Palinoestratigrafía, Paleoambientes Y Cambios Climáticos Durante El Cretácico Final Y Paleógeno De La Cuenca Del Grupo Salta, República Argentina

Total Page:16

File Type:pdf, Size:1020Kb

Palinoestratigrafía, Paleoambientes Y Cambios Climáticos Durante El Cretácico Final Y Paleógeno De La Cuenca Del Grupo Salta, República Argentina PROBIOL Tesis doctoral PALINOESTRATIGRAFÍA, PALEOAMBIENTES Y CAMBIOS CLIMÁTICOS DURANTE EL CRETÁCICO FINAL Y PALEÓGENO DE LA CUENCA DEL GRUPO SALTA, REPÚBLICA ARGENTINA Lic. Paula Liliana Narváez Director: Dr. Wolfgang Volkheimer (IANIGLA/CCT-CONICET-Mendoza) Co-directora: Dra. Rosa Marquillas (CONICET, Universidad Nacional de Salta) Mendoza, Junio de 2009 A mis padres AGRADECIMIENTOS Al Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) por concederme la beca doctoral que permitió la realización de esta tesis. Al Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (CCT- CONICET-Mendoza) por la infraestuctura y el equipamiento brindados para este estudio. Agradezco a mi director Dr. Wolfgang Volkheimer (Wolf) por proporcionarme las herramientas para incursionar en la palinología. Gracias por las enseñanzas y lecturas críticas de cada etapa y especialmente por el cariño y respeto en el trabajo. A mi codirectora Dra. Rosa Marquillas por la valiosa ayuda en los temas geológicos, el profesionalismo en los consejos y las acertadas correcciones que mejoraron el manuscrito. Al Dr José Salfity por las enseñanzas en el campo y su confianza desde un principio. Al Dr. Ignacio Sabino y al Geól. Martín Novara por la colección de muestras en el campo y ayuda con el contexto geológico de las localidades muestreadas. A Alejandra Moschetti por su amistad y asesoramiento constante en el procesamiento de las muestras en laboratorio. A la Dra. Mercedes Prámparo por su ayuda en la determinación de especies y lectura crítica de los capítulos de sistemática. A los técnicos del MEB MACN (Fabián Tricárico) y del LABMEM (Alejo Carreras, María del Rosario Torres y Esteban Crespo) por su dedicación y buena predisposición. A las Dras. V. Barreda, M. Quattrocchio y M. Prámparo por los comentarios realizados en la evaluación de esta tesis. Muchas gracias a mis compañeros de oficina (Susana, Flor, Elena y José) por la excelente predisposición para aclarar mis dudas en cuestiones de geología e informática. Muy especialmente: a mis queridos padres y hermanos por el amor incondicional. A Susana y Maxi por la paciencia y el cariño en todo momento. Estoy enormemente agradecida a todos mis seres queridos (familiares y amigos) por el afecto y apoyo de cada día sin el cual nada de esto hubiera sido posible. Los gastos fueron solventados con fondos de proyectos de la Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, PICT 12419 y 12492), del Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 2905 y 5222), y del Consejo de Investigación de la Universidad Nacional de Salta (CIUNSa, proyectos 876/4, 1220, 1281 y 1680). La presente tesis es una contribución al Instituto del Cenozoico (INCE) de la Universidad Nacional de Salta. i ÍNDICE RESUMEN………………………………………………………………………..……. 1 ABSTRACT…………………………………………………………………………..… 3 CAPÍTULO 1: INTRODUCCIÓN………………………………………………….… 5 CAPÍTULO 2: MATERIALES Y MÉTODOS………………………………………. 9 2.1. Trabajo de campo………………………………………………………….……… 10 2.2. Trabajo de laboratorio……………………………………………………..……… 10 2.3. Trabajo de gabinete………………………………………………………..……… 11 CAPÍTULO 3: MARCO GEOLÓGICO DE LA CUENCA DEL GRUPO SALTA………………………………………………………………… 14 3.1. Introducción………………………………………………………………………. 15 3.2. Subgrupo Pirgua…………………………………………………………………. 16 3.2.1. Formación La Yesera……………………………………………………… 16 3.2.2. Formación Las Curtiembres……………………………………………....... 17 3.2.3. Formación Los Blanquitos………………………………………………… 18 3.3. Subgrupo Balbuena………………………………………………………………. 18 3.3.1. Formación Lecho…………………………………………………………... 19 3.3.2. Formación Yacoraite……………………………………………….……… 20 3.3.3. Formaciones Olmedo/Tunal…………………………………………….…. 21 3.4. Subgrupo Santa Bárbara………………………………………………………… 22 3.4.1. Formación Mealla……………………………………………………….…. 22 3.4.2. Formación Maíz Gordo………………………………………………….… 23 3.4.3. Formación Lumbrera………………………………………………………. 24 CAPÍTULO 4: SUBGRUPO PIRGUA……………………………………………….. 29 4.1. Estudios palinológicos previos………………………………………………….…. 30 4.2. Formación La Yesera……………………………………………………………. 30 ii Índice Tesis Doctoral Paula Narváez 2009 4.2.1. Localidad de muestreo: valle de Pucará…………………………………… 30 4.2.2. Listado taxonómico de especies…………………………………………… 31 4.2.3. Descripciones sistemáticas………………………………………………… 32 4.2.4. Paleoambiente……………………………………………………..……….. 53 4.2.5. Edad…………………………………………………………………….….. 57 4.3. Formación Las Curtiembres………………………………………………….…. 59 4.3.1 Localidad de muestreo: quebrada Palo Seco…………………………….… 59 4.3.2. Listado taxonómico de especies…………………………………………… 60 4.3.3. Descripciones sistemáticas………………………………………………… 60 4.3.4. Paleoambiente………………………………………………….…….......… 70 4.3.5. Edad………………………………………………………………………... 71 4.4. Formación Los Blanquitos……………………………………………………..... 73 4.4.1 Localidad de muestreo: Vilches…………………………………………… 73 4.4.2. Listado taxonómico de especies…………………………………………… 73 4.4.3. Paleoambiente…………………………………………………………….... 74 4.4.4. Edad…………………………………………………………………….….. 74 CAPÍTULO 5: SUBGRUPO BALBUENA…………………………………………… 94 5.1. Estudios palinológicos previos…………………………………………………….. 95 5.2. Formación Lecho ……………………………………...………………………….. 96 5.3. Formación Yacoraite ……………………………………………………………. 96 5.3.1. Localidad de muestreo: Tres Cruces………………………………………. 96 5.3.2. Listado taxonómico de especies…………………………………………… 96 5.3.3. Descripciones sistemáticas………………………………………………… 96 5.3.4. Paleoambiente……………………………………………………………... 98 5.3.5. Edad……………………………………………………………………….. 99 5.4. Formaciones Olmedo/Tunal…………………………………………………….. 100 5.4.1 Formación Olmedo………………………………………………………. 100 5.4.1.1 Localidad de muestreo: Garabatal……………………………….. 100 5.4.1.2. Listado taxonómico de especies…………………………………. 100 5.4.1.3. Descripciones sistemáticas………………………………………. 101 5.4.1.4. Paleoambiente…………………………………………………… 119 iii Índice Tesis Doctoral Paula Narváez 2009 5.4.1.5. Edad…………………………………………………………….... 120 5.4.2 Formación Tunal……………………………………………………….… 122 5.4.2.1. Localidad de muestreo: quebrada El Chorro…………………….. 122 5.4.2.2. Listado taxonómico de especies…………………………………. 123 5.4.2.3. Descripciones sistemáticas…………………………………….… 124 5.4.2.4. Paleoambiente………………………………………………….… 144 5.4.2.5. Edad…………………………………………………………….... 146 CAPÍTULO 6: SUBGRUPO SANTA BÁRBARA…………………………………… 168 6.1. Formación Mealla……………………………………………….……………….. 169 6.1.1 Localidad de muestreo: Garabatal…………………….…………………… 169 6.1.2. Listado taxonómico de especies…………………………………………… 169 6.1.3. Paleoambiente……………………………………………………………... 170 6.1.4. Edad……………………………………………………………………….. 171 6.2. Formación Maíz Gordo………………………………………………………….. 172 6.2.1. Localidades de muestreo: Corralito y arroyo Las Tortugas……………….. 172 6.2.2. Listado taxonómico de especies…………………………………………… 172 6.2.3. Paleoambiente……………………………………………………………... 173 6.2.4. Edad………………………………………………………………….…….. 173 6.3. Formación Lumbrera……………………………………………………………. 174 6.3.1 Localidad de muestreo: Pampa Grande………………………………….… 174 6.3.2. Listado taxonómico de especies…………………………………………… 174 6.3.3. Paleoambiente……………………………………………………………... 175 6.3.4. Edad…………………………………………………………………….….. 175 CAPITULO 7: PALEOGEOGRAFÍA Y CAMBIOS CLIMÁTICOS……………… 177 7.1. Paleogeografía……………………………………………………………………. 178 7.1.1. Cretácico Temprano………………………………………………....…….. 178 7.1.2. Cretácico Tardío……………………………………………………....…… 179 7.1.3. Paleógeno………………………………………………………………….. 180 7.2. Cambios climáticos………………………………………………………………. 181 7.2.1. Cretácico………………………………………………………….………... 181 iv Índice Tesis Doctoral Paula Narváez 2009 7.2.2. Límite Cretácico-Paleógeno……………………………………………….. 183 7.2.3. Paleógeno………………………………………………………………….. 184 CAPÍTULO 8: PROVINCIAS PALINOFLORÍSTICAS…………………………… 186 8.1. Cretácico…………………………………………………………………………... 187 8.2. Paleógeno………………………………………………………………………….. 192 CAPÍTULO 9: CONCLUSIONES Y DISCUSIÓN………………………………….. 194 REFERENCIAS BIBLIOGRÁFICAS...…………………………………………....… 200 v Índice Tesis Doctoral Paula Narváez 2009 ÍNDICE DE ILUSTRACIONES: Tablas Tabla 1. Repositorio de muestras procesadas en el marco de la presente tesis……...…. 13 Tabla 2. Cuadro estratigráfico del Grupo Salta en la subcuenca de Alemanía……......... 25 Tabla 3. Formación La Yesera. Rangos estratigráficos de especies seleccionadas provenientes de valle de Pucará (Subcuenca de Brealito)………………………........…. 82 Tabla 4. Formaciones Olmedo y Tunal. Comparación de las abundancias relativas de los palinomorfos procedentes de tres localidades de la Formación Tunal (Corralito, Tilián y El Chorro) y de la Formación Olmedo (Garabatal)……….…. 153 Figuras Figura 1. Mapa del Grupo Salta mostrando las principales subcuencas y altos estructurales……………………………………………………………………….…...… 26 Figura 2. Columna simplificada del Grupo Salta indicando los paleoambientes de depósito……………………………………………………………………….…….... 27 Figura 3. Unidades estratigráficas que sobrepuestas a la Formación Yacoraite………... 28 Figura 4. Formación La Yesera. Mapa de ubicación de la localidad de muestreo…..... 75 Figura 5. Formación La Yesera. Columna estratigráfica de la Formación La Yesera en el valle del Pucará………………………………………………………...…. 76 Figura 6. Formación La Yesera. Porcentajes de especies y/o grupos presentes en las muestras del Miembro………………………………………………….……..….. 77 Figura 7. Formación La Yesera. Porcentajes de las distintas especies y/o grupos presentes en las muestras del Miembro Don Bartolo……………………………….….. 78 Figura 8. Formación Las Curtiembres. Mapa de ubicación…………….………..…... 79 Figura 9. Formación Las Curtiembres. Columna estratigráfica del Miembro Morales en la quebrada de Palo Seco………………………………………..……….… 80 Figura 10. Formación
Recommended publications
  • Late Mesozoic to Paleogene Stratigraphy of the Salar De Atacama Basin, Antofagasta, Northern Chile: Implications for the Tectonic Evolution of the Central Andes
    Late Mesozoic to Paleogene stratigraphy of the Salar de Atacama Basin, Antofagasta, Northern Chile: Implications for the tectonic evolution of the Central Andes Constantino Mpodozisa,T,Ce´sar Arriagadab, Matilde Bassoc, Pierrick Roperchd, Peter Cobbolde, Martin Reichf aServicio Nacional de Geologı´a y Minerı´a, now at Sipetrol. SA, Santiago, Chile bDepartamento de Geologı´a, Universidad de Chile, Santiago, Chile cServicio Nacional de Geologı´a y Minerı´a, Santiago, Chile dIRD/Dep. de Geologı´a, Universidad de Chile, Santiago, Chile eGe´osciences-Rennes (UMR6118 du CNRS), France fDepartment of Geological Sciences University of Michigan, United States Abstract The Salar de Atacama basin, the largest bpre-AndeanQ basin in Northern Chile, was formed in the early Late Cretaceous as a consequence of the tectonic closure and inversion of the Jurassic–Early Cretaceous Tarapaca´ back arc basin. Inversion led to uplift of the Cordillera de Domeyko (CD), a thick-skinned basement range bounded by a system of reverse faults and blind thrusts with alternating vergence along strike. The almost 6000-m-thick, upper Cretaceous to lower Paleocene sequences (Purilactis Group) infilling the Salar de Atacama basin reflects rapid local subsidence to the east of the CD. Its oldest outcropping unit (Tonel Formation) comprises more than 1000 m of continental red sandstones and evaporites, which began to accumulate as syntectonic growth strata during the initial stages of CD uplift. Tonel strata are capped by almost 3000 m of sandstones and conglomerates of western provenance, representing the sedimentary response to renewed pulses of tectonic shortening, which were deposited in alluvial fan, fluvial and eolian settings together with minor lacustrine mudstone (Purilactis Formation).
    [Show full text]
  • Appendix A. Supplementary Material
    Appendix A. Supplementary material Comprehensive taxon sampling and vetted fossils help clarify the time tree of shorebirds (Aves, Charadriiformes) David Cernˇ y´ 1,* & Rossy Natale2 1Department of the Geophysical Sciences, University of Chicago, Chicago 60637, USA 2Department of Organismal Biology & Anatomy, University of Chicago, Chicago 60637, USA *Corresponding Author. Email: [email protected] Contents 1 Fossil Calibrations 2 1.1 Calibrations used . .2 1.2 Rejected calibrations . 22 2 Outgroup sequences 30 2.1 Neornithine outgroups . 33 2.2 Non-neornithine outgroups . 39 3 Supplementary Methods 72 4 Supplementary Figures and Tables 74 5 Image Credits 91 References 99 1 1 Fossil Calibrations 1.1 Calibrations used Calibration 1 Node calibrated. MRCA of Uria aalge and Uria lomvia. Fossil taxon. Uria lomvia (Linnaeus, 1758). Specimen. CASG 71892 (referred specimen; Olson, 2013), California Academy of Sciences, San Francisco, CA, USA. Lower bound. 2.58 Ma. Phylogenetic justification. As in Smith (2015). Age justification. The status of CASG 71892 as the oldest known record of either of the two spp. of Uria was recently confirmed by the review of Watanabe et al. (2016). The younger of the two marine transgressions at the Tolstoi Point corresponds to the Bigbendian transgression (Olson, 2013), which contains the Gauss-Matuyama magnetostratigraphic boundary (Kaufman and Brigham-Grette, 1993). Attempts to date this reversal have been recently reviewed by Ohno et al. (2012); Singer (2014), and Head (2019). In particular, Deino et al. (2006) were able to tightly bracket the age of the reversal using high-precision 40Ar/39Ar dating of two tuffs in normally and reversely magnetized lacustrine sediments from Kenya, obtaining a value of 2.589 ± 0.003 Ma.
    [Show full text]
  • Titanosaur Trackways from the Late Cretaceous El Molino Formation of Bolivia (Cal Orck’O, Sucre)
    Annales Societatis Geologorum Poloniae (2018), vol. 88: 223 – 241. doi: https://doi.org/10.14241/asgp.2018.014 TITANOSAUR TRACKWAYS FROM THE LATE CRETACEOUS EL MOLINO FORMATION OF BOLIVIA (CAL ORCK’O, SUCRE) Christian A. MEYER1, Daniel MARTY2 & Matteo BELVEDERE3 1 Department of Environmental Sciences, University of Basel, Bernoullistrasse 32, CH-4056 Basel, Switzerland; e-mail: [email protected] 2 Museum of Natural History Basel, Augustinergasse 2, CH- 4000 Basel, Switzerland; e-mail: [email protected] 3 Office de la culture, Paléontologie A16, Hôtel des Halles, P.O. Box 64, CH-2900 Porrentruy 2, Switzerland; e-mail: [email protected] Meyer, C. A., Marty, D. & Belvedere, M., 2018. Titanosaur trackways from the Late Cretaceous El Mo- lino Formation of Bolivia (Cal Orck’o, Sucre). Annales Societatis Geologorum Poloniae, 88: 223 – 241. Abstract: The Cal Orck’o tracksite is exposed in a quarry wall, approximately 4.4 km NW of Sucre (Department Chuquisaca, Bolivia) in the Altiplano/Cordillera Oriental, in the El Molino Formation (Middle Maastrichtian). Fossiliferous oolitic limestones, associated with large, freshwater stromatolites and nine levels of dinosaur tracks in the El Molino Formation document an open lacustrine environment. The main track-bearing level is almost vertical with a surface area of ~ 65,000 m2. The high-resolution mapping of the site from 1998 to 2015 revealed a total of 12,092 individual dinosaur tracks in 465 trackways. Nine different morphotypes of dinosaur tracks have been documented. Amongst them are several trackways of theropods, orni- thopods, ankylosaurs and sauropods, with the latter group accounting for 26% of the trackways.
    [Show full text]
  • Analysis of Titanopodus Tracks from the Late Cretaceous of Mendoza, Argentina
    “main” — 2011/1/12 — 13:08 — page 1 — #1 Anais da Academia Brasileira de Ciências (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Speeds and stance of titanosaur sauropods: analysis of Titanopodus tracks from the Late Cretaceous of Mendoza, Argentina BERNARDO J. GONZÁLEZ RIGA Departamento de Paleontología, IANIGLA, CCT-CONICET-Mendoza, Avda. Ruiz Leal s/n, Parque Gral. San Martín (5500) Mendoza, Argentina/Instituto de Ciencias Básicas, Universidad Nacional de Cuyo Manuscript received on November 13, 2009; accepted for publication on June 21, 2010 ABSTRACT Speed estimations from trackways of Titanopodus mendozensis González Riga and Calvo provide information about the locomotion of titanosaurian sauropods that lived in South America during the Late Cretaceous. Titanopodus ichnites were found at Agua del Choique, a newly discovered track site in the Loncoche Formation, Late Campanian-Early Maastrichtian of Mendoza, Argentina. This speed study follows the hypothesis of dynamic similarity proposed by Alexander. As a refinement of this method, a complementary equation is presented here based on an articulated titanosaurian specimen collected in strata that are regarded as correlative to those that have yielded Titanopodus tracks (Allen Formation, Neuquén Basin). This analysis indicates that hip height can be estimated as 4.586 times the length of the pes track in derived titanosaurs. With an estimation of the hip height and the stride measurements, the speed is calculated. The study of two wide-gauge trackways indicates that Titanopodus ichnites were produced by medium- sized titanosaurs (hip height of 211-229 cm) that walked at 4.7-4.9 km/h towards the south and southwest, following, in part, a sinuous pathway.
    [Show full text]
  • O Regist Regi Tro Fós Esta Istro De Sil De C Ado Da a E
    UNIVERSIDADE FEDERAL DO RIO GRANDE DOO SUL INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS O REGISTRO FÓSSIL DE CROCODILIANOS NA AMÉRICA DO SUL: ESTADO DA ARTE, ANÁLISE CRÍTICAA E REGISTRO DE NOVOS MATERIAIS PARA O CENOZOICO DANIEL COSTA FORTIER Porto Alegre – 2011 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS O REGISTRO FÓSSIL DE CROCODILIANOS NA AMÉRICA DO SUL: ESTADO DA ARTE, ANÁLISE CRÍTICA E REGISTRO DE NOVOS MATERIAIS PARA O CENOZOICO DANIEL COSTA FORTIER Orientador: Dr. Cesar Leandro Schultz BANCA EXAMINADORA Profa. Dra. Annie Schmalz Hsiou – Departamento de Biologia, FFCLRP, USP Prof. Dr. Douglas Riff Gonçalves – Instituto de Biologia, UFU Profa. Dra. Marina Benton Soares – Depto. de Paleontologia e Estratigrafia, UFRGS Tese de Doutorado apresentada ao Programa de Pós-Graduação em Geociências como requisito parcial para a obtenção do Título de Doutor em Ciências. Porto Alegre – 2011 Fortier, Daniel Costa O Registro Fóssil de Crocodilianos na América Do Sul: Estado da Arte, Análise Crítica e Registro de Novos Materiais para o Cenozoico. / Daniel Costa Fortier. - Porto Alegre: IGEO/UFRGS, 2011. [360 f.] il. Tese (doutorado). - Universidade Federal do Rio Grande do Sul. Instituto de Geociências. Programa de Pós-Graduação em Geociências. Porto Alegre, RS - BR, 2011. 1. Crocodilianos. 2. Fósseis. 3. Cenozoico. 4. América do Sul. 5. Brasil. 6. Venezuela. I. Título. _____________________________ Catalogação na Publicação Biblioteca Geociências - UFRGS Luciane Scoto da Silva CRB 10/1833 ii Dedico este trabalho aos meus pais, André e Susana, aos meus irmãos, Cláudio, Diana e Sérgio, aos meus sobrinhos, Caio, Júlia, Letícia e e Luíza, à minha esposa Ana Emília, e aos crocodilianos, fósseis ou viventes, que tanto me fascinam.
    [Show full text]
  • Speeds and Stance of Titanosaur Sauropods: Analysis of Titanopodus Tracks from the Late Cretaceous of Mendoza, Argentina
    “main” — 2011/2/10 — 16:13 — page 279 — #1 Anais da Academia Brasileira de Ciências (2011) 83(1): 279-290 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Speeds and stance of titanosaur sauropods: analysis of Titanopodus tracks from the Late Cretaceous of Mendoza, Argentina BERNARDO J. GONZÁLEZ RIGA Departamento de Paleontología, IANIGLA, CCT-CONICET-Mendoza, Avda. Ruiz Leal s/n, Parque Gral. San Martín (5500) Mendoza, Argentina/Instituto de Ciencias Básicas, Universidad Nacional de Cuyo Manuscript received on November 13, 2009; accepted for publication on June 21, 2010 ABSTRACT Speed estimations from trackways of Titanopodus mendozensis González Riga and Calvo provide information about the locomotion of titanosaurian sauropods that lived in South America during the Late Cretaceous. Titanopodus ichnites were found at Agua del Choique, a newly discovered track site in the Loncoche Formation, Late Campanian-Early Maastrichtian of Mendoza, Argentina. This speed study follows the hypothesis of dynamic similarity proposed by Alexander. As a refinement of this method, a complementary equation is presented here based on an articulated titanosaurian specimen collected in strata that are regarded as correlative to those that have yielded Titanopodus tracks (Allen Formation, Neuquén Basin). This analysis indicates that hip height can be estimated as 4.586 times the length of the pes track in derived titanosaurs. With an estimation of the hip height and the stride measurements, the speed is calculated. The study of two wide-gauge trackways indicates that Titanopodus ichnites were produced by medium- sized titanosaurs (hip height of 211-229 cm) that walked at 4.7-4.9 km/h towards the south and southwest, following, in part, a sinuous pathway.
    [Show full text]
  • The Growth of the Central Andes, 22°S–26°S
    Downloaded from memoirs.gsapubs.org on January 15, 2015 The Geological Society of America Memoir 212 2015 The growth of the central Andes, 22°S–26°S J. Quade* M.P. Dettinger B. Carrapa P. DeCelles K.E. Murray Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA K.W. Huntington Department of Earth and Space Sciences, University of Washington, Seattle, Washington 98195-1310, USA A. Cartwright Mintec, Inc., 3544 East Fort Lowell Road, Tucson, Arizona 85716, USA R.R. Canavan Department of Geology, University of Wyoming, Laramie, Wyoming 82071, USA G. Gehrels Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA M. Clementz Department of Geology, University of Wyoming, Laramie, Wyoming 82071, USA ABSTRACT We synthesize geologic observations with new isotopic evidence for the timing and magnitude of uplift for the central Andes between 22°S and 26°S since the Paleocene. To estimate paleoelevations, we used the stable isotopic composition of carbonates and volcanic glass, combined with another paleoelevation indicator for the central Andes: the distribution of evaporites. Paleoelevation reconstruction using clumped isotope paleothermometry failed due to resetting during burial. The Andes at this latitude rose and broadened eastward in three stages during the Cenozoic. The fi rst, in what is broadly termed the “Incaic” orogeny, ended by the late Eocene, when magmatism and deformation had elevated to ≥4 km the bulk (~50%) of what is now the western and central Andes. The second stage witnessed the gradual building of the easternmost Puna and Eastern Cordillera, starting with deforma- tion as early as 38 Ma, to >3 km by no later than 15 Ma.
    [Show full text]
  • ABSTRACT BOOK a Cura Della Società Geologica Italiana
    https://doi.org/10.3301/ABSGI.2019.04 Milano, 2-5 July 2019 ABSTRACT BOOK a cura della Società Geologica Italiana 3rd International Congress on Stratigraphy GENERAL CHAIRS Marco Balini, Università di Milano, Italy Elisabetta Erba, Università di Milano, Italy - past President Società Geologica Italiana 2015-2017 SCIENTIFIC COMMITTEE Adele Bertini, Peter Brack, William Cavazza, Mauro Coltorti, Piero Di Stefano, Annalisa Ferretti, Stanley C. Finney, Fabio Florindo, Fabrizio Galluzzo, Piero Gianolla, David A.T. Harper, Martin J. Head, Thijs van Kolfschoten, Maria Marino, Simonetta Monechi, Giovanni Monegato, Maria Rose Petrizzo, Claudia Principe, Isabella Raffi, Lorenzo Rook ORGANIZING COMMITTEE The Organizing Committee is composed by members of the Department of Earth Sciences “Ardito Desio” and of the Società Geologica Italiana Lucia Angiolini, Cinzia Bottini, Bernardo Carmina, Domenico Cosentino, Fabrizio Felletti, Daniela Germani, Fabio M. Petti, Alessandro Zuccari FIELD TRIP COMMITTEE Fabrizio Berra, Mattia Marini, Maria Letizia Pampaloni, Marcello Tropeano ABSTRACT BOOK EDITORS Fabio M. Petti, Giulia Innamorati, Bernardo Carmina, Daniela Germani Papers, data, figures, maps and any other material published are covered by the copyright own by the Società Geologica Italiana. DISCLAIMER: The Società Geologica Italiana, the Editors are not responsible for the ideas, opinions, and contents of the papers published; the authors of each paper are responsible for the ideas opinions and con- tents published. La Società Geologica Italiana, i curatori scientifici non sono responsabili delle opinioni espresse e delle affermazioni pubblicate negli articoli: l’autore/i è/sono il/i solo/i responsabile/i. © Società Geologica Italiana, Roma 2019 STRATI 2019 ABSTRACT INDEX ST1.1 History of Stratigraphy in Italian environments (17th – 20th centuries) ........................................
    [Show full text]
  • Large Theropod Dinosaur Footprint Associations in Western Gondwana: Behavioural and Palaeogeographic Implications
    Large theropod dinosaur footprint associations in western Gondwana: Behavioural and palaeogeographic implications KAREN MORENO, SILVINA DE VALAIS, NICOLÁS BLANCO, ANDREW J. TOMLINSON, JAVIER JACAY, and JORGE O. CALVO Moreno, K., De Valais, S., Blanco, N., Tomlinson, A.J., Jacay, J., and Calvo, J.O. 2012. Large theropod dinosaur footprint associations in western Gondwana: Behavioural and palaeogeographic implications. Acta Palaeontologica Polonica 57 (1): 73–83. In modern terrestrial ecosystems, the population size of large predators is low, and a similar pattern has usually been as− sumed for dinosaurs. However, fossil finds of monospecific, large theropod accumulations suggest that population dynam− ics were more complex. Here, we report two Early Cretaceous tracksites dominated by large theropod footprints, in Querulpa Chico (Peru) and Chacarilla (Chile). The two sites correspond to distinct depositional environments—tidal ba− sin/delta (Querulpa Chico) and meandering river (Chacarilla)—with both subject to extensive arid or semiarid palaeo− climatic conditions. Although most trackways show no preferred orientation, a clear relationship between two trackmakers is observed in one instance. This observation, coupled with the high abundance of trackways belonging to distinct large theropods, and the exclusion of tracks of other animals, suggests some degree of grouping behaviour. The presence of fresh− water sources in a dry climate and perhaps social behaviour such as pair bonding may have promoted interactions between large carnivores. Further, the occurrence of these two tracksites confirms that large theropod dinosaurs, possibly spino− saurids and/or carcharodontosaurids, existed on the western margin of Gondwana as early as the earliest Cretaceous. Key words: Theropoda, footprints, behaviour, palaeogeography, Early Cretaceous, Gondwana, Chile, Peru.
    [Show full text]
  • Carbon and Oxygen Isotopes of Maastrichtian–Danian Shallow Marine Carbonates: Yacoraite Formation, Northwestern Argentina
    Journal of South American Earth Sciences 23 (2007) 304–320 www.elsevier.com/locate/jsames Carbon and oxygen isotopes of Maastrichtian–Danian shallow marine carbonates: Yacoraite Formation, northwestern Argentina Rosa Marquillas a,*, Ignacio Sabino b, Alcides Nobrega Sial c, Cecilia del Papa a, Valderez Ferreira c, Stephen Matthews d a CONICET-Universidad Nacional de Salta, Buenos Aires 177, 4400 Salta, Argentina b Universidad Nacional de Salta-CIUNSa, Buenos Aires 177, 4400 Salta, Argentina c NEG–LABISE, Department of Geology, UFPE, C.P. 7852, Recife 50670-000, Brazil d SERNAGEOMIN, CC 10465, Santiago, Chile Abstract The Maastrichtian–Danian limestones of the Yacoraite Formation (northwestern Argentina) show carbon and oxygen isotopic values consistent with shallow marine conditions. The members of the formation respond to different sedimentary environments and are char- acterised by distinctive stable isotopes and geochemistry. The basal Amblayo Member is composed of high-energy dolomitic limestones and limestones with positive isotopic values (+2& d13C, +2& d18O). The top of the member reveals an isotopic shift of d13C(À5&) and d18O(À10&), probably related to a descent in the sea level. The sandy Gu¨emes Member has isotopically negative (À2& d13C, À1& d18O) limestones, principally controlled by water mixing, decreased organic productivity, and compositional changes in the car- bonates. The isotopically lighter limestones are calcitic, with a greater terrigenous contribution and different geochemical composition (high Si–Mn–Fe–Na, low Ca–Mg–Sr). These isotopic and lithological changes relate to the Cretaceous–Palaeogene transition. The Ale- manı´a Member, composed of dolomitic limestones and pelites, represents a return to marine conditions and shows a gradual increase in isotopic values, reaching values similar to those of the Amblayo Member.
    [Show full text]
  • Sedimentary, Structural, and Provenance Record of the Cianzo Basin, Puna Plateau-Eastern Cordillera Boundary, NW Argentina
    Copyright by Benjamin Charles Siks 2011 The Thesis Committee for Benjamin Charles Siks Certifies that this is the approved version of the following thesis: Sedimentary, structural, and provenance record of the Cianzo basin, Puna plateau-Eastern Cordillera boundary, NW Argentina APPROVED BY SUPERVISING COMMITTEE: Supervisor: Brian K. Horton Ronald J. Steel Kitty Milliken Sedimentary, structural, and provenance record of the Cianzo basin, Puna plateau-Eastern Cordillera boundary, NW Argentina by Benjamin Charles Siks, B.S. Geo. Thesis Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Master of Science in Geological Sciences The University of Texas at Austin May 2011 Acknowledgements This work could not have been completed without the support of my future wife, Ashley Bens, my mother Debbie Stann, my father Jan Siks, my siblings, my supervisor Dr. Brian Horton, my committee members Dr. Ron Steel and Dr. Kitty Milliken, as well as the members of my research group, and finally the loyal support of my border collie Pippin. iv Abstract Sedimentary, structural, and provenance record of the Cianzo basin, Puna plateau-Eastern Cordillera boundary, NW Argentina Benjamin Charles Siks, MS GeoSci The University of Texas at Austin, 2011 Supervisor: Brian K. Horton The fault-bounded Cianzo basin represents a Cenozoic intermontane depocenter between the Puna plateau and Eastern Cordillera of the central Andean fold-thrust belt in northern Argentina. New characterizations of fold-thrust structure, nonmarine sedimentation, and sediment provenance for the shortening-induced Cianzo basin at 23°S help constrain the origin, interconnectedness, and subsequent uplift and exhumation of the basin, which may serve as an analogue for other intermontane hinterland basins in the Andes.
    [Show full text]
  • EGU2018-8280-2, 2018 EGU General Assembly 2018 © Author(S) 2018
    Geophysical Research Abstracts Vol. 20, EGU2018-8280-2, 2018 EGU General Assembly 2018 © Author(s) 2018. CC Attribution 4.0 license. Depositional Environment Interpretation from Organofacies Characterization for Yacoraite Fm. outcrop samples, Cretaceous Salta Basin - Argentina Ricardo Ruiz (1,2), Robert Ondrak (2), Brian Horsfield (2), and Eduardo Rossello (3) (1) Institut für Erd- und Umweltwissenschaften, Universität Potdam, Potsdam, Germany, (2) Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences, Potsdam; Section 3.2: Organic Geochemistry, Potsdam, Germany, (3) CONICET-FCEN, University of Buenos Aires, Buenos Aire,s Argentina The Yacoraite Formation (Maastrichtian-Danian) is one of the main source rocks in North-West Argentina in the sedimentary basins in Salta and Jujuy provinces. It was deposited following Lower Cretaceous rifting, represent- ing the last Cretaceous marine ingression although locally evidence has been found for lacustrine depositional conditions. Here we show preliminary results for depositional environment characterization of Tres Cruces and Metan-Alemania subbasins, based on the organic geochemistry of rock samples and their extracts. Depending on its depositional environment, the Yacoraite Formation exhibits a wide range of organic content varying from poor up to rich (up to 7% TOC). It contains kerogen Types II and II/III with low sulphur content, consistent with marine organic matter. The presence of Type III kerogen observed in several samples indicates an input of terrestrial organic matter probably related to periods of sea level fall. Biomarker distributions, like the relative abundance of C27-C29 steranes, have been widely used to differentiate between marine, lacustrine or terrestrial depositional environments. The sterane distribution of our samples indi- cates an open marine depositional environment for the Yacoraite Fm.
    [Show full text]