diphtherie beteiligt, die üblicherweise Emil von Behring alleine zugeschrieben wird. Als Direktor des Instituts für experimentelle Therapie arbeitete er die Methoden für die Standardisierung („Wertbemessung“[2] bzw. Wertbestimmung) von Sera aus. 1908 erhielt er zusammen mit Ilja Metschnikow für seine auf dem Gebiet der Serumsforschung entwickelten Beiträge zur Immunologie den Nobelpreis für Physiologie oder Medizin. Paul Ehrlich (1915) Inhaltsverzeichnis Leben Herkunft Schule und Studium Berlin Frankfurt Werk Färbemethoden für die Hämatologie Serumforschung Freundschaft mit Robert Koch Erste Arbeiten zur Immunität Arbeit mit Behring an einem Diphtherieheilserum Die Wertbestimmung von Sera Die Seitenkettentheorie Krebsforschung Chemotherapie Die Vitalfärbung Methylenblau Die Suche nach einer „Chemotherapia specifica“ Nachwirkungen Spielfilm Briefmarken und Banknote Ehrlich als Namensgeber Ausstellungen Literatur Weblinks Einzelnachweise Leben Herkunft Paul Ehrlich wurde als zweites Kind jüdischer Eltern geboren. -
Liquid Chromatography with Electrospray Ionization And
Hindawi Publishing Corporation International Journal of Analytical Chemistry Volume 2016, Article ID 9269357, 8 pages http://dx.doi.org/10.1155/2016/9269357 Research Article Liquid Chromatography with Electrospray Ionization and Tandem Mass Spectrometry Applied in the Quantitative Analysis of Chitin-Derived Glucosamine for a Rapid Estimation of Fungal Biomass in Soil Madelen A. Olofsson and Dan Bylund DepartmentofNaturalSciences,MidSwedenUniversity,85170Sundsvall,Sweden Correspondence should be addressed to Madelen A. Olofsson; [email protected] Received 2 September 2015; Accepted 12 January 2016 Academic Editor: Frantisek Foret Copyright © 2016 M. A. Olofsson and D. Bylund. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This method employs liquid chromatography-tandem mass spectrometry to rapidly quantify chitin-derived glucosamine for estimating fungal biomass. Analyte retention was achieved using hydrophilic interaction liquid chromatography, with a zwitter- ionic stationary phase (ZIC-HILIC), and isocratic elution using 60% 5 mM ammonium formate buffer (pH 3.0) and 40% ACN. Inclusion of muramic acid and its chromatographic separation from glucosamine enabled calculation of the bacterial contribution to the latter. Galactosamine, an isobaric isomer to glucosamine, found in significant amounts in soil samples, was also investigated. Thetwoisomersformthesameprecursorandproductionsandcouldnotbechromatographicallyseparatedusingthisrapid method. Instead, glucosamine and galactosamine were distinguished mathematically, using the linear relationships describing the differences in product ion intensities for the two analytes. The m/z transitions of 180 → 72 and 180 → 84 were applied for the detection of glucosamine and galactosamine and that of 252 → 126 for muramic acid. -
Chapter 12 Slides
11/15/17 CHAPTER 12: Carbohydrates: Structure and Function OUTLINE • 12.1 Role of Carbohydrates • 12.2 Monosaccharides • 12.3 Complex Carbohydrates • 12.4 Carbohydrate Catabolism • 12.5 Oligosaccharides as Cell Markers CHAPTER 12: Carbohydrates: Structure and Function WHAT ARE CARBOHYDRATES? • Glucose and its derivatives are carbohydrates: Ø Carbohydrates are simple organic molecules that have a shared basic chemical Formula: Cn(H2O)n Ø The name “carbo + hydrate” represents that Fact that they are made from CO2 and H2O by photosynthesis • About halF oF all earth’s solid carbon is Found in two polymers of glucose found in plants: Ø Starch = major energy storage molecule Ø Cellulose = major structural component oF the plant cell wall (aka. “fiber”) CHAPTER 12: Carbohydrates: Structure and Function THE SIMPLEST CARBOHYDRATES • Monosaccharides are carbohydrates that cannot be hydrolyZed into simpler carbohydrates: Ø These are the Fundamental building blocks For all other carbohydrates (oFten called “simple sugars”) Ø All have Formulas of based on the basic pattern: Cn(H2O)n • Monosaccharides have speciFic Functional groups: 1. An aldehyde OR a ketone (not both!) 2. Several (two or more) alcohol (-OH) groups 1 11/15/17 CHAPTER 12: Carbohydrates: Structure and Function STRUCTURE & NOMENCLATURE OF MONOSACCHARIDES • Monosaccharides are classiFied by two features: 1. Length of their main carbon chain (utilize standard IUPAC naming For # oF carbons) 2. Whether they contain an aldehyde or ketone group • Names always end with –ose • Two common hexoses: -
Amino Sugars and Muramic Acid—Biomarkers for Soil Microbial Community Structure Analysis
Soil Biology & Biochemistry 36 (2004) 399–407 www.elsevier.com/locate/soilbio Amino sugars and muramic acid—biomarkers for soil microbial community structure analysis Bruno Glasera,*, Marı´a-Bele´n Turrio´nb, Kassem Alefc aInstitute of Soil Science and Soil Geography, University of Bayreuth, Bayreuth D-95440, Germany bArea of Soil Science and Soil Chemistry, ETSIIAA, University of Valladolid, Palencia 34004, Spain cUmwelt und Technologie Consulting, Bayreuth D-95448, Germany Received 13 December 2002; received in revised form 22 July 2003; accepted 7 October 2003 Abstract Characterizing functional and phylogenetic microbial community structure in soil is important for understanding the fate of microbially- derived compounds during the decomposition and turn-over of soil organic matter. This study was conducted to test whether amino sugars and muramic acid are suitable biomarkers to trace bacterial, fungal, and actinomycetal residues in soil. For this aim, we investigated the pattern, amounts, and dynamics of three amino sugars (glucosamine, mannosamine and galactosamine) and muramic acid in the total microbial biomass and selectively cultivated bacteria, fungi, and actinomycetes offive different soils amended with and without glucose. Our results revealed that total amino sugar and muramic acid concentrations in microbial biomass, extracted from soil after chloroform fumigation varied between 1 and 27 mg kg21 soil. In all soils investigated, glucose addition resulted in a 50–360% increase of these values. In reference to soil microbial biomass-C, the total amino sugar- and muramic acid-C concentrations ranged from 1–71 g C kg21 biomass-C. After an initial lag phase, the cultivated microbes revealed similar amino sugar concentrations of about 35, 27 and 17 g glucosamine-C kg21 TOC in bacteria, fungi, and actinomycetes, respectively. -
Der Pathologe
Band 36 · Sonderausgabe · November 2015 Der Pathologe Organ der Deutschen Abteilung der Internationalen Akademie für Pathologie, der Deutschen, der Österreichischen und der Schweizerischen Gesellschaft für Pathologie und des Bundesverbandes Deutscher Pathologen 99. Jahrestagung der Deutschen Gesellschaft für Pathologie e. V. Frankfurt am Main, 28. – 31. Mai 2015 Indexed in Science Citation Index Expanded and Medline Verhandlungen der Deutschen Gesellschaft für Pathologie e.V. www.DerPathologe.de www.springermedizin.de Der Pathologe Verhandlungen 2015 der Deutschen Gesellschaft für Pathologie e.V. Rudolf-Virchow-Preis Ausschreibung 2016 Der Preis wird laut Satzung der Rudolf-Virchow-Stiftung für Pathologie und der Deutschen Gesellschaft für Pathologie e.V. einem Pathologen unter Jahren für eine noch nicht ver öffentlichte oder eine nicht länger als ein Jahr vor der Bewerbung publizierte wissenschaftliche Arbeit verliehen. Die Verleihung des Preises erfolgt auf der . Jahrestagung der Deutschen Gesellschaft für Pathologie e.V. Zusammen mit einem Lebenslauf und einer Publikationsliste reichen Bewerber ihre Arbeit ein (bitte alle Unterlagen in doppelter Ausfertigung sowie elektronisch einreichen). Abgabetermin: bis . Dezember Einzureichen bei: Prof. Dr. med. Holger Moch Geschäftsführendes Vorstandsmitglied der Deutschen Gesellschaft für Pathologie e.V. UniversitätsSpital Zürich Institut für Klinische Pathologie Schmelzbergstrasse CH – Zürich [email protected] Die Satzung der Rudolf-Virchow-Stiftung für Pathologie sowie weitere Informationen -
Supplementary Data
Metabolomics in cancer research: Supplementary data 1 Supplementary Data 2 Supplementary methods 3 Additional information regarding the search strategy used in the main paper 4 Supplementary tables 5 Supplementary Table 1: List of reported metabolites to be altered in human cancers 6 Supplementary figures 7 Supplementary Figure 1: General overview over the metabolomics workflow 8 1 Metabolomics in cancer research: Supplementary data 9 Supplementary methods 10 Search strategy 11 The search strategy was described in the main paper. For the Web of Knowledge search an 12 additional refinement step was necessary to reduce irrelevant findings. The following research 13 areas of low relevance were excluded: 14 Plant Science, Biophysics, Agriculture, Environmental Sciences Ecology, Microbiology, 15 Computer Science, Mathematics, Cardiology, Engineering, Automation control Systems, 16 Marine Freshwater Biology, Behavioral Science, Physics, Developmental Biology, Zoology, 17 Psychiatry, Energy Fuels, Infectious Disease, Parasitology, Mycology, Rheumatology, 18 Psychology, Veterinary Sciences, Dentistry, Legal Medicine, Polymer Science, 19 Anesthesiology, Robotics, Sports Science, Forestry, Tropical Medicine, Virology, Water 20 Resources, Electrochemistry, Evolutionary Biology, Fisheries, Materials Science, 21 Oceanography, Substance Abuse, Geology, Nuclear Science Technology, Operations 22 Research Management, Orthopedics, Allergy, Biodiversity, Educational Research, 23 Metallurgy, Optics, Emergency Medicine, Geochemistry, History philosophy of science, 24 Mathematical methods in Social sciences, Mechanics, Social Issues, Thermodynamics 25 Additionally the abstracts had to contain one of the following keywords: 26 “MS” OR “mass spectrometry” OR “patients”. 2 Metabolomics in cancer research: Supplementary data 27 Supplementary tables 28 Supplementary Table 1: List of reported metabolites altered in human cancers. Metabolites in bold were reported from a study that validated 29 findings within an independent study population. -
Glycolysis and Gluconeogenesis
CC7_Unit 2.3 Glycolysis and Gluconeogenesis Glucose occupies a central position in the metabolism of plants, animals and many microorganisms. In animals, glucose has four major fates as shown in figure 1. The organisms that do not have access to glucose from other sources must make it. Plants make glucose by photosynthesis. Non-photosynthetic cells make glucose from 3 and 4 carbon precursors by the process of gluconeogenesis. Glycolysis is the process of enzymatic break down of one molecule of glucose (6 carbon) into two pyruvate molecules (3 carbon) with the concomitant net production of two molecules of ATP. The complete glycolytic pathway was elucidated by 1940, largely through the pioneering cotributions of Gustav Embden, Otto Meyerhof, Carl Neuberg, Jcob Parnad, Otto Wrburg, Gerty Cori and Carl Cori. Glycolysis is also known as Embden-Meyerhof pathway. • Glycolysis is an almost universal central pathway of glucose catabolism. • Glycolysis is anaerobic process. During glycolysis some of the free energy is released and conserved in the form of ATP and NADH. • Anaerobic microorganisms are entirely dependent on glycolysis. • In most of the organisms, the pyruvate formed by glycolysis is further metabolised via one of the three catabolic routes. 1) Under aerobic conditions, glucose is oxidized all the way to C02 and H2O. 2) Under anaerobic conditions, the pyruvic acid can be fermented to lactic acid or to 3) ethanol plus CO2 as shown in figure 2. • Glycolytic breakdown of glucose is the sole source of metabolic energy in some mammalian tissues and cells (RBCs, Brain, Renal medulla and Sperm cell). Glycolysis occurs in TEN steps. -
Xorox Univerelty Microfilms
INFORMATION TO USERS This material was producad from a microfilm copy of the original document. While the moit advanced technological meant to photograph and reproduce thii document have been used, the quality it heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help ou understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to ob tain the mining page(s) or section, they are spliced into the film along w ith: adjacent pages, This may have necessitated cutting thru an image and dupli eating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image, fou will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning” the material. It is customary to begin photoi ig at the upper left hand comer of a large dieet and to continue photoi ig from left to right in equal sections with a small overlap. If necessary, sectioning is continued agein — beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. -
Glycolytic Strategy As a Tradeoff Between Energy Yield and Protein Cost
Glycolytic strategy as a tradeoff between energy SEE COMMENTARY yield and protein cost Avi Flamholza,1, Elad Noora,1, Arren Bar-Evena, Wolfram Liebermeistera,b, and Ron Miloa,2 aDepartment of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel; and bInstitut für Biochemie, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany Edited by Richard E. Lenski, Michigan State University, East Lansing, MI, and approved April 4, 2013 (received for review September 17, 2012) Contrary to the textbook portrayal of glycolysis as a single pathway sequence from glyceraldehyde 3-phosphate (G3P) through pyruvate conserved across all domains of life, not all sugar-consuming known as “lower glycolysis.” In the EMP pathway, glucose is organisms use the canonical Embden–Meyerhoff–Parnass (EMP) phosphorylated twice and cleaved into two triose-phosphates glycolytic pathway. Prokaryotic glucose metabolism is particularly (G3P and dihydroxyacetone phosphate), both of which are used to diverse, including several alternative glycolytic pathways, the most produce ATP through substrate-level phosphorylation in lower gly- common of which is the Entner–Doudoroff (ED) pathway. The prev- colysis (2, 7) (Fig. 1B). In the ED pathway, glucose is phosphory- alence of the ED pathway is puzzling as it produces only one ATP lated only once and oxidized to 2-keto-3-deoxy-6-phosphogluconate per glucose—half as much as the EMP pathway. We argue that the (KDPG), which is cleaved into one pyruvate and one G3P. Pyruvate diversity of prokaryotic glucose metabolism may reflect a tradeoff does not support substrate-level phosphorylation (7) and so, in between a pathway’s energy (ATP) yield and the amount of enzy- the ED pathway, only one of the cleavage products (G3P) is used matic protein required to catalyze pathway flux. -
Analysis of Proteomic Responses of Freeze-Dried Oenococcus Oeni to Access the Molecular Mechanism of Acid Acclimation on Cell Freeze-Drying Resistance
Accepted Manuscript Analysis of proteomic responses of freeze-dried Oenococcus oeni to access the molecular mechanism of acid acclimation on cell freeze-drying resistance Kun Yang, Yang Zhu, Yiman Qi, Tingjing Zhang, Miaomiao Liu, Jie Zhang, Xinyuan Wei, Mingtao Fan, Guoqiang Zhang PII: S0308-8146(19)30188-8 DOI: https://doi.org/10.1016/j.foodchem.2019.01.120 Reference: FOCH 24215 To appear in: Food Chemistry Received Date: 2 October 2018 Revised Date: 24 December 2018 Accepted Date: 17 January 2019 Please cite this article as: Yang, K., Zhu, Y., Qi, Y., Zhang, T., Liu, M., Zhang, J., Wei, X., Fan, M., Zhang, G., Analysis of proteomic responses of freeze-dried Oenococcus oeni to access the molecular mechanism of acid acclimation on cell freeze-drying resistance, Food Chemistry (2019), doi: https://doi.org/10.1016/j.foodchem. 2019.01.120 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Analysis of proteomic responses of freeze-dried Oenococcus oeni to access the molecular mechanism of acid acclimation on cell freeze-drying resistance Kun Yang1,2, Yang Zhu3, Yiman Qi2,Tingjing Zhang4, Miaomiao Liu2, Jie Zhang2, Xinyuan Wei2, Mingtao Fan2,*, Guoqiang Zhang1,* 1 College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000, China 2 College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China 3 School of Agriculture and Food Sciences, University of Queensland, QLD, 4046, Australia 4 College of Food Science and Technology, Henan University of Technology, Zhenzhou, 450001, China * Corresponding author: 1. -
The Metabolic Building Blocks of a Minimal Cell Supplementary
The metabolic building blocks of a minimal cell Mariana Reyes-Prieto, Rosario Gil, Mercè Llabrés, Pere Palmer and Andrés Moya Supplementary material. Table S1. List of enzymes and reactions modified from Gabaldon et. al. (2007). n.i.: non identified. E.C. Name Reaction Gil et. al. 2004 Glass et. al. 2006 number 2.7.1.69 phosphotransferase system glc + pep → g6p + pyr PTS MG041, 069, 429 5.3.1.9 glucose-6-phosphate isomerase g6p ↔ f6p PGI MG111 2.7.1.11 6-phosphofructokinase f6p + atp → fbp + adp PFK MG215 4.1.2.13 fructose-1,6-bisphosphate aldolase fbp ↔ gdp + dhp FBA MG023 5.3.1.1 triose-phosphate isomerase gdp ↔ dhp TPI MG431 glyceraldehyde-3-phosphate gdp + nad + p ↔ bpg + 1.2.1.12 GAP MG301 dehydrogenase nadh 2.7.2.3 phosphoglycerate kinase bpg + adp ↔ 3pg + atp PGK MG300 5.4.2.1 phosphoglycerate mutase 3pg ↔ 2pg GPM MG430 4.2.1.11 enolase 2pg ↔ pep ENO MG407 2.7.1.40 pyruvate kinase pep + adp → pyr + atp PYK MG216 1.1.1.27 lactate dehydrogenase pyr + nadh ↔ lac + nad LDH MG460 1.1.1.94 sn-glycerol-3-phosphate dehydrogenase dhp + nadh → g3p + nad GPS n.i. 2.3.1.15 sn-glycerol-3-phosphate acyltransferase g3p + pal → mag PLSb n.i. 2.3.1.51 1-acyl-sn-glycerol-3-phosphate mag + pal → dag PLSc MG212 acyltransferase 2.7.7.41 phosphatidate cytidyltransferase dag + ctp → cdp-dag + pp CDS MG437 cdp-dag + ser → pser + 2.7.8.8 phosphatidylserine synthase PSS n.i. cmp 4.1.1.65 phosphatidylserine decarboxylase pser → peta PSD n.i. -
Chapter 23 Gluconeogenesis Gluconeogenesis, Con't
BCH 4054 Fall 2000 Chapter 23 Lecture Notes Slide 1 Chapter 23 Gluconeogenesis Glycogen Metabolism Pentose Phosphate Pathway Slide 2 Gluconeogenesis • Humans use about 160 g of glucose per day, about 75% for the brain. • Body fluids and glycogen stores supply only a little over a day’s supply. • In absence of dietary carbohydrate, the needed glucose must be made from non- carbohydrate precursors. • That process is called gluconeogenesis. Slide 3 Gluconeogenesis, con’t. • Brain and muscle consume most of the glucose. • Liver and kidney are the main sites of gluconeogenesis. • Substrates include pyruvate, lactate, glycerol, most amino acids, and all TCA intermediates. • Fatty acids cannot be converted to glucose in animals. • (They can in plants because of the glyoxalate cycle.) Chapter 23, page 1 Slide 4 Remember it is necessary for the pathways to differ in some respects, Gluconeogenesis, con’t. so that the overall G can be negative in each direction. Usually • Substrates include anything that can be converted the steps with large negative G of to phosphoenolpyruvate . one pathway are replaced in the • Many of the reactions are the same as those in reverse pathway with reactions that glycolysis. have a large negative G in the • All glycolytic reactions which are near equilibrium can opposite direction. operate in both directions. • The three glycolytic reactions far from equilibrium (large -DG) must be bypassed. • A side by side comparison is shown in Fig 23.1. Slide 5 Unique Reactions of Gluconeogenesis • Recall that pyruvate kinase, though named in reverse, is not reversible and has a DG of –23 kJ/mol.