Lecture 13 Muon and Tau Decay 1 Introduction 2 Lepton Number

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 13 Muon and Tau Decay 1 Introduction 2 Lepton Number Nuclear and Particle Physics - Lecture 13 Muon and tau decay 1 Introduction We have seen the Feynman diagram vertices for weak charged current interactions and now we want to apply them. There are extra complications with quarks which we will discuss later, so first we will look at purely leptonic interactions and in particular, muon and tau decay. In the absence of charged current weak interactions, these leptons would be stable, so their decays provide a good test of the weak theory. 2 Lepton number conservation We saw the vertices have the W coupling the e to the νe. We can add further generations for µ/νµ and τ/ντ but these will be independent; the W does not couple e to νµ, for example. Each vertex has the same generation of lepton on both fermion lines so we can introduce the concept of \lepton numbers" and get conserved quantities. We need three separate lepton number for each of e, µ and τ and their neutrinos. Lepton Le Lµ Lτ − e , νe +1 0 0 + e , νe −1 0 0 − µ , νµ 0 +1 0 + µ , νµ 0 −1 0 − τ , ντ 0 0 +1 + τ , ντ 0 0 −1 Table 1: Lepton number values This number is the equivalent of particle type (or flavour) in the electromagnetic and strong interactions, as it is never changed by those forces. 3 Muon decay Because the type of particle can change in a weak interaction, the heavier fundamental fermions can decay. The first example of this which we shall look at is the muon, mass 0.1057 GeV, which has only one significant decay mode − − µ ! νµe νe This couples µ to νµ and e to νe only and, as stated above, therefore conserves each of the lepton numbers. Explicitly, the initial values are Lµ = +1 and Le = 0. The final values are Lµ = +1 and Le = (+1) + (−1) = 0 again. The Feynman diagram is below. This is structurally very similar to the ones we have seen before. However, the final state is much more complicated because we have a three-body final state. In two-body final states, the overall energy and momentum conservation completely fixes both outgoing momentum magnitudes and only the overall θ and φ directions are left as free variables. Thus, the decay width is only a function of solid angle, dΓ=dΩ and the total width is given by integrating over the two solid angle variables. 1 νµ g - µ- W e W gW ν e It is straightforward to count the number of variables; each final state particle has three momentum components (from which the energy can be calculated using E2 = p2c2 + m2c4). Hence, for a two-body final state, there are 2×3 = 6 variables needed to describe the final state. Total energy and momentum conservation give four constraints (one for energy and one for each momentum component) so the number of remaining free variables is 6 − 4 = 2. However, for a three-body decay, there are now 3 × 3 = 9 variables needed to describe the final state. The total energy and momentum conservation gives the same four constraints, so the number of free variables is 9 − 4 = 5 free variables, rather than 2. The decay rate will, in general, be a function of all five. Hence we need to integrate over five variables to get the total width. In particular, this tells us that the energy of the electrons from muon decay is not constrained to a single value (as would be the case for a two-body decay) but instead come out with a spread of energies, i.e. a spectrum ν e e ν ν ν In fact, as the neutrinos are almost always unobserved in this decay, then often the only possible observables of the five are the three which give the electron energy and direction (θ and φ). Sometimes, e.g. when the muon is unpolarised, the only interesting variable is the electron energy. Hence, the usual calculation is to integrate over the other four and just express the width as a function of the electron energy. This is a laborious calculation, even ignoring the electron mass, but the result is 2 dΓ 1 g 2 2m2 c4E2 4E G2 2m2 c4E2 4E = 2 W µ e 1 − e = F µ e 1 − e dE 8 M c2 (2π)3 3m c2 (¯hc)6 (2π)3 3m c2 e " W # µ ! µ ! Note, this is in the low energy (i.e. four-fermion vertex) limit as we use GF , which is perfectly valid here as all energies are ∼ 100 MeV or less. This spectrum is called the Michel distribution 2 and it peaks at the maximum allowed value of Ee = mµc =2. 2 It is now straightforward to get the total width by integrating the above expression 2 2 4 2 2 4 mµc =2 2 mµc =2 3 2 3 4 GF 2mµc 2 4Ee GF mµc Ee Ee Γ = 6 3 Ee − 2 dEe = 6 3 − 2 (¯hc) (2π) 0 3m c (¯hc) 4π 3 3m c Z µ ! " µ #0 2 2 4 3 6 3 6 2 2 4 3 6 GF mµc mµc mµc GF mµc mµc = 6 3 − = 6 3 (¯hc) 12π " 8 16 # (¯hc) 12π 16 2 5 10 2 2 5 G m c G (m c ) − = F µ = F µ = 3:0 × 10 19 GeV (¯hc)6 192π3 (¯hc)6 192π3 −6 which corresponds to a lifetime of τµ = 2:2 × 10 s, in good agreement with the experimental value of (2:19703 0:0004) × 10−6 s. We have seen a picture of e+e− ! µ+µ− at Aleph, where the muons leave tracks in the detector. How come this is observed if they decay? The average time a muon lives for in its rest frame is ht0i = τµ so in a boosted frame, because of time dilation, this is lengthened to hti = γτµ. In this time, it will go an average distance of hdi = vhti = γβcτµ. This is usually easiest to evaluate by noting p = γβmc, so hdi = (p=mc)cτµ. The combination cτ for any particle sets the scale of the decay lengths and for the muon, it is cτµ = 660 m. For the muons at Aleph, p ∼ 45 GeV so hdi ∼ 280 km, which takes them all the way through the atmosphere, so they normally decay well after leaving the detector. 4 Mass dependence and the tau lifetime 5 The dependence on the muon mass is striking; Γ / mµ. Where does this come from? The only 2 masses in the problem are the muon and W masses and we know the amplitude / 1=MW so the 4 width / 1=MW Therefore, on dimensional grounds, the width (which has dimensions of energy) must be 4 mµ 2 5 Γ / 4 mµc / mµ MW We can use this to look at the tau. One decay of the tau is − − τ ! ντ e νe 3 which is exactly the same as for the muon, except the muon mass is replaced by the tau mass mτ = 1:777 GeV, i.e. mτ =mµ = 16:8. Hence, we would calculate the partial width for this decay mode to be 5 − − mτ − − −13 Γ(τ ! ντ e νe) = 5 Γ(µ ! ντ e νe) = 4:0 × 10 GeV mµ This is not the only decay mode for the tau, as the extra mass makes other modes accessible. There is a muon decay mode − − τ ! ντ µ νµ which, ignoring the muon mass relative to the tau mass, will have the same rate as the electron decay. Since the tau mass is more than pion mass, then there are also decays to hadrons, which obviously go via quarks − τ ! ντ du ντ τ- u W d If we assume asymptotic freedom holds, then from universality, the rate might be expected to be e : µ : hadrons = 1 : 1 : 1. However, this ignors colour, and just as the e+e− cross section gets enhanced by a factor of three, so does the decay rate here. Hence, we might expect e : µ : hadrons = 1 : 1 : 3, i.e. 20% e, 20% µ and 60% hadrons. In fact, the measured rates are 17.8%, 17.4% and 64.8% so this is not a bad approximation. The total width is the sum of the partial widths and in this approximation would be five times the electron partial width − − −12 Γ = 5Γ(τ ! ντ e νe) = 2:0 × 10 GeV −13 This gives ττ = 3:2 × 10 s in reasonable agreement with the experimental value of (2:906 0:011) × 10−13 s. How far does a tau go before decaying? Applying the above formula gives cττ = 87 µm and for 45 GeV momentum at Aleph, then the average distance is 2.2 mm. Hence, all taus decay quite close to the beam collision point, well before they enter the tracking detectors; we don't usually see charged tracks due to taus themselves, only their decay products. So how can we measure the tau lifetime? With accurate tracking using a silicon vertex detector, the actual tau decay positions can be reconstructed and the lifetime distribution unfolded. 4 10 3 10 2 Entries / 0.05 cm 10 1 −1 0 1 2 3 Decay length (cm) 5.
Recommended publications
  • The Five Common Particles
    The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2.
    [Show full text]
  • Decays of the Tau Lepton*
    SLAC - 292 UC - 34D (E) DECAYS OF THE TAU LEPTON* Patricia R. Burchat Stanford Linear Accelerator Center Stanford University Stanford, California 94305 February 1986 Prepared for the Department of Energy under contract number DE-AC03-76SF00515 Printed in the United States of America. Available from the National Techni- cal Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161. Price: Printed Copy A07, Microfiche AOl. JC Ph.D. Dissertation. Abstract Previous measurements of the branching fractions of the tau lepton result in a discrepancy between the inclusive branching fraction and the sum of the exclusive branching fractions to final states containing one charged particle. The sum of the exclusive branching fractions is significantly smaller than the inclusive branching fraction. In this analysis, the branching fractions for all the major decay modes are measured simultaneously with the sum of the branching fractions constrained to be one. The branching fractions are measured using an unbiased sample of tau decays, with little background, selected from 207 pb-l of data accumulated with the Mark II detector at the PEP e+e- storage ring. The sample is selected using the decay products of one member of the r+~- pair produced in e+e- annihilation to identify the event and then including the opposite member of the pair in the sample. The sample is divided into subgroups according to charged and neutral particle multiplicity, and charged particle identification. The branching fractions are simultaneously measured using an unfold technique and a maximum likelihood fit. The results of this analysis indicate that the discrepancy found in previous experiments is possibly due to two sources.
    [Show full text]
  • Lepton Flavor and Number Conservation, and Physics Beyond the Standard Model
    Lepton Flavor and Number Conservation, and Physics Beyond the Standard Model Andr´ede Gouv^ea1 and Petr Vogel2 1 Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, 60208, USA 2 Kellogg Radiation Laboratory, Caltech, Pasadena, California, 91125, USA April 1, 2013 Abstract The physics responsible for neutrino masses and lepton mixing remains unknown. More ex- perimental data are needed to constrain and guide possible generalizations of the standard model of particle physics, and reveal the mechanism behind nonzero neutrino masses. Here, the physics associated with searches for the violation of lepton-flavor conservation in charged-lepton processes and the violation of lepton-number conservation in nuclear physics processes is summarized. In the first part, several aspects of charged-lepton flavor violation are discussed, especially its sensitivity to new particles and interactions beyond the standard model of particle physics. The discussion concentrates mostly on rare processes involving muons and electrons. In the second part, the sta- tus of the conservation of total lepton number is discussed. The discussion here concentrates on current and future probes of this apparent law of Nature via searches for neutrinoless double beta decay, which is also the most sensitive probe of the potential Majorana nature of neutrinos. arXiv:1303.4097v2 [hep-ph] 29 Mar 2013 1 1 Introduction In the absence of interactions that lead to nonzero neutrino masses, the Standard Model Lagrangian is invariant under global U(1)e × U(1)µ × U(1)τ rotations of the lepton fields. In other words, if neutrinos are massless, individual lepton-flavor numbers { electron-number, muon-number, and tau-number { are expected to be conserved.
    [Show full text]
  • Accessible Lepton-Number-Violating Models and Negligible Neutrino Masses
    PHYSICAL REVIEW D 100, 075033 (2019) Accessible lepton-number-violating models and negligible neutrino masses † ‡ Andr´e de Gouvêa ,1,* Wei-Chih Huang,2, Johannes König,2, and Manibrata Sen 1,3,§ 1Northwestern University, Department of Physics and Astronomy, 2145 Sheridan Road, Evanston, Illinois 60208, USA 2CP3-Origins, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark 3Department of Physics, University of California Berkeley, Berkeley, California 94720, USA (Received 18 July 2019; published 25 October 2019) Lepton-number violation (LNV), in general, implies nonzero Majorana masses for the Standard Model neutrinos. Since neutrino masses are very small, for generic candidate models of the physics responsible for LNV, the rates for almost all experimentally accessible LNV observables—except for neutrinoless double- beta decay—are expected to be exceedingly small. Guided by effective-operator considerations of LNV phenomena, we identify a complete family of models where lepton number is violated but the generated Majorana neutrino masses are tiny, even if the new-physics scale is below 1 TeV. We explore the phenomenology of these models, including charged-lepton flavor-violating phenomena and baryon- number-violating phenomena, identifying scenarios where the allowed rates for μ− → eþ-conversion in nuclei are potentially accessible to next-generation experiments. DOI: 10.1103/PhysRevD.100.075033 I. INTRODUCTION Experimentally, in spite of ambitious ongoing experi- Lepton number and baryon number are, at the classical mental efforts, there is no evidence for the violation of level, accidental global symmetries of the renormalizable lepton-number or baryon-number conservation [5]. There Standard Model (SM) Lagrangian.1 If one allows for are a few different potential explanations for these (neg- generic nonrenormalizable operators consistent with the ative) experimental results, assuming degrees-of-freedom SM gauge symmetries and particle content, lepton number beyond those of the SM exist.
    [Show full text]
  • 1 Drawing Feynman Diagrams
    1 Drawing Feynman Diagrams 1. A fermion (quark, lepton, neutrino) is drawn by a straight line with an arrow pointing to the left: f f 2. An antifermion is drawn by a straight line with an arrow pointing to the right: f f 3. A photon or W ±, Z0 boson is drawn by a wavy line: γ W ±;Z0 4. A gluon is drawn by a curled line: g 5. The emission of a photon from a lepton or a quark doesn’t change the fermion: γ l; q l; q But a photon cannot be emitted from a neutrino: γ ν ν 6. The emission of a W ± from a fermion changes the flavour of the fermion in the following way: − − − 2 Q = −1 e µ τ u c t Q = + 3 1 Q = 0 νe νµ ντ d s b Q = − 3 But for quarks, we have an additional mixing between families: u c t d s b This means that when emitting a W ±, an u quark for example will mostly change into a d quark, but it has a small chance to change into a s quark instead, and an even smaller chance to change into a b quark. Similarly, a c will mostly change into a s quark, but has small chances of changing into an u or b. Note that there is no horizontal mixing, i.e. an u never changes into a c quark! In practice, we will limit ourselves to the light quarks (u; d; s): 1 DRAWING FEYNMAN DIAGRAMS 2 u d s Some examples for diagrams emitting a W ±: W − W + e− νe u d And using quark mixing: W + u s To know the sign of the W -boson, we use charge conservation: the sum of the charges at the left hand side must equal the sum of the charges at the right hand side.
    [Show full text]
  • J = Τ MASS Page 1
    Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) J 1 τ = 2 + + τ discovery paper was PERL 75. e e− → τ τ− cross-section threshold behavior and magnitude are consistent with pointlike spin- 1/2 Dirac particle. BRANDELIK 78 ruled out pointlike spin-0 or spin-1 particle. FELDMAN 78 ruled out J = 3/2. KIRKBY 79 also ruled out J=integer, J = 3/2. τ MASS VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT 1776..86 0..12 OUR AVERAGE ± +0.10 1776.91 0.12 1171 1 ABLIKIM 14D BES3 23.3 pb 1, Eee = ± 0.13 − cm − 3.54–3.60 GeV 1776.68 0.12 0.41 682k 2 AUBERT 09AK BABR 423 fb 1, Eee =10.6 GeV ± ± − cm 1776.81+0.25 0.15 81 ANASHIN 07 KEDR 6.7 pb 1, Eee = 0.23 ± − cm − 3.54–3.78 GeV 1776.61 0.13 0.35 2 BELOUS 07 BELL 414 fb 1 Eee =10.6 GeV ± ± − cm 1775.1 1.6 1.0 13.3k 3 ABBIENDI 00A OPAL 1990–1995 LEP runs ± ± 1778.2 0.8 1.2 ANASTASSOV 97 CLEO Eee = 10.6 GeV ± ± cm . +0.18 +0.25 4 Eee . 1776 96 0.21 0.17 65 BAI 96 BES cm= 3 54–3 57 GeV − − 1776.3 2.4 1.4 11k 5 ALBRECHT 92M ARG Eee = 9.4–10.6 GeV ± ± cm +3 6 Eee 1783 4 692 BACINO 78B DLCO cm= 3.1–7.4 GeV − We do not use the following data for averages, fits, limits, etc.
    [Show full text]
  • Neutrino Vs Antineutrino Lepton Number Splitting
    Introduction to Elementary Particle Physics. Note 18 Page 1 of 5 Neutrino vs antineutrino Neutrino is a neutral particle—a legitimate question: are neutrino and anti-neutrino the same particle? Compare: photon is its own antiparticle, π0 is its own antiparticle, neutron and antineutron are different particles. Dirac neutrino : If the answer is different , neutrino is to be called Dirac neutrino Majorana neutrino : If the answer is the same , neutrino is to be called Majorana neutrino 1959 Davis and Harmer conducted an experiment to see whether there is a reaction ν + n → p + e - could occur. The reaction and technique they used, ν + 37 Cl e- + 37 Ar, was proposed by B. Pontecorvo in 1946. The result was negative 1… Lepton number However, this was not unexpected: 1953 Konopinski and Mahmoud introduced a notion of lepton number L that must be conserved in reactions : • electron, muon, neutrino have L = +1 • anti-electron, anti-muon, anti-neutrino have L = –1 This new ad hoc law would explain many facts: • decay of neutron with anti-neutrino is OK: n → p e -ν L=0 → L = 1 + (–1) = 0 • pion decays with single neutrino or anti-neutrino is OK π → µ-ν L=0 → L = 1 + (–1) = 0 • but no pion decays into a muon and photon π- → µ- γ, which would require: L= 0 → L = 1 + 0 = 1 • no decays of muon with one neutrino µ- → e - ν, which would require: L= 1 → L = 1 ± 1 = 0 or 2 • no processes searched for by Davis and Harmer, which would require: L= (–1)+0 → L = 0 + 1 = 1 But why there are no decays µµµ →→→ e γγγ ? 2 Splitting lepton numbers 1959 Bruno Pontecorvo
    [Show full text]
  • Introduction to Flavour Physics
    Introduction to flavour physics Y. Grossman Cornell University, Ithaca, NY 14853, USA Abstract In this set of lectures we cover the very basics of flavour physics. The lec- tures are aimed to be an entry point to the subject of flavour physics. A lot of problems are provided in the hope of making the manuscript a self-study guide. 1 Welcome statement My plan for these lectures is to introduce you to the very basics of flavour physics. After the lectures I hope you will have enough knowledge and, more importantly, enough curiosity, and you will go on and learn more about the subject. These are lecture notes and are not meant to be a review. In the lectures, I try to talk about the basic ideas, hoping to give a clear picture of the physics. Thus many details are omitted, implicit assumptions are made, and no references are given. Yet details are important: after you go over the current lecture notes once or twice, I hope you will feel the need for more. Then it will be the time to turn to the many reviews [1–10] and books [11, 12] on the subject. I try to include many homework problems for the reader to solve, much more than what I gave in the actual lectures. If you would like to learn the material, I think that the problems provided are the way to start. They force you to fully understand the issues and apply your knowledge to new situations. The problems are given at the end of each section.
    [Show full text]
  • Tau (Or No) Leptons in Top Quark Decays at Hadron Colliders
    Tau (or no) leptons in top quark decays at hadron colliders Michele Gallinaro for the CDF, D0, ATLAS, and CMS collaborations Laborat´oriode Instrumenta¸c˜aoe F´ısicaExperimental de Part´ıculas LIP Lisbon, Portugal DOI: http://dx.doi.org/10.3204/DESY-PROC-2014-02/12 Measurements in the final states with taus or with no-leptons are among the most chal- lenging as they are those with the smallest signal-to-background ratio. However, these final states are of particular interest as they can be important probes of new physics. Tau identification techniques and cross section measurements in top quark decays in these final states are discussed. The results, limited by systematical uncertainties, are consistent with standard model predictions, and are used to set stringent limits on new physics searches. The large data samples available at the Fermilab and at the Large Hadron Collider may help further improving the measurements. 1 Introduction Many years after its discovery [1, 2], the top quark still plays a fundamental role in the program of particle physics. The study of its properties has been extensively carried out in high energy hadron collisions. The production cross section has been measured in many different final states. Deviation of the cross section from the predicted standard model (SM) value may indicate new physics processes. Top quarks are predominantly produced in pairs, and in each top quark pair event, there are two W bosons and two bottom quarks. From the experimental point of view, top quark pair events are classified according to the decay mode of the two W bosons: the all-hadronic final state, in which both W bosons decay into quarks, the “lepton+jet” final state, in which one W decays leptonically and the other to quarks, and the dilepton final state, in which both W bosons decay leptonically.
    [Show full text]
  • Lecture 5: Quarks & Leptons, Mesons & Baryons
    Physics 3: Particle Physics Lecture 5: Quarks & Leptons, Mesons & Baryons February 25th 2008 Leptons • Quantum Numbers Quarks • Quantum Numbers • Isospin • Quark Model and a little History • Baryons, Mesons and colour charge 1 Leptons − − − • Six leptons: e µ τ νe νµ ντ + + + • Six anti-leptons: e µ τ νe̅ νµ̅ ντ̅ • Four quantum numbers used to characterise leptons: • Electron number, Le, muon number, Lµ, tau number Lτ • Total Lepton number: L= Le + Lµ + Lτ • Le, Lµ, Lτ & L are conserved in all interactions Lepton Le Lµ Lτ Q(e) electron e− +1 0 0 1 Think of Le, Lµ and Lτ like − muon µ− 0 +1 0 1 electric charge: − tau τ − 0 0 +1 1 They have to be conserved − • electron neutrino νe +1 0 0 0 at every vertex. muon neutrino νµ 0 +1 0 0 • They are conserved in every tau neutrino ντ 0 0 +1 0 decay and scattering anti-electron e+ 1 0 0 +1 anti-muon µ+ −0 1 0 +1 anti-tau τ + 0 −0 1 +1 Parity: intrinsic quantum number. − electron anti-neutrino ν¯e 1 0 0 0 π=+1 for lepton − muon anti-neutrino ν¯µ 0 1 0 0 π=−1 for anti-leptons tau anti-neutrino ν¯ 0 −0 1 0 τ − 2 Introduction to Quarks • Six quarks: d u s c t b Parity: intrinsic quantum number • Six anti-quarks: d ̅ u ̅ s ̅ c ̅ t ̅ b̅ π=+1 for quarks π=−1 for anti-quarks • Lots of quantum numbers used to describe quarks: • Baryon Number, B - (total number of quarks)/3 • B=+1/3 for quarks, B=−1/3 for anti-quarks • Strangness: S, Charm: C, Bottomness: B, Topness: T - number of s, c, b, t • S=N(s)̅ −N(s) C=N(c)−N(c)̅ B=N(b)̅ −N(b) T=N( t )−N( t )̅ • Isospin: I, IZ - describe up and down quarks B conserved in all Quark I I S C B T Q(e) • Z interactions down d 1/2 1/2 0 0 0 0 1/3 up u 1/2 −1/2 0 0 0 0 +2− /3 • S, C, B, T conserved in strange s 0 0 1 0 0 0 1/3 strong and charm c 0 0 −0 +1 0 0 +2− /3 electromagnetic bottom b 0 0 0 0 1 0 1/3 • I, IZ conserved in strong top t 0 0 0 0 −0 +1 +2− /3 interactions only 3 Much Ado about Isospin • Isospin was introduced as a quantum number before it was known that hadrons are composed of quarks.
    [Show full text]
  • Search for Rare Multi-Pion Decays of the Tau Lepton Using the Babar Detector
    SEARCH FOR RARE MULTI-PION DECAYS OF THE TAU LEPTON USING THE BABAR DETECTOR DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ruben Ter-Antonyan, M.S. * * * * * The Ohio State University 2006 Dissertation Committee: Approved by Richard D. Kass, Adviser Klaus Honscheid Adviser Michael A. Lisa Physics Graduate Program Junko Shigemitsu Ralph von Frese ABSTRACT A search for the decay of the τ lepton to rare multi-pion final states is performed + using the BABAR detector at the PEP-II asymmetric-energy e e− collider. The anal- 1 ysis uses 232 fb− of data at center-of-mass energies on or near the Υ(4S) resonance. + 0 In the search for the τ − 3π−2π 2π ν decay, we observe 10 events with an ex- ! τ +2:0 pected background of 6:5 1:4 events. In the absence of a signal, we calculate the − + 0 6 decay branching ratio upper limit (τ − 3π−2π 2π ν ) < 3:4 10− at the 90 % B ! τ × confidence level. This is more than a factor of 30 improvement over the previously established limit. In addition, we search for the exclusive decay mode τ − 2!π−ν ! τ + 0 +1:0 with the further decay of ! π−π π . We observe 1 event, expecting 0.4 0:4 back- ! − 7 ground events, and calculate the upper limit (τ − 2!π−ν ) < 5:4 10− at the B ! τ × 90 % confidence level. This is the first upper limit for this mode.
    [Show full text]
  • Neutrino Masses-How to Add Them to the Standard Model
    he Oscillating Neutrino The Oscillating Neutrino of spatial coordinates) has the property of interchanging the two states eR and eL. Neutrino Masses What about the neutrino? The right-handed neutrino has never been observed, How to add them to the Standard Model and it is not known whether that particle state and the left-handed antineutrino c exist. In the Standard Model, the field ne , which would create those states, is not Stuart Raby and Richard Slansky included. Instead, the neutrino is associated with only two types of ripples (particle states) and is defined by a single field ne: n annihilates a left-handed electron neutrino n or creates a right-handed he Standard Model includes a set of particles—the quarks and leptons e eL electron antineutrino n . —and their interactions. The quarks and leptons are spin-1/2 particles, or weR fermions. They fall into three families that differ only in the masses of the T The left-handed electron neutrino has fermion number N = +1, and the right- member particles. The origin of those masses is one of the greatest unsolved handed electron antineutrino has fermion number N = 21. This description of the mysteries of particle physics. The greatest success of the Standard Model is the neutrino is not invariant under the parity operation. Parity interchanges left-handed description of the forces of nature in terms of local symmetries. The three families and right-handed particles, but we just said that, in the Standard Model, the right- of quarks and leptons transform identically under these local symmetries, and thus handed neutrino does not exist.
    [Show full text]