Linear Algebra & Geometry

Total Page:16

File Type:pdf, Size:1020Kb

Linear Algebra & Geometry Linear Algebra & Geometry Roman Schubert1 May 22, 2012 1School of Mathematics, University of Bristol. c University of Bristol 2011 This material is copyright of the University unless explicitly stated oth- erwise. It is provided exclusively for educational purposes at the University and is to be downloaded or copied for your private study only. 2 These are Lecture Notes for the 1st year Linear Algebra and Geometry course in Bristol. This is an evolving version of them, and it is very likely that they still contain many misprints. Please report serious errors you find to me ([email protected]) and I will post an update on the Blackboard page of the course. These notes cover the main material we will develop in the course, and they are meant to be used parallel to the lectures. The lectures will follow roughly the content of the notes, but sometimes in a different order and sometimes containing additional material. On the other hand, we sometimes refer in the lectures to additional material which is covered in the notes. Besides the lectures and the lecture notes, the homework on the problem sheets is the third main ingredient in the course. Solving problems is the most efficient way of learning mathematics, and experience shows that students who regularly hand in homework do reasonably well in the exams. These lecture notes do not replace a proper textbook in Linear Algebra. Since Linear Algebra appears in almost every area in Mathematics a slightly more advanced textbook which complements the lecture notes will be a good companion throughout your mathematics courses. There is a wide choice of books in the library you can consult. 1 1 c University of Bristol 2013 This material is copyright of the University unless explicitly stated otherwise. It is provided exclusively for educational purposes at the University and is to be downloaded or copied for your private study only. Contents 1 The Euclidean plane and complex numbers 5 1.1 The Euclidean plane R2 .............................. 5 1.2 The dot product and angles . 9 1.3 Complex Numbers . 10 2 Euclidean space Rn 15 2.1 Dot product . 17 2.2 Angle between vectors in Rn ........................... 19 2.3 Linear subspaces . 20 3 Linear equations and Matrices 25 3.1 Matrices . 29 3.2 The structure of the set of solutions to a system of linear equations . 33 3.3 Solving systems of linear equations . 36 3.3.1 Elementary row operations . 36 3.4 Elementary matrices and inverting a matrix . 41 4 Linear independence, bases and dimension 45 4.1 Linear dependence and independence . 45 4.2 Bases and dimension . 48 4.3 Orthonormal Bases . 52 5 Linear Maps 55 5.1 Abstract properties of linear maps . 57 5.2 Matrices . 60 5.3 Rank and nullity . 62 6 Determinants 65 6.1 Definition and basic properties . 65 6.2 Computing determinants . 74 6.3 Some applications of determinants . 78 6.3.1 Inverse matrices and linear systems of equations . 79 6.3.2 Bases . 80 6.3.3 Cross product . 80 3 4 CONTENTS 7 Vector spaces 83 7.1 On numbers . 83 7.2 Vector spaces . 85 7.3 Subspaces . 89 7.4 Linear maps . 91 7.5 Bases and Dimension . 93 7.6 Direct sums . 98 7.7 The rank nullity Theorem . 100 7.8 Projections . 102 7.9 Isomorphisms . 104 7.10 Change of basis and coordinate change . 105 7.11 Linear maps and matrices . 109 8 Eigenvalues and Eigenvectors 117 9 Inner product spaces 127 10 Linear maps on inner product spaces 137 10.1 Complex inner product spaces . 138 10.2 Real matrices . 144 Chapter 1 The Euclidean plane and complex numbers 1 1.1 The Euclidean plane R2 To develop some familiarity with the basic concepts in linear algebra let us start by discussing the Euclidean plane R2: Definition 1.1. The set R2 consists of ordered pairs (x; y) of real numbers x; y 2 R. Remarks: • In the lecture we will denote elements in R2 often by underlined letters and arrange the numbers x; y vertically x v = y Other common notations for elements in R2 are by boldface letters v, and this is the notation we will use in these notes, or by an arrow above the letter ~v. But often no special notation is used at all and one writes v 2 R2 and v = (x; y). x y • That the pair is ordered means that 6= if x 6= y. y x • The two numbers x and y are called the x-component, or first component, and the y-component, or second component, respectively. For instance the vector 1 2 has x-component 1 and y-component 2. • We visualise a vector in R2 as a point in the plane, with the x-component on the horizontal axis and the y-component on the vertical axis. 5 6 CHAPTER 1. THE EUCLIDEAN PLANE AND COMPLEX NUMBERS x v v −w v+w y w Figure 1.1: Left: An element v = (y; x) in R2 represented by a vector in the plane. Right: vector addition, v + w, and the negative −v. We will define two operations on vectors. The first one is addition: v w Definition 1.2. Let v = 1 ; w = 1 2 R2, then we define the sum of v and w by v2 w2 v + w v + w := 1 1 v2 + w2 And the second operation is multiplication by real numbers: v Definition 1.3. Let v = 1 2 R2 and λ 2 R, then we define the product of v by λ by v2 λv λv := 1 λv2 Some typical quantities in nature which are described by vectors are velocities and forces. The addition of vectors appears naturally for these, for example if a ship moves through the water with velocity vS and there is a current in the water with velocity vC , then the velocity of the ship over ground is vS + vC . By combining these two relation we can form expressions like λv + µw for v; w 2 R2 and λ, µ 2 R, we call this a linear combination of v and w. For instance 1 0 5 0 5 5 + 6 = + = : −1 2 −5 12 7 2 We can as well consider linear combinations of k vectors v1; v2; ··· ; vk 2 R with coefficients λ1; λ2 ··· ; λk 2 R, k X λ1v1 + λ2v2 + ··· + λkvk = λivi i=1 1 c University of Bristol 2011 This material is copyright of the University unless explicitly stated otherwise. It is provided exclusively for educational purposes at the University and is to be downloaded or copied for your private study only. 1.1. THE EUCLIDEAN PLANE R2 7 0 Notice that 0v = for any v 2 R2 and we will in the following denote the vector 0 whose entries are both 0 by 0, so we have v + 0 = 0 + v = v for any v 2 R2. We will use as well the shorthand −v to denote (−1)v and w−v := w+(−1)v. Notice that with this notation v − v = 0 for all v 2 R2. The norm of a vector is defined by v Definition 1.4. Let v = 1 2 R2, then the norm of v is defined by v2 q 2 2 kvk := v1 + v2 : By Pythagoras Theorem the norm is just the geometric length of the distance between the point in the plane with coordinates (v1; v2) and the origin 0. Furthermore kv − wk is the distance between the points v and w. 5 For instance the norm of a vector of the form v = , which has no y component, is 0 3 p p just kvk = 5, whereas if w = we find kwk = 9 + 1 = 10 and the distance between −1 p p v and w is kv − wk = 4 + 1 = 5. Let us now look how the norm relates to the structures we defined previously, namely addition and scalar multiplication: Theorem 1.5. The norm satisfies (i) kvk ≥ 0 for all v 2 R2 and kvk = 0 if and only if v = 0. (ii) kλvk = jλjkvk for all λ 2 R; v 2 R2 (iii) kv + wk ≤ kvk + kwk for all v; w 2 R2. Proof. We will only prove the first two statements, the third statement, which is called the triangle inequality will be proved in the exercises. p 2 2 For the first statement we use the definition of the norm kvk = v1 + v2 ≥ 0. It is clear 2 2 that k0k = 0, but if kvk = 0, then v1 +v2 = 0, but this is a sum of two non-negative numbers, so in order that they add up to 0 they must both be 0, hence v1 = v2 = 0 and so v = 0 The second statement follows from a direct computation: q p q p 2 2 2 2 2 2 2 2 kλvk = (λv1) + (λv2) = λ (v1 + v2) = λ v1 + v2 = jλjkvk : We have represented a vector by its two components and interpreted them as Cartesian coordinates of a point in R2. We could specify a point in R2 as well by giving its distance λ to the origin and the angle between the line connecting the point to the origin and the x-axis. We will develop this idea, which leads to polar coordinates in calculus, a bit more: 8 CHAPTER 1. THE EUCLIDEAN PLANE AND COMPLEX NUMBERS Definition 1.6. A vector u 2 R2 is called a unit vector if kuk = 1. Remark: A unit vector has length one, hence all unit vectors lie on the circle of radius one in R2, therefore a unit vector is determined by its angle θ with the x-axis.
Recommended publications
  • Things You Need to Know About Linear Algebra Math 131 Multivariate
    the standard (x; y; z) coordinate three-space. Nota- tions for vectors. Geometric interpretation as vec- tors as displacements as well as vectors as points. Vector addition, the zero vector 0, vector subtrac- Things you need to know about tion, scalar multiplication, their properties, and linear algebra their geometric interpretation. Math 131 Multivariate Calculus We start using these concepts right away. In D Joyce, Spring 2014 chapter 2, we'll begin our study of vector-valued functions, and we'll use the coordinates, vector no- The relation between linear algebra and mul- tation, and the rest of the topics reviewed in this tivariate calculus. We'll spend the first few section. meetings reviewing linear algebra. We'll look at just about everything in chapter 1. Section 1.2. Vectors and equations in R3. Stan- Linear algebra is the study of linear trans- dard basis vectors i; j; k in R3. Parametric equa- formations (also called linear functions) from n- tions for lines. Symmetric form equations for a line dimensional space to m-dimensional space, where in R3. Parametric equations for curves x : R ! R2 m is usually equal to n, and that's often 2 or 3. in the plane, where x(t) = (x(t); y(t)). A linear transformation f : Rn ! Rm is one that We'll use standard basis vectors throughout the preserves addition and scalar multiplication, that course, beginning with chapter 2. We'll study tan- is, f(a + b) = f(a) + f(b), and f(ca) = cf(a). We'll gent lines of curves and tangent planes of surfaces generally use bold face for vectors and for vector- in that chapter and throughout the course.
    [Show full text]
  • Schaum's Outline of Linear Algebra (4Th Edition)
    SCHAUM’S SCHAUM’S outlines outlines Linear Algebra Fourth Edition Seymour Lipschutz, Ph.D. Temple University Marc Lars Lipson, Ph.D. University of Virginia Schaum’s Outline Series New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2009, 2001, 1991, 1968 by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior writ- ten permission of the publisher. ISBN: 978-0-07-154353-8 MHID: 0-07-154353-8 The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-154352-1, MHID: 0-07-154352-X. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. To contact a representative please e-mail us at [email protected]. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work.
    [Show full text]
  • Determinants Math 122 Calculus III D Joyce, Fall 2012
    Determinants Math 122 Calculus III D Joyce, Fall 2012 What they are. A determinant is a value associated to a square array of numbers, that square array being called a square matrix. For example, here are determinants of a general 2 × 2 matrix and a general 3 × 3 matrix. a b = ad − bc: c d a b c d e f = aei + bfg + cdh − ceg − afh − bdi: g h i The determinant of a matrix A is usually denoted jAj or det (A). You can think of the rows of the determinant as being vectors. For the 3×3 matrix above, the vectors are u = (a; b; c), v = (d; e; f), and w = (g; h; i). Then the determinant is a value associated to n vectors in Rn. There's a general definition for n×n determinants. It's a particular signed sum of products of n entries in the matrix where each product is of one entry in each row and column. The two ways you can choose one entry in each row and column of the 2 × 2 matrix give you the two products ad and bc. There are six ways of chosing one entry in each row and column in a 3 × 3 matrix, and generally, there are n! ways in an n × n matrix. Thus, the determinant of a 4 × 4 matrix is the signed sum of 24, which is 4!, terms. In this general definition, half the terms are taken positively and half negatively. In class, we briefly saw how the signs are determined by permutations.
    [Show full text]
  • Span, Linear Independence and Basis Rank and Nullity
    Remarks for Exam 2 in Linear Algebra Span, linear independence and basis The span of a set of vectors is the set of all linear combinations of the vectors. A set of vectors is linearly independent if the only solution to c1v1 + ::: + ckvk = 0 is ci = 0 for all i. Given a set of vectors, you can determine if they are linearly independent by writing the vectors as the columns of the matrix A, and solving Ax = 0. If there are any non-zero solutions, then the vectors are linearly dependent. If the only solution is x = 0, then they are linearly independent. A basis for a subspace S of Rn is a set of vectors that spans S and is linearly independent. There are many bases, but every basis must have exactly k = dim(S) vectors. A spanning set in S must contain at least k vectors, and a linearly independent set in S can contain at most k vectors. A spanning set in S with exactly k vectors is a basis. A linearly independent set in S with exactly k vectors is a basis. Rank and nullity The span of the rows of matrix A is the row space of A. The span of the columns of A is the column space C(A). The row and column spaces always have the same dimension, called the rank of A. Let r = rank(A). Then r is the maximal number of linearly independent row vectors, and the maximal number of linearly independent column vectors. So if r < n then the columns are linearly dependent; if r < m then the rows are linearly dependent.
    [Show full text]
  • MATH 532: Linear Algebra Chapter 4: Vector Spaces
    MATH 532: Linear Algebra Chapter 4: Vector Spaces Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Spring 2015 [email protected] MATH 532 1 Outline 1 Spaces and Subspaces 2 Four Fundamental Subspaces 3 Linear Independence 4 Bases and Dimension 5 More About Rank 6 Classical Least Squares 7 Kriging as best linear unbiased predictor [email protected] MATH 532 2 Spaces and Subspaces Outline 1 Spaces and Subspaces 2 Four Fundamental Subspaces 3 Linear Independence 4 Bases and Dimension 5 More About Rank 6 Classical Least Squares 7 Kriging as best linear unbiased predictor [email protected] MATH 532 3 Spaces and Subspaces Spaces and Subspaces While the discussion of vector spaces can be rather dry and abstract, they are an essential tool for describing the world we work in, and to understand many practically relevant consequences. After all, linear algebra is pretty much the workhorse of modern applied mathematics. Moreover, many concepts we discuss now for traditional “vectors” apply also to vector spaces of functions, which form the foundation of functional analysis. [email protected] MATH 532 4 Spaces and Subspaces Vector Space Definition A set V of elements (vectors) is called a vector space (or linear space) over the scalar field F if (A1) x + y 2 V for any x; y 2 V (M1) αx 2 V for every α 2 F and (closed under addition), x 2 V (closed under scalar (A2) (x + y) + z = x + (y + z) for all multiplication), x; y; z 2 V, (M2) (αβ)x = α(βx) for all αβ 2 F, (A3) x + y = y + x for all x; y 2 V, x 2 V, (A4) There exists a zero vector 0 2 V (M3) α(x + y) = αx + αy for all α 2 F, such that x + 0 = x for every x; y 2 V, x 2 V, (M4) (α + β)x = αx + βx for all (A5) For every x 2 V there is a α; β 2 F, x 2 V, negative (−x) 2 V such that (M5)1 x = x for all x 2 V.
    [Show full text]
  • On the History of Some Linear Algebra Concepts:From Babylon to Pre
    The Online Journal of Science and Technology - January 2017 Volume 7, Issue 1 ON THE HISTORY OF SOME LINEAR ALGEBRA CONCEPTS: FROM BABYLON TO PRE-TECHNOLOGY Sinan AYDIN Kocaeli University, Kocaeli Vocational High school, Kocaeli – Turkey [email protected] Abstract: Linear algebra is a basic abstract mathematical course taught at universities with calculus. It first emerged from the study of determinants in 1693. As a textbook, linear algebra was first used in graduate level curricula in 1940’s at American universities. In the 2000s, science departments of universities all over the world give this lecture in their undergraduate programs. The study of systems of linear equations first introduced by the Babylonians around at 1800 BC. For solving of linear equations systems, Cardan constructed a simple rule for two linear equations with two unknowns around at 1550 AD. Lagrange used matrices in his work on the optimization problems of real functions around at 1750 AD. Also, determinant concept was used by Gauss at that times. Between 1800 and 1900, there was a rapid and important developments in the context of linear algebra. Some theorems for determinant, the concept of eigenvalues, diagonalisation of a matrix and similar matrix concept were added in linear algebra by Couchy. Vector concept, one of the main part of liner algebra, first used by Grassmann as vector product and vector operations. The term ‘matrix’ as a rectangular forms of scalars was first introduced by J. Sylvester. The configuration of linear transformations and its connection with the matrix addition, multiplication and scalar multiplication were studied first by A.
    [Show full text]
  • Multi-Variable Calculus/Linear Algebra Scope & Sequence
    Multi-Variable Calculus/Linear Algebra Scope & Sequence Grading Period Unit Title Learning Targets Throughout the *Apply mathematics to problems in everyday life School Year *Use a problem-solving model that incorporates analyzing information, formulating a plan, determining a solution, justifying the solution and evaluating the reasonableness of the solution *Select tools to solve problems *Communicate mathematical ideas, reasoning and their implications using multiple representations *Create and use representations to organize, record and communicate mathematical ideas *Analyze mathematical relationships to connect and communicate mathematical ideas *Display, explain and justify mathematical ideas and arguments First Grading Vectors in a plane and Unit vectors, graphing and basic operations Period in space MULTIVARIABLE Dot products and cross Angles between vectors, orthogonality, projections, work CALCULUS products Lines and Planes in Equations, intersections, distance space Surfaces in Space Cylindrical surfaces, quadric surfaces, surfaces of revolution, cylindrical and spherical coordinate Vector Valued Parameterization, domain, range, limits, graphical representation, continuity, differentiation, Functions integration, smoothness, velocity, acceleration, speed, position for a projectile, tangent and normal vectors, principal unit normal, arc length and curvature. Functions of several Graphically, level curves, delta neighborhoods, interior point, boundary point, closed regions, variables limits by definition, limits from various
    [Show full text]
  • MATH 304 Linear Algebra Lecture 6: Transpose of a Matrix. Determinants. Transpose of a Matrix
    MATH 304 Linear Algebra Lecture 6: Transpose of a matrix. Determinants. Transpose of a matrix Definition. Given a matrix A, the transpose of A, denoted AT , is the matrix whose rows are columns of A (and whose columns are rows of A). That is, T if A = (aij ) then A = (bij ), where bij = aji . T 1 4 1 2 3 Examples. = 2 5, 4 5 6 3 6 T 7 T 4 7 4 7 8 = (7, 8, 9), = . 7 0 7 0 9 Properties of transposes: • (AT )T = A • (A + B)T = AT + BT • (rA)T = rAT • (AB)T = BT AT T T T T • (A1A2 ... Ak ) = Ak ... A2 A1 • (A−1)T = (AT )−1 Definition. A square matrix A is said to be symmetric if AT = A. For example, any diagonal matrix is symmetric. Proposition For any square matrix A the matrices B = AAT and C = A + AT are symmetric. Proof: BT = (AAT )T = (AT )T AT = AAT = B, C T = (A + AT )T = AT + (AT )T = AT + A = C. Determinants Determinant is a scalar assigned to each square matrix. Notation. The determinant of a matrix A = (aij )1≤i,j≤n is denoted det A or a11 a12 ... a1n a a ... a 21 22 2n . .. an1 an2 ... ann Principal property: det A =0 if and only if the matrix A is singular. Definition in low dimensions a b Definition. det (a) = a, = ad − bc, c d a a a 11 12 13 a21 a22 a23 = a11a22a33 + a12a23a31 + a13a21a32− a31 a32 a33 −a13a22a31 − a12a21a33 − a11a23a32. * ∗ ∗ ∗ * ∗ ∗ ∗ * +: ∗ * ∗ , ∗ ∗ * , * ∗ ∗ . ∗ ∗ * * ∗ ∗ ∗ * ∗ ∗ ∗ * ∗ * ∗ * ∗ ∗ − : ∗ * ∗ , * ∗ ∗ , ∗ ∗ * . * ∗ ∗ ∗ ∗ * ∗ * ∗ Examples: 2×2 matrices 1 0 3 0 = 1, = − 12, 0 1 0 −4 −2 5 7 0 = − 6, = 14, 0 3 5 2 0 −1 0 0 = 1, = 0, 1 0 4 1 −1 3 2 1 = 0, = 0.
    [Show full text]
  • MATH 423 Linear Algebra II Lecture 38: Generalized Eigenvectors. Jordan Canonical Form (Continued)
    MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 ··· 0 0 . 0 λ 1 .. 0 0 . 0 0 λ .. 0 0 J = . . .. .. . 0 0 0 .. λ 1 0 0 0 ··· 0 λ A square matrix B is in the Jordan canonical form if it has diagonal block structure J1 O . O O J2 . O B = . , . .. O O . Jk where each diagonal block Ji is a Jordan block. Consider an n×n Jordan block λ 1 0 ··· 0 0 . 0 λ 1 .. 0 0 . 0 0 λ .. 0 0 J = . . .. .. . 0 0 0 .. λ 1 0 0 0 ··· 0 λ Multiplication by J − λI acts on the standard basis by a chain rule: 0 e1 e2 en−1 en ◦ ←− • ←− •←−··· ←− • ←− • 2 1 0000 0 2 0000 0 0 3 0 0 0 Consider a matrix B = . 0 0 0 3 1 0 0 0 0 0 3 1 0 0 0 0 0 3 This matrix is in Jordan canonical form. Vectors from the standard basis are organized in several chains. Multiplication by B − 2I : 0 e1 e2 ◦ ←− • ←− • Multiplication by B − 3I : 0 e3 ◦ ←− • 0 e4 e5 e6 ◦ ←− • ←− • ←− • Generalized eigenvectors Let L : V → V be a linear operator on a vector space V . Definition. A nonzero vector v is called a generalized eigenvector of L associated with an eigenvalue λ if (L − λI)k (v)= 0 for some integer k ≥ 1 (here I denotes the identity map on V ). The set of all generalized eigenvectors for a particular λ along with the zero vector is called the generalized eigenspace and denoted Kλ.
    [Show full text]
  • Eigenvalues, Eigenvectors, and Eigenspaces of Linear Operators
    Therefore x + cy is also a λ-eigenvector. Thus, the set of λ-eigenvectors form a subspace of F n. q.e.d. One reason these eigenvalues and eigenspaces are important is that you can determine many of the Eigenvalues, eigenvectors, and properties of the transformation from them, and eigenspaces of linear operators that those properties are the most important prop- Math 130 Linear Algebra erties of the transformation. D Joyce, Fall 2015 These are matrix invariants. Note that the Eigenvalues and eigenvectors. We're looking eigenvalues, eigenvectors, and eigenspaces of a lin- at linear operators on a vector space V , that is, ear transformation were defined in terms of the linear transformations x 7! T (x) from the vector transformation, not in terms of a matrix that de- space V to itself. scribes the transformation relative to a particu- When V has finite dimension n with a specified lar basis. That means that they are invariants of basis β, then T is described by a square n×n matrix square matrices under change of basis. Recall that A = [T ]β. if A and B represent the transformation with re- We're particularly interested in the study the ge- spect to two different bases, then A and B are con- ometry of these transformations in a way that we jugate matrices, that is, B = P −1AP where P is can't when the transformation goes from one vec- the transition matrix between the two bases. The tor space to a different vector space, namely, we'll eigenvalues are numbers, and they'll be the same compare the original vector x to its image T (x).
    [Show full text]
  • Generalized Eigenvector - Wikipedia
    11/24/2018 Generalized eigenvector - Wikipedia Generalized eigenvector In linear algebra, a generalized eigenvector of an n × n matrix is a vector which satisfies certain criteria which are more relaxed than those for an (ordinary) eigenvector.[1] Let be an n-dimensional vector space; let be a linear map in L(V), the set of all linear maps from into itself; and let be the matrix representation of with respect to some ordered basis. There may not always exist a full set of n linearly independent eigenvectors of that form a complete basis for . That is, the matrix may not be diagonalizable.[2][3] This happens when the algebraic multiplicity of at least one eigenvalue is greater than its geometric multiplicity (the nullity of the matrix , or the dimension of its nullspace). In this case, is called a defective eigenvalue and is called a defective matrix.[4] A generalized eigenvector corresponding to , together with the matrix generate a Jordan chain of linearly independent generalized eigenvectors which form a basis for an invariant subspace of .[5][6][7] Using generalized eigenvectors, a set of linearly independent eigenvectors of can be extended, if necessary, to a complete basis for .[8] This basis can be used to determine an "almost diagonal matrix" in Jordan normal form, similar to , which is useful in computing certain matrix functions of .[9] The matrix is also useful in solving the system of linear differential equations where need not be diagonalizable.[10][11] Contents Overview and definition Examples Example 1 Example 2 Jordan chains
    [Show full text]
  • Generalized Eigenvectors, Minimal Polynomials and Theorem of Cayley-Hamiltion
    GENERALIZED EIGENVECTORS, MINIMAL POLYNOMIALS AND THEOREM OF CAYLEY-HAMILTION FRANZ LUEF Abstract. Our exposition is inspired by S. Axler’s approach to linear algebra and follows largely his exposition in ”Down with Determinants”, check also the book ”LinearAlgebraDoneRight” by S. Axler [1]. These are the lecture notes for the course of Prof. H.G. Feichtinger ”Lineare Algebra 2” from 15.11.2006. Before we introduce generalized eigenvectors of a linear transformation we recall some basic facts about eigenvalues and eigenvectors of a linear transformation. Let V be a n-dimensional complex vector space. Recall a complex number λ is called an eigenvalue of a linear operator T on V if T − λI is not injective, i.e. ker(T − λI) 6= {0}. The main result about eigenvalues is that every linear op- erator on a finite-dimensional complex vector space has an eigenvalue! Furthermore we call a vector v ∈ V an eigenvector of T if T v = λv for some eigenvalue λ. The central result on eigenvectors is that Non-zero eigenvectors corresponding to distinct eigenvalues of a linear transformation on V are linearly independent. Consequently the number of distinct eigenvalues of T can- not exceed thte dimension of V . Unfortunately the eigenvectors of T need not span V . For example the linear transformation on C4 whose matrix is 0 1 0 0 0 0 1 0 T = 0 0 0 1 0 0 0 0 as only the eigenvalue 0, and its eigenvectors form a one-dimensional subspace of C4. Observe that T,T 2 6= 0 but T 3 = 0.
    [Show full text]