A Geometric Review of Linear Algebra

Total Page:16

File Type:pdf, Size:1020Kb

A Geometric Review of Linear Algebra A Geometric Review of Linear Algebra The following is a compact review of the primary concepts of linear algebra. I assume the reader is familiar with basic (i.e., high school) algebra and trigonometry. The order of pre- sentation is unconventional, with emphasis on geometric intuition rather than mathematical formalism. For a gentler introduction, I recommend The Appendix on Linear Algebra from the PDP book series, by Michael Jordan. For more thorough coverage, I recommend Linear Algebra and Its Applications by Gilbert Strang, Academic Press, 1980. Vectors (Finite-Dimensional) A vector is an ordered collection of numbers, known as the components of the vector. I’ll use the variable N throughout to represent the number of components, known as the dimension- ality of the vector. We usually denote vector-valued variables with an over-arrow (e.g., v). If we want to indicate the components, we often arrange them vertically (as a “column” vector): v1 v2 v = . , . vN v v3 v v Vectors of dimension 2 or 3 can be graph- 2 ically depicted as arrows, with the tail at the origin and the head at the coordinate lo- v2 cation specified by the vector components. v v 1 1 Vectors of higher dimension can be illus- trated using a “spike plot”. v1 v2 vN 2 The norm (or magnitude) of a vector is defined as: ||v|| = n vn, which has a value that is positive. Geometrically, this corresponds to the length of the vector (in 2 dimensions, this comes from the Pythagorean theorem). A vector containing all zero components has zero • Author: Eero Simoncelli, Center for Neural Science, and Courant Institute of Mathematical Sciences. • Created: 20 January 1999. Last revised: September 22, 2020. • Send corrections or comments to [email protected] • The latest version of this document is available from: http://www.cns.nyu.edu/∼eero/NOTES/ norm, and is called the zero vector. A unit vector is a vector of length one. In two dimensions, the set of all unit vectors may be parameterized in terms of their angle rel- ative to the horizontal axis: cos(θ) v ^ uˆ(θ)= . sin θ u sin(θ) Angular parameterization of unit vectors v θ can be generalized to N dimensions, but is cosθ much messier. 2v Multiplying a vector by a scalar simply changes the length of the vector by that fac- v tor. That is: || av|| = |a|||v|| . Multiplying by a negative number reverses the direction. The set of vectors corresponding to all rescal- v ings of a given vector form a straight line through the origin. Any vector (with the ex- ception of the zero vector!) may be rescaled to have unit length by dividing by its norm: vˆ = v/||v|| . Said differently, any vector may be factorized into a product of a scalar (its norm) and a unit vector (which characterizes its direction): v = ||v|| vˆ. The sum of two vectors of the same dimen- v translated sionality is a vector whose components are sums of the corresponding components of the summands. Specifically, y = w +v means w that: w+v zn = wn + vn, for every n Geometrically, this corresponds to stacking the vectors head-to-foot. v The inner product (also called the “dot product”) of two vectors is the sum of the pairwise product of components: v · w ≡ vnwn. n 2 Note that the result is a scalar. This operation has an equivalent geometric w definition, which allows for a more intuitive, geometric, interpretation: ø vw v · w ≡||v|| || w|| cos (φ ), vw v where φvw is the angle between the two vec- b tors. This is easy to prove in two dimen- b sions: write the two vectors as re-scaled unit w .v = . w . v vectors, write the unit vectors in terms of w their angle (as above), and then use the trig identity cos(θw)cos(θv)+sin(θw)sin(θv)= cos(θw − θv). This cosine is equal to b/||v|| in the figure to the right. Note that the inner product of two perpendicular vectors is 0, the inner product of two parallel vectors is the product of their norms, and the inner product of a vector with itself is the square of its norm. From the definition, you should be able to convince yourself that the inner product is distribu- tive over addition: v·(w +y)=v·w +v·y. And similarly, the inner product is also commutative (i.e., order doesn’t matter): v · w = w · v. Despite this symmetry, it is often useful to interpret one of the vectors in an inner product as an operator, that is applied to an input. For example, the inner product of any vector v with the vector: 1 1 1 1 w =(N N N ··· N ) gives the average of the components of v. The inner product of vector v with the vector w =(100 ··· 0) 3 is the first component, v1. v The inner product of a vector with a unit v vector uˆ has a particularly useful geometric interpretation. The cosine equation implies that the inner product is the length of the v component of lying along the line in the di- (v .u^)u^ rection of uˆ. This component, which is writ- u^ ten as (v · uˆ)ˆu,isreferredtoastheprojection of the vector onto the line. The difference (or residual) vector, v − (v · uˆ)ˆu, is the compo- nent of v perpendicular to the line. Note that the residual vector is always perpendicular to the projection vector, and that their sum is v [prove]. Vector Spaces Vectors live in vector spaces. Formally, a vector space is just a collection of vectors that is closed under linear combination. That is, if the two vectors {v,w } are in the space, then the vector av + bw (with a and b any scalars) must also be in the space. All vector spaces include the zero vector (since multiplying any vector by the scalar zero gives you the zero vector). A subspace is a vector space lying within another vector space (think of a plane, slicing through the 3D world that we inhabit). This definition is somewhat abstract, as it implies that we construct vector spaces by starting with a few vectors and “filling out” the rest of the space through linear combination. But we N have been assuming an implicit vector space all along: the space of all N-vectors (denotedR I ) 4 is clearly a vector space [verify]. Working backwards, a set of vectors is said to span a vector space if one can write any v1 vector in the vector space as a linear com- v3 bination of the set. A spanning set can be redundant: For example, if two of the vec- tors are identical, or are scaled copies of each other. This redundancy is formalized by defining linear independence. A set of vec- {v ,v ,...v } tors 1 2 M is linearly independent if v2 (and only if) the only solution to the equation αnvn =0 n is αn =0(for all n). A basis for a vector space is a linearly in- dependent spanning set. For example, con- sider the plane of this page. One vector is not enough to span the plane: Scalar multi- ples of this vector will trace out a line (which v v 2 is a subspace), but cannot “get off the line” v 2 1 v to cover the rest of the plane. But two vec- 1 v tors are sufficient to span the entire plane. 1 Bases are not unique: any two vectors will do, as long as they don’t lie along the same line. Three vectors are redundant: one can always be written as a linear combination of the other two. In general, the vector space N R requires a basis of size N. Geometrically, the basis vectors define a set of coordinate axes for the space (although e ˆ2 they need not be perpendicular). The stan- dard basis is the set of unit vectors that lie along the axes of the space: 1 0 0 e ˆ1 0 1 0 eˆ1 = 0 , eˆ2 = 0 , ... eˆN = 0 . . . . . . . 0 0 1 5 Linear Systems & Matrices A linear system S transforms vectors in one vector space into those of another vector space, in such a way that it obeys the principle of superposition: S{av + bw} = aS{v} + bS{w}. x a + S y b That is, the system “response” to any linear combination of vectors is equal to that same linear combination of the response to each of a the vectors alone. Linear systems are use- x S ful because they are very well understood (in particular, there are powerful tools for char- + acterizing, analyzing and designing them), and because they provide a reasonable de- scription of many physical systems. y S b The parallel definitions of vector space and linear system allow us to make a strong statement about characterizing linear systems. First, write an arbitrary input vector v in terms of the standard basis: v = v1eˆ1 + v2eˆ2 + ...+ vneˆN Using the linearity of system S,wewrite: S{v} = S{v1eˆ1 + v2eˆ2 + ...+ vneˆN } = v1S{eˆ1} + v2S{eˆ2} + ...+ vnS{eˆN }. 6 Input v That is, the response is a linear combination of the responses to each of the standard basis v1 x v1 x vectors. Each of these responses is a vector. v2 x v2 x Since this holds for any input vector v,the L v3 x v3 x system is fully characterized by this set of re- v4 x v4 x sponse vectors. Output We can gather the column vectors corresponding to the responses to each axis vector into a table of numbers that we call a matrix.
Recommended publications
  • Things You Need to Know About Linear Algebra Math 131 Multivariate
    the standard (x; y; z) coordinate three-space. Nota- tions for vectors. Geometric interpretation as vec- tors as displacements as well as vectors as points. Vector addition, the zero vector 0, vector subtrac- Things you need to know about tion, scalar multiplication, their properties, and linear algebra their geometric interpretation. Math 131 Multivariate Calculus We start using these concepts right away. In D Joyce, Spring 2014 chapter 2, we'll begin our study of vector-valued functions, and we'll use the coordinates, vector no- The relation between linear algebra and mul- tation, and the rest of the topics reviewed in this tivariate calculus. We'll spend the first few section. meetings reviewing linear algebra. We'll look at just about everything in chapter 1. Section 1.2. Vectors and equations in R3. Stan- Linear algebra is the study of linear trans- dard basis vectors i; j; k in R3. Parametric equa- formations (also called linear functions) from n- tions for lines. Symmetric form equations for a line dimensional space to m-dimensional space, where in R3. Parametric equations for curves x : R ! R2 m is usually equal to n, and that's often 2 or 3. in the plane, where x(t) = (x(t); y(t)). A linear transformation f : Rn ! Rm is one that We'll use standard basis vectors throughout the preserves addition and scalar multiplication, that course, beginning with chapter 2. We'll study tan- is, f(a + b) = f(a) + f(b), and f(ca) = cf(a). We'll gent lines of curves and tangent planes of surfaces generally use bold face for vectors and for vector- in that chapter and throughout the course.
    [Show full text]
  • Schaum's Outline of Linear Algebra (4Th Edition)
    SCHAUM’S SCHAUM’S outlines outlines Linear Algebra Fourth Edition Seymour Lipschutz, Ph.D. Temple University Marc Lars Lipson, Ph.D. University of Virginia Schaum’s Outline Series New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2009, 2001, 1991, 1968 by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior writ- ten permission of the publisher. ISBN: 978-0-07-154353-8 MHID: 0-07-154353-8 The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-154352-1, MHID: 0-07-154352-X. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. To contact a representative please e-mail us at [email protected]. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work.
    [Show full text]
  • Determinants Math 122 Calculus III D Joyce, Fall 2012
    Determinants Math 122 Calculus III D Joyce, Fall 2012 What they are. A determinant is a value associated to a square array of numbers, that square array being called a square matrix. For example, here are determinants of a general 2 × 2 matrix and a general 3 × 3 matrix. a b = ad − bc: c d a b c d e f = aei + bfg + cdh − ceg − afh − bdi: g h i The determinant of a matrix A is usually denoted jAj or det (A). You can think of the rows of the determinant as being vectors. For the 3×3 matrix above, the vectors are u = (a; b; c), v = (d; e; f), and w = (g; h; i). Then the determinant is a value associated to n vectors in Rn. There's a general definition for n×n determinants. It's a particular signed sum of products of n entries in the matrix where each product is of one entry in each row and column. The two ways you can choose one entry in each row and column of the 2 × 2 matrix give you the two products ad and bc. There are six ways of chosing one entry in each row and column in a 3 × 3 matrix, and generally, there are n! ways in an n × n matrix. Thus, the determinant of a 4 × 4 matrix is the signed sum of 24, which is 4!, terms. In this general definition, half the terms are taken positively and half negatively. In class, we briefly saw how the signs are determined by permutations.
    [Show full text]
  • Span, Linear Independence and Basis Rank and Nullity
    Remarks for Exam 2 in Linear Algebra Span, linear independence and basis The span of a set of vectors is the set of all linear combinations of the vectors. A set of vectors is linearly independent if the only solution to c1v1 + ::: + ckvk = 0 is ci = 0 for all i. Given a set of vectors, you can determine if they are linearly independent by writing the vectors as the columns of the matrix A, and solving Ax = 0. If there are any non-zero solutions, then the vectors are linearly dependent. If the only solution is x = 0, then they are linearly independent. A basis for a subspace S of Rn is a set of vectors that spans S and is linearly independent. There are many bases, but every basis must have exactly k = dim(S) vectors. A spanning set in S must contain at least k vectors, and a linearly independent set in S can contain at most k vectors. A spanning set in S with exactly k vectors is a basis. A linearly independent set in S with exactly k vectors is a basis. Rank and nullity The span of the rows of matrix A is the row space of A. The span of the columns of A is the column space C(A). The row and column spaces always have the same dimension, called the rank of A. Let r = rank(A). Then r is the maximal number of linearly independent row vectors, and the maximal number of linearly independent column vectors. So if r < n then the columns are linearly dependent; if r < m then the rows are linearly dependent.
    [Show full text]
  • MATH 532: Linear Algebra Chapter 4: Vector Spaces
    MATH 532: Linear Algebra Chapter 4: Vector Spaces Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Spring 2015 [email protected] MATH 532 1 Outline 1 Spaces and Subspaces 2 Four Fundamental Subspaces 3 Linear Independence 4 Bases and Dimension 5 More About Rank 6 Classical Least Squares 7 Kriging as best linear unbiased predictor [email protected] MATH 532 2 Spaces and Subspaces Outline 1 Spaces and Subspaces 2 Four Fundamental Subspaces 3 Linear Independence 4 Bases and Dimension 5 More About Rank 6 Classical Least Squares 7 Kriging as best linear unbiased predictor [email protected] MATH 532 3 Spaces and Subspaces Spaces and Subspaces While the discussion of vector spaces can be rather dry and abstract, they are an essential tool for describing the world we work in, and to understand many practically relevant consequences. After all, linear algebra is pretty much the workhorse of modern applied mathematics. Moreover, many concepts we discuss now for traditional “vectors” apply also to vector spaces of functions, which form the foundation of functional analysis. [email protected] MATH 532 4 Spaces and Subspaces Vector Space Definition A set V of elements (vectors) is called a vector space (or linear space) over the scalar field F if (A1) x + y 2 V for any x; y 2 V (M1) αx 2 V for every α 2 F and (closed under addition), x 2 V (closed under scalar (A2) (x + y) + z = x + (y + z) for all multiplication), x; y; z 2 V, (M2) (αβ)x = α(βx) for all αβ 2 F, (A3) x + y = y + x for all x; y 2 V, x 2 V, (A4) There exists a zero vector 0 2 V (M3) α(x + y) = αx + αy for all α 2 F, such that x + 0 = x for every x; y 2 V, x 2 V, (M4) (α + β)x = αx + βx for all (A5) For every x 2 V there is a α; β 2 F, x 2 V, negative (−x) 2 V such that (M5)1 x = x for all x 2 V.
    [Show full text]
  • On the History of Some Linear Algebra Concepts:From Babylon to Pre
    The Online Journal of Science and Technology - January 2017 Volume 7, Issue 1 ON THE HISTORY OF SOME LINEAR ALGEBRA CONCEPTS: FROM BABYLON TO PRE-TECHNOLOGY Sinan AYDIN Kocaeli University, Kocaeli Vocational High school, Kocaeli – Turkey [email protected] Abstract: Linear algebra is a basic abstract mathematical course taught at universities with calculus. It first emerged from the study of determinants in 1693. As a textbook, linear algebra was first used in graduate level curricula in 1940’s at American universities. In the 2000s, science departments of universities all over the world give this lecture in their undergraduate programs. The study of systems of linear equations first introduced by the Babylonians around at 1800 BC. For solving of linear equations systems, Cardan constructed a simple rule for two linear equations with two unknowns around at 1550 AD. Lagrange used matrices in his work on the optimization problems of real functions around at 1750 AD. Also, determinant concept was used by Gauss at that times. Between 1800 and 1900, there was a rapid and important developments in the context of linear algebra. Some theorems for determinant, the concept of eigenvalues, diagonalisation of a matrix and similar matrix concept were added in linear algebra by Couchy. Vector concept, one of the main part of liner algebra, first used by Grassmann as vector product and vector operations. The term ‘matrix’ as a rectangular forms of scalars was first introduced by J. Sylvester. The configuration of linear transformations and its connection with the matrix addition, multiplication and scalar multiplication were studied first by A.
    [Show full text]
  • Multi-Variable Calculus/Linear Algebra Scope & Sequence
    Multi-Variable Calculus/Linear Algebra Scope & Sequence Grading Period Unit Title Learning Targets Throughout the *Apply mathematics to problems in everyday life School Year *Use a problem-solving model that incorporates analyzing information, formulating a plan, determining a solution, justifying the solution and evaluating the reasonableness of the solution *Select tools to solve problems *Communicate mathematical ideas, reasoning and their implications using multiple representations *Create and use representations to organize, record and communicate mathematical ideas *Analyze mathematical relationships to connect and communicate mathematical ideas *Display, explain and justify mathematical ideas and arguments First Grading Vectors in a plane and Unit vectors, graphing and basic operations Period in space MULTIVARIABLE Dot products and cross Angles between vectors, orthogonality, projections, work CALCULUS products Lines and Planes in Equations, intersections, distance space Surfaces in Space Cylindrical surfaces, quadric surfaces, surfaces of revolution, cylindrical and spherical coordinate Vector Valued Parameterization, domain, range, limits, graphical representation, continuity, differentiation, Functions integration, smoothness, velocity, acceleration, speed, position for a projectile, tangent and normal vectors, principal unit normal, arc length and curvature. Functions of several Graphically, level curves, delta neighborhoods, interior point, boundary point, closed regions, variables limits by definition, limits from various
    [Show full text]
  • MATH 304 Linear Algebra Lecture 6: Transpose of a Matrix. Determinants. Transpose of a Matrix
    MATH 304 Linear Algebra Lecture 6: Transpose of a matrix. Determinants. Transpose of a matrix Definition. Given a matrix A, the transpose of A, denoted AT , is the matrix whose rows are columns of A (and whose columns are rows of A). That is, T if A = (aij ) then A = (bij ), where bij = aji . T 1 4 1 2 3 Examples. = 2 5, 4 5 6 3 6 T 7 T 4 7 4 7 8 = (7, 8, 9), = . 7 0 7 0 9 Properties of transposes: • (AT )T = A • (A + B)T = AT + BT • (rA)T = rAT • (AB)T = BT AT T T T T • (A1A2 ... Ak ) = Ak ... A2 A1 • (A−1)T = (AT )−1 Definition. A square matrix A is said to be symmetric if AT = A. For example, any diagonal matrix is symmetric. Proposition For any square matrix A the matrices B = AAT and C = A + AT are symmetric. Proof: BT = (AAT )T = (AT )T AT = AAT = B, C T = (A + AT )T = AT + (AT )T = AT + A = C. Determinants Determinant is a scalar assigned to each square matrix. Notation. The determinant of a matrix A = (aij )1≤i,j≤n is denoted det A or a11 a12 ... a1n a a ... a 21 22 2n . .. an1 an2 ... ann Principal property: det A =0 if and only if the matrix A is singular. Definition in low dimensions a b Definition. det (a) = a, = ad − bc, c d a a a 11 12 13 a21 a22 a23 = a11a22a33 + a12a23a31 + a13a21a32− a31 a32 a33 −a13a22a31 − a12a21a33 − a11a23a32. * ∗ ∗ ∗ * ∗ ∗ ∗ * +: ∗ * ∗ , ∗ ∗ * , * ∗ ∗ . ∗ ∗ * * ∗ ∗ ∗ * ∗ ∗ ∗ * ∗ * ∗ * ∗ ∗ − : ∗ * ∗ , * ∗ ∗ , ∗ ∗ * . * ∗ ∗ ∗ ∗ * ∗ * ∗ Examples: 2×2 matrices 1 0 3 0 = 1, = − 12, 0 1 0 −4 −2 5 7 0 = − 6, = 14, 0 3 5 2 0 −1 0 0 = 1, = 0, 1 0 4 1 −1 3 2 1 = 0, = 0.
    [Show full text]
  • MATH 423 Linear Algebra II Lecture 38: Generalized Eigenvectors. Jordan Canonical Form (Continued)
    MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 ··· 0 0 . 0 λ 1 .. 0 0 . 0 0 λ .. 0 0 J = . . .. .. . 0 0 0 .. λ 1 0 0 0 ··· 0 λ A square matrix B is in the Jordan canonical form if it has diagonal block structure J1 O . O O J2 . O B = . , . .. O O . Jk where each diagonal block Ji is a Jordan block. Consider an n×n Jordan block λ 1 0 ··· 0 0 . 0 λ 1 .. 0 0 . 0 0 λ .. 0 0 J = . . .. .. . 0 0 0 .. λ 1 0 0 0 ··· 0 λ Multiplication by J − λI acts on the standard basis by a chain rule: 0 e1 e2 en−1 en ◦ ←− • ←− •←−··· ←− • ←− • 2 1 0000 0 2 0000 0 0 3 0 0 0 Consider a matrix B = . 0 0 0 3 1 0 0 0 0 0 3 1 0 0 0 0 0 3 This matrix is in Jordan canonical form. Vectors from the standard basis are organized in several chains. Multiplication by B − 2I : 0 e1 e2 ◦ ←− • ←− • Multiplication by B − 3I : 0 e3 ◦ ←− • 0 e4 e5 e6 ◦ ←− • ←− • ←− • Generalized eigenvectors Let L : V → V be a linear operator on a vector space V . Definition. A nonzero vector v is called a generalized eigenvector of L associated with an eigenvalue λ if (L − λI)k (v)= 0 for some integer k ≥ 1 (here I denotes the identity map on V ). The set of all generalized eigenvectors for a particular λ along with the zero vector is called the generalized eigenspace and denoted Kλ.
    [Show full text]
  • Eigenvalues, Eigenvectors, and Eigenspaces of Linear Operators
    Therefore x + cy is also a λ-eigenvector. Thus, the set of λ-eigenvectors form a subspace of F n. q.e.d. One reason these eigenvalues and eigenspaces are important is that you can determine many of the Eigenvalues, eigenvectors, and properties of the transformation from them, and eigenspaces of linear operators that those properties are the most important prop- Math 130 Linear Algebra erties of the transformation. D Joyce, Fall 2015 These are matrix invariants. Note that the Eigenvalues and eigenvectors. We're looking eigenvalues, eigenvectors, and eigenspaces of a lin- at linear operators on a vector space V , that is, ear transformation were defined in terms of the linear transformations x 7! T (x) from the vector transformation, not in terms of a matrix that de- space V to itself. scribes the transformation relative to a particu- When V has finite dimension n with a specified lar basis. That means that they are invariants of basis β, then T is described by a square n×n matrix square matrices under change of basis. Recall that A = [T ]β. if A and B represent the transformation with re- We're particularly interested in the study the ge- spect to two different bases, then A and B are con- ometry of these transformations in a way that we jugate matrices, that is, B = P −1AP where P is can't when the transformation goes from one vec- the transition matrix between the two bases. The tor space to a different vector space, namely, we'll eigenvalues are numbers, and they'll be the same compare the original vector x to its image T (x).
    [Show full text]
  • Generalized Eigenvector - Wikipedia
    11/24/2018 Generalized eigenvector - Wikipedia Generalized eigenvector In linear algebra, a generalized eigenvector of an n × n matrix is a vector which satisfies certain criteria which are more relaxed than those for an (ordinary) eigenvector.[1] Let be an n-dimensional vector space; let be a linear map in L(V), the set of all linear maps from into itself; and let be the matrix representation of with respect to some ordered basis. There may not always exist a full set of n linearly independent eigenvectors of that form a complete basis for . That is, the matrix may not be diagonalizable.[2][3] This happens when the algebraic multiplicity of at least one eigenvalue is greater than its geometric multiplicity (the nullity of the matrix , or the dimension of its nullspace). In this case, is called a defective eigenvalue and is called a defective matrix.[4] A generalized eigenvector corresponding to , together with the matrix generate a Jordan chain of linearly independent generalized eigenvectors which form a basis for an invariant subspace of .[5][6][7] Using generalized eigenvectors, a set of linearly independent eigenvectors of can be extended, if necessary, to a complete basis for .[8] This basis can be used to determine an "almost diagonal matrix" in Jordan normal form, similar to , which is useful in computing certain matrix functions of .[9] The matrix is also useful in solving the system of linear differential equations where need not be diagonalizable.[10][11] Contents Overview and definition Examples Example 1 Example 2 Jordan chains
    [Show full text]
  • Generalized Eigenvectors, Minimal Polynomials and Theorem of Cayley-Hamiltion
    GENERALIZED EIGENVECTORS, MINIMAL POLYNOMIALS AND THEOREM OF CAYLEY-HAMILTION FRANZ LUEF Abstract. Our exposition is inspired by S. Axler’s approach to linear algebra and follows largely his exposition in ”Down with Determinants”, check also the book ”LinearAlgebraDoneRight” by S. Axler [1]. These are the lecture notes for the course of Prof. H.G. Feichtinger ”Lineare Algebra 2” from 15.11.2006. Before we introduce generalized eigenvectors of a linear transformation we recall some basic facts about eigenvalues and eigenvectors of a linear transformation. Let V be a n-dimensional complex vector space. Recall a complex number λ is called an eigenvalue of a linear operator T on V if T − λI is not injective, i.e. ker(T − λI) 6= {0}. The main result about eigenvalues is that every linear op- erator on a finite-dimensional complex vector space has an eigenvalue! Furthermore we call a vector v ∈ V an eigenvector of T if T v = λv for some eigenvalue λ. The central result on eigenvectors is that Non-zero eigenvectors corresponding to distinct eigenvalues of a linear transformation on V are linearly independent. Consequently the number of distinct eigenvalues of T can- not exceed thte dimension of V . Unfortunately the eigenvectors of T need not span V . For example the linear transformation on C4 whose matrix is 0 1 0 0 0 0 1 0 T = 0 0 0 1 0 0 0 0 as only the eigenvalue 0, and its eigenvectors form a one-dimensional subspace of C4. Observe that T,T 2 6= 0 but T 3 = 0.
    [Show full text]