Trait-Based Extinction Catches the Red Queen Napping During the Cambrian P

Total Page:16

File Type:pdf, Size:1020Kb

Trait-Based Extinction Catches the Red Queen Napping During the Cambrian P COMMENTARY COMMENTARY Trait-based extinction catches the Red Queen napping during the Cambrian P. David Polly1 changes, estimating the rates of speciation Department of Geological Sciences, Indiana University, Bloomington, IN 47405 and extinction inside and outside that node, and repeating the exercise for all traits (8). The tenuous balance between speciation and or otherwise adapting faster than the Red The number of candidate trait changes in extinction governs the rise and fall of di- Queen’s pace of constant extinction expected even one clade is large, 275 in the early tet- versity within clades, from which have in resource-limited environments (5, 6). In rapod dataset alone (9). Furthermore, flaws emerged the sweeping changes in Earth’s PNAS, Wagner and Estabrook (7) ask in the phylogeny can lead to misinterpreta- standing biodiversity since life’sorigin(1, whether diversification was associated with tions about the link between diversification 2). In a clade where speciation and extinction the evolution of new traits and, if so, did and traits, and phylogenetic analyzes of ex- are equally likely, net diversity remains con- the probability of speciation go up in clades tinct metazoan taxa are sparse compared with their immense Phanerozoic diversity. stant; when the rate of speciation exceeds that have the new trait, did the group’srateof To meet these challenges, the authors extinction, diversity increases exponentially; trait evolution go up, did extinction go up in approached the problem indirectly by look- and when the chance of extinction outweighs the clades that do not have the trait, or some ing at the sequence of trait combinations in speciation, then diversity falls, resulting ulti- combination of these. They analyzed 319 trait temporal series of fossil taxa and the times mately in the demise of the clade. Metazoan datasets from metazoan phyla with good fos- when clades reached their peak diversity. life diversified rapidly in the Cambrian and sil records—arthropods, brachiopods, mol- Wagner and Estabrook used the concept of Ordovician periods (542–443 Mya), after luscs, echinoderms, and chordates—sampled character compatibility (10) to simplify their which short-term extinction events and from the early radiation in the Cambrian to analyses and to avoid relying too heavily on bursts of radiation overshadowed long-term the present day. They found that diversifica- the topologies of potentially erroneous phy- increases in diversity (3, 4). This pattern sug- tion was linked to trait evolution in all post- logenetic trees. Compatibility analysis was de- gests that rates of speciation exceeded extinc- Cambrian clades, but not in the earliest trilo- veloped in the late 1960s and 1970s as part of tion during the first phase of metazoan bites,andthatitwaslinkedtoanincreasein the explosion of interest in computerized diversification, after which the balance shifted extinction among the clades that did not phylogenetic analysis. Estabrook, who died back and forth. A long-standing question is evolve new traits. in 2011, was one of the major contributors whether clades that have successfully diversi- The analytical challenges for determining to the theory, methods, and algorithms used fied have done so by evolving new traits that whether traits are related to diversification to identify compatible characters and the so- confer an advantage allowing them to out- across 319 extinct clades are enormous. called “convex” groups that share them (10– perform or outcompete other groups, either Tackled directly, the problem requires iden- 12). Compatible characters are best under- by winning battles in evolutionary arms races tifying the phylogenetic node at which a trait stood as those character combinations that do not logically require homoplasy to explain them. Most approaches to phylogenetics test A Incompatible homoplasy (the independent evolution of Compatible a trait in two or more taxa) in the context 2: 1 0 2: 0 1 of a specific tree topology. If a character ABCD ABC C D change occurs only once on a tree, it is A 00 00 a uniquely derived synapomorphy, but if it 2: 0 1 changes more than once it is a homoplasy. B 10 01 2: 0 1 Phylogenetic algorithms typically search tree C 10 10 space for the topology that minimizes the 1: 0 1 D 11 11 1: 0 1 number of homoplasies using one criterion or another (13). Parsimony, for example, finds the topology that strictly minimizes ho- B moplasy and maximizes synapomorphy (14) 11 10 Youngest and maximum likelihood finds the topology 10 01 10 11 that maximizes the probability of the charac- ter distributions taking into account that if 00 00 00 Oldest Incomp- Author contributions: P.D.P. wrote the paper. HSC DSC atible The author declares no conflict of interest. Fig. 1. (A) Character transitions on a phylogeny of compatible (Left) and incompatible (Right) sets of character See companion article 10.1073/pnas.1406304111. combinations in four taxa. (B) Transitions in stratigraphically arranged character pairs. 1Email: [email protected]. www.pnas.org/cgi/doi/10.1073/pnas.1419138111 PNAS Early Edition | 1of2 Downloaded by guest on October 2, 2021 a character evolves once it is likely to evolve Other more direct methods exist for 20), which Wagner and Estabrook found to again. Compatibility analysis starts with the estimating whether diversification is linked be the most common mode of trait-based character combinations themselves, some of to trait evolution. Most approaches involve diversification in the fossil record. What which require homoplasy no matter what the fitting a model of trait-dependent speciation Wagner and Estabrook sacrificed in terms of topology (Fig. 1A). Compatible characters are and extinction to a phylogenetic tree and biological specificity, they gained in terms of those that could have evolved without homo- traits observed in the tip taxa (15–19). For broad applicability to a wide variety of fossil plasy on at least some phylogenies, even example, likelihood can be used to fit a model data sets. though they may turn out to have evolved Wagner and Estabrook found that diver- more than once depending on the topology Wagner and Estabrook sification was linked to trait changes in all ofthetruetree. found that diversifica- clades except Cambrian trilobites, but by By placing compatibility in a stratigraphic tion was linked to trait increasing the rate of extinction, not specia- framework in which taxa are distributed tion. The evolution of new characters appears through sequences of older and younger changes in all clades not to have directly conferred a speciation rocks, Wagner and Estabrook were able to except Cambrian trilo- advantage on the taxa that acquired them; distinguish cases where lineage splitting (di- bites, but by increasing instead, it conferred a disadvantage on those versification) must have occurred from cases that did not. This finding is compatible with where the observed character changes were therateofextinction, Van Valen’s Red Queen hypothesis that most compatible with a single lineage evolving not speciation. evolution is driven by competition and that through time. Any two characters are com- species are constantly in danger of losing patible if the taxa in the analysis record them in which the speciation and extinction rates their advantage and thus becoming extinct, in only three of their four possible combina- covary with one or more quantitative traits because of new adaptations in their compet- tions. An ordering can always be found in on a phylogenetic tree of known topology itors (5). Van Valen’sanalogywasthattaxa which the transformation from one pair of (19). This method assesses directly whether must run to keep up, just like Lewis Carroll’s characters to the next never requires a re- speciation and extinction are linked to spe- ’ versal. These compatible orderings are strati- cific traits. Other variants assess whether Red Queen. Van Valen shypothesiswas, graphically consistent if they also occur in a specific character transition, the evolution however, based a constant rate of extinction temporal order in the fossil record (Fig. 1B). of a key innovation like opposable thumbs, is within clades. Wagner and Estabrook con- If the intermediate pair of characters occurs linked with diversification (17). The advan- firm that extinction is linked to character temporally between the others, then the char- tages of these methods over Wagner and adaptations in other taxa, but their results acters have hierarchical stratigraphic compat- Estabrook’s is that they localize on a tree suggest that the probability extinction ibility (HSC). If the intermediate pair occurs where diversifying events took place and increases when other taxa evolve. Further- before the other two, then the characters have identify what characters or trait states are more, their results suggest that the competi- divergent stratigraphic compatibility (DSC), associated with them; however, their dis- tive disadvantage conferred by improvements which suggests that character change and di- advantages are that they require a fully re- in neighboring species did not exist in the versification occurred. The intermediate pair solved tree with taxa found only at the tips, Cambrian, at least not in trilobites. Resources can also occur later than the other two, in which makes them inapplicable to fossil data and niche space may have been plentiful which case it is stratigraphically incompati- that lie deep within the nesting structure of enough in the first phase of metazoan evolu- ble. Taking the probabilities of sampling taxa the phylogeny. These methods are also weak tion that the Red Queen did not apply, no in the fossil record into account, Wagner and at detecting changes in extinction rates (19, matter what traits evolved in other species. Estabrook used simulations of diversification and character evolution to estimate the pro- portion of HSC, DSC, and incompatible char- 1 Yule GU (1925) A mathematical theory of evolution. Philos Trans R 12 Estabrook GF, Strauch JG, Jr, Fiala KL (1977) An application of acter combinations that are expected when Soc Lond, B 213:21–87.
Recommended publications
  • A Stochastic Model of Language Evolution That Incorporates Homoplasy and Borrowing
    A STOCHASTIC MODEL OF LANGUAGE EVOLUTION THAT INCORPORATES HOMOPLASY AND BORROWING TANDY WARNOW, STEVEN N. EVANS, DONALD RINGE, AND LUAY NAKHLEH 1. Introduction The inference of evolutionary history, whether in biology or in lin- guistics, is aided by a carefully considered model of the evolutionary process and a reconstruction method which is expected to produce a reasonably accurate estimation of the true evolutionary history when the real data match the model assumptions and are of sufficient quan- tity. In molecular systematics (i.e., the inference of evolutionary his- tories from molecular data), much of the research effort has focused in two areas: first, the development of increasingly parameter rich models of molecular sequence evolution, and second, the development of increasingly sophisticated software tools and algorithms for recon- structing phylogenies under these models. The plethora of software for reconstructing phylogenies from molecular data is staggering. By com- parison, much less has been done in historical linguistics in terms of developing statistical models of character evolution or reconstruction methods, suggesting that there is perhaps much to be gained by doing so. To date, although some models have been proposed for language evo- lution, all have failed in some significant ways. In particular, linguistic models either explicitly or implicitly have assumed that no homoplasy (i.e., parallel evolution and/or back–mutation) occurs (see for exam- ple (Ringe et al. , 2002; Taylor et al. , 2000; Warnow, 1997)). Most, but not all, have not modelled borrowing between languages. In this paper, we go beyond earlier models by explicitly incorporating both homoplasy and borrowing into our model.
    [Show full text]
  • Preliminary Phylogeny of Diplostephium (Asteraceae): Speciation Rate and Character Evolution
    NUMBER 15 VARGAS AND MADRIN˜ A´ N: SPECIATION AND CHARACTER EVOLUTION OF DIPLOSTEPHIUM 1 PRELIMINARY PHYLOGENY OF DIPLOSTEPHIUM (ASTERACEAE): SPECIATION RATE AND CHARACTER EVOLUTION Oscar M. Vargas1,2 and Santiago Madrin˜a´n2 1Section of Integrative Biology and the Plant Resources Center, The University of Texas, 205 W 24th St., Stop CO930, Austin, Texas 78712 U.S.A., email: [email protected] 2Laboratorio de Bota´nica y Sistema´tica Universidad de los Andes, Apartado Ae´reo 4976, Bogota´, D. C., Colombia Abstract: Diplostephium comprises 111 neotropical species that live in high elevation habitats from Costa Rica to Chile. Primarily Andean, the genus seems to have undergone an adaptive radiation indicated by its high number of species, broad morphological variation, and diversification primarily in an ecosystem (pa´ramo) that formed within the last 2–5 my. Internal transcriber spacer (ITS) sequences and several chloroplast markers, rpoB, rpoC1, and psbA-trnH were sequenced in order to infer a preliminary phylogeny of the genus. The chloroplast regions showed no significant variation within the genus. New ITS data were therefore analyzed together with published sequences for generating a topology. Results suggest that Diplostephium and other South American genera comprise a polytomy within which a previously described North American clade is nested. Monophyly of Diplostephium was neither supported nor rejected, but the formation of a main crown clade using different methods of analysis suggests that at least a good portion of the genus is monophyletic. A Shimodaira-Hasegawa test comparing the topology obtained and a constrained one forcing Diplostephium to be monophyletic showed no significant difference between them.
    [Show full text]
  • Phylogenetic Analysis
    Phylogenetic Analysis Aristotle • Through classification, one might discover the essence and purpose of species. Nelson & Platnick (1981) Systematics and Biogeography Carl Linnaeus • Swedish botanist (1700s) • Listed all known species • Developed scheme of classification to discover the plan of the Creator 1 Linnaeus’ Main Contributions 1) Hierarchical classification scheme Kingdom: Phylum: Class: Order: Family: Genus: Species 2) Binomial nomenclature Before Linnaeus physalis amno ramosissime ramis angulosis glabris foliis dentoserratis After Linnaeus Physalis angulata (aka Cutleaf groundcherry) 3) Originated the practice of using the ♂ - (shield and arrow) Mars and ♀ - (hand mirror) Venus glyphs as the symbol for male and female. Charles Darwin • Species evolved from common ancestors. • Concept of closely related species being more recently diverged from a common ancestor. Therefore taxonomy might actually represent phylogeny! The phylogeny and classification of life a proposed by Haeckel (1866). 2 Trees - Rooted and Unrooted 3 Trees - Rooted and Unrooted ABCDEFGHIJ A BCDEH I J F G ROOT ROOT D E ROOT A F B H J G C I 4 Monophyletic: A group composed of a collection of organisms, including the most recent common ancestor of all those organisms and all the descendants of that most recent common ancestor. A monophyletic taxon is also called a clade. Paraphyletic: A group composed of a collection of organisms, including the most recent common ancestor of all those organisms. Unlike a monophyletic group, a paraphyletic group does not include all the descendants of the most recent common ancestor. Polyphyletic: A group composed of a collection of organisms in which the most recent common ancestor of all the included organisms is not included, usually because the common ancestor lacks the characteristics of the group.
    [Show full text]
  • Trait-Based Extinction Catches the Red Queen Napping During the Cambrian P
    COMMENTARY Trait-based extinction catches the Red Queen napping during the Cambrian P. David Polly1 changes, estimating the rates of speciation Department of Geological Sciences, Indiana University, Bloomington, IN 47405 and extinction inside and outside that node, and repeating the exercise for all traits (8). The tenuous balance between speciation and or otherwise adapting faster than the Red The number of candidate trait changes in extinction governs the rise and fall of di- Queen’s pace of constant extinction expected even one clade is large, 275 in the early tet- versity within clades, from which have in resource-limited environments (5, 6). In rapod dataset alone (9). Furthermore, flaws emerged the sweeping changes in Earth’s PNAS, Wagner and Estabrook (7) ask in the phylogeny can lead to misinterpreta- standing biodiversity since life’sorigin(1, whether diversification was associated with tions about the link between diversification 2). In a clade where speciation and extinction the evolution of new traits and, if so, did and traits, and phylogenetic analyzes of ex- are equally likely, net diversity remains con- the probability of speciation go up in clades tinct metazoan taxa are sparse compared with their immense Phanerozoic diversity. stant; when the rate of speciation exceeds that have the new trait, did the group’srateof To meet these challenges, the authors extinction, diversity increases exponentially; trait evolution go up, did extinction go up in approached the problem indirectly by look- and when the chance of extinction outweighs the clades that do not have the trait, or some ing at the sequence of trait combinations in speciation, then diversity falls, resulting ulti- combination of these.
    [Show full text]
  • Convergent Evolution of Behavior in an Adaptive Radiation of Hawaiian Web-Building Spiders
    Convergent evolution of behavior in an adaptive radiation of Hawaiian web-building spiders Todd A. Blackledge† and Rosemary G. Gillespie Department of Environmental Science, Policy, and Management, Division of Insect Biology, 201 Wellman Hall, University of California, Berkeley, CA 94720 Communicated by Thomas W. Schoener, University of California, Davis, CA, October 6, 2004 (received for review March 22, 2004) Species in ecologically similar habitats often display patterns of such that differences in web shape can indicate differences in divergence that are strikingly comparable, suggesting that natural how spiders are using resources (17, 19–21). We assess the selection can lead to predictable evolutionary change in commu- relative predictability of behavioral evolution within the adap- nities. However, the relative importance of selection as an agent tive radiation of Hawaiian orb-weaving Tetragnatha by compar- mediating in situ diversification, versus dispersal between habi- ing the web architectures of species, both within islands and tats, cannot be addressed without knowledge of phylogenetic among communities on different islands, and by examining the history. We used an adaptive radiation of spiders within the historical diversification of those behaviors. Hawaiian Islands to test the prediction that species of spiders on different islands would independently evolve webs with similar Materials and Methods architectures. Tetragnatha spiders are the only nocturnal orb- Focal Localities. We studied spiders in focal localities on three weaving spiders endemic to the Hawaiian archipelago, and mul- different islands, each of which consisted of mature mesic to wet tiple species of orb-weaving Tetragnatha co-occur within mesic forest vegetation but varied in age according to island (22): and wet forest habitats on each of the main islands.
    [Show full text]
  • Species: Turning a Conundrum Into a Research Program
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 6-1999 Species: Turning a Conundrum Into a Research Program Daniel R. Brooks University of Toronto, [email protected] Deborah A. McLennan University of Toronto E. C. Bernard University of Tennessee Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Brooks, Daniel R.; McLennan, Deborah A.; and Bernard, E. C., "Species: Turning a Conundrum Into a Research Program" (1999). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 309. https://digitalcommons.unl.edu/parasitologyfacpubs/309 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Journal of Nematology 31(2):117–133. 1999. © The Society of Nematologists 1999. Species: Turning a Conundrum into a Research Program1 Daniel R. Brooks and Deborah A. McLennan2 Abstract: The most appropriate ontological basis for understanding the role of species in evolutionary biology is the Evolutionary Species Concept. The ESC is not an operational concept, but one version of the Phylogenetic Species Concept is. Linking the ontology of species with the epistemological basis of actual biological studies requires that we specify both a discovery mode for identifying collections of organisms that we believe are evolutionary species, and a series of evaluation criteria for assessing those entities we have discovered.
    [Show full text]
  • Inferring and Testing Hypotheses of Cladistic Character Dependence by Using Character Compatibility F
    Marshall University Marshall Digital Scholar Biological Sciences Faculty Research Biological Sciences 9-2001 Inferring and Testing Hypotheses of Cladistic Character Dependence by Using Character Compatibility F. Robin O’Keefe Marshall University, [email protected] Peter J. Wagner Follow this and additional works at: http://mds.marshall.edu/bio_sciences_faculty Part of the Animal Sciences Commons, Biochemistry, Biophysics, and Structural Biology Commons, and the Biology Commons Recommended Citation O’Keefe, F. R., and P. J. Wagner. 2001. Inferring and testing hypotheses of cladistic character dependence by using character compatibility. Syst. Biol. 50:657–675. This Article is brought to you for free and open access by the Biological Sciences at Marshall Digital Scholar. It has been accepted for inclusion in Biological Sciences Faculty Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. Syst. Biol. 50(5):657–675, 2001 Inferring and Testing Hypotheses of Cladistic Character Dependence by Using Character Compatibility F. ROBIN O’KEEFE1 AND PETER J. WAGNER2 1 Department of Anatomy, New York College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York 11568-8000 , USA; E-mail: [email protected] 2Department of Geology, Field Museum of Natural History, Roosevelt Road at Lake Shore Drive, Chicago, Illinois 60605, USA; E-mail: [email protected] Abstract.—The notion that two characters evolve independently is of interest for two reasons. First, theories of biological integration often predict that change in one character requires complemen- tary change in another. Second, character independence is a basic assumption of most phylogenetic inference methods, and dependent characters might confound attempts at phylogenetic inference.
    [Show full text]
  • Phylogeny and Character Evolution in the Dacrymycetes, and Systematics of Unilacrymaceae and Dacryonaemataceae Fam
    Persoonia 44, 2020: 161–205 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2020.44.07 Phylogeny and character evolution in the Dacrymycetes, and systematics of Unilacrymaceae and Dacryonaemataceae fam. nov. J.C. Zamora1,2, S. Ekman1 Key words Abstract We present a multilocus phylogeny of the class Dacrymycetes, based on data from the 18S, ITS, 28S, RPB1, RPB2, TEF-1α, 12S, and ATP6 DNA regions, with c. 90 species including the types of most currently accepted Carotenoids genera. A variety of methodological approaches was used to infer phylogenetic relationships among the Dacrymy­ coalescence analyses cetes, from a supermatrix strategy using maximum likelihood and Bayesian inference on a concatenated dataset, cytology to coalescence-based calculations, such as quartet-based summary methods of independent single-locus trees, Dacrymycetes and Bayesian integration of single-locus trees into a species tree under the multispecies coalescent. We evaluate Dacryonaema for the first time the taxonomic usefulness of some cytological phenotypic characters, i.e., vacuolar contents (vacu- species delimitations olar bodies and lipid bodies), number of nuclei of recently discharged basidiospores, and pigments, with especial Unilacryma emphasis on carotenoids. These characters, along with several others traditionally used for the taxonomy of this group (basidium shape, presence and morphology of clamp connections, morphology of the terminal cells of cortical/ marginal hyphae, presence and degree of ramification of the hyphidia), are mapped on the resulting phylogenies and their evolution through the class Dacrymycetes discussed. Our analyses reveal five lineages that putatively represent five different families, four of which are accepted and named.
    [Show full text]
  • Phylogenetic Trees and Their Analysis
    City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 2-2014 Phylogenetic Trees and Their Analysis Eric Ford Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/37 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Phylogenetic Trees and Their Analysis by ERIC FORD A dissertation submitted to the Graduate Faculty in Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2014 Copyright c by Eric Ford 2013 ii This manuscript has been read and accepted for the Graduate Faculty in Computer Science in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy Katherine St. John Date Chair of Examining Committee Robert Haralick Date Executive Officer, Dept. of Computer Science Ward Wheeler Amotz Bar-Noy Daniel Gusfield Supervisory Committee THE CITY UNIVERSITY OF NEW YORK iii ABSTRACT Phylogenetic Trees and Their Analysis by Eric Ford Advisor: Katherine St. John Determining the best possible evolutionary history, the lowest-cost phylogenetic tree, to fit a given set of taxa and character sequences using maximum parsimony is an active area of research due to its underlying importance in understanding biological processes. As several steps in this process are NP-Hard when using popular, biologically-motivated optimality criteria, significant amounts of resources are dedicated to both both heuristics and to making exact methods more computationally tractable.
    [Show full text]
  • Tracking Character Evolution and Biogeographic History Through Time in Cornaceae—Does Choice of Methods Matter? Qiu-Yun (Jenny) XIANG* David T
    Journal of Systematics and Evolution 46 (3): 349–374 (2008) doi: 10.3724/SP.J.1002.2008.08056 (formerly Acta Phytotaxonomica Sinica) http://www.plantsystematics.com Tracking character evolution and biogeographic history through time in Cornaceae—Does choice of methods matter? Qiu-Yun (Jenny) XIANG* David T. THOMAS (Department of Plant Biology, North Carolina State University, Raleigh, NC 27695, USA) Abstract This study compares results on reconstructing the ancestral state of characters and ancestral areas of distribution in Cornaceae to gain insights into the impact of using different analytical methods. Ancestral charac- ter state reconstructions were compared among three methods (parsimony, maximum likelihood, and stochastic character mapping) using MESQUITE and a full Bayesian method in BAYESTRAITS and inferences of ancestral area distribution were compared between the parsimony-based dispersal-vicariance analysis (DIVA) and a newly developed maximum likelihood (ML) method. Results indicated that among the six inflorescence and fruit char- acters examined, “perfect” binary characters (no homoplasy, no polymorphism within terminals, and no missing data) are little affected by choice of method, while homoplasious characters and missing data are sensitive to methods used. Ancestral areas at deep nodes of the phylogeny are substantially different between DIVA and ML and strikingly different between analyses including and excluding fossils at three deepest nodes. These results, while raising caution in making conclusions on trait evolution and historical biogeography using conventional methods, demonstrate a limitation in our current understanding of character evolution and biogeography. The biogeographic history favored by the ML analyses including fossils suggested the origin and early radiation of Cornus likely occurred in the late Cretaceous and earliest Tertiary in Europe and intercontinental disjunctions in three lineages involved movements across the North Atlantic Land Bridge (BLB) in the early and mid Tertiary.
    [Show full text]
  • Macroevolutionary Analysis of Discrete Character Evolution Using Parsimony-Informed Likelihood
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.07.897603; this version posted January 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Macroevolutionary analysis of discrete character evolution using parsimony-informed likelihood 2 3 Michael C. Grundler1,* and Daniel L. Rabosky1 4 5 1 Museum of Zoology and Department of Ecology and Evolutionary Biology, University of 6 Michigan, Ann Arbor, MI 48109-1079, USA 7 8 * Corresponding author: [email protected] 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.07.897603; this version posted January 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 24 ABSTRACT 25 Rates of character evolution in macroevolutionary datasets are typically estimated by 26 maximizing the likelihood function of a continuous-time Markov chain (CTMC) model of 27 character evolution over all possible histories of character state change, a technique known as 28 maximum average likelihood. An alternative approach is to estimate ancestral character states 29 independently of rates using parsimony and to then condition likelihood-based estimates of 30 transition rates on the resulting ancestor-descendant reconstructions.
    [Show full text]
  • Convergent Evolution of Life Habit and Shell Shape in Scallops (Bivalvia: Pectinidae) with a Description of a New Genus Alvin Alejandrino Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2014 Convergent evolution of life habit and shell shape in scallops (Bivalvia: Pectinidae) with a description of a new genus Alvin Alejandrino Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biology Commons, and the Evolution Commons Recommended Citation Alejandrino, Alvin, "Convergent evolution of life habit and shell shape in scallops (Bivalvia: Pectinidae) with a description of a new genus" (2014). Graduate Theses and Dissertations. 14056. https://lib.dr.iastate.edu/etd/14056 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Convergent evolution of life habit and shell shape in scallops (Bivalvia: Pectinidae) with a description of a new genus by Alvin Alejandrino A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Ecology and Evolutionary Biology i Program of Study Committee: Jeanne M. Serb, Major Professor Dean C. Adams Dennis Lavrov Nicole Valenzuela Kevin J. Roe Iowa State University Ames, Iowa 2014 Copyright © Alvin Alejandrino, 2014. All rights reserved. ii DEDICATION To my brother, Edward Andrew Haffner (May 19, 1986 – December 26, 2011). You showed me that family and happiness are the most important things in life. I miss and love you.
    [Show full text]