The ANU Wifes Supernova Programme (AWSNAP)

Total Page:16

File Type:pdf, Size:1020Kb

The ANU Wifes Supernova Programme (AWSNAP) Publications of the Astronomical Society of Australia (PASA), Vol. 33, e055, 29 pages (2016). © Astronomical Society of Australia 2016; published by Cambridge University Press. doi:10.1017/pasa.2016.47 The ANU WiFeS SuperNovA Programme (AWSNAP) Michael J. Childress1,2,3,12, Brad E. Tucker1,2, Fang Yuan1,2, Richard Scalzo1, Ashley Ruiter1,2, Ivo Seitenzahl1,2, Bonnie Zhang1, Brian Schmidt1, Borja Anguiano4, Suryashree Aniyan1, Daniel D. R. Bayliss1,5, Joao Bento1, Michael Bessell1, Fuyan Bian1, Rebecca Davies1, Michael Dopita1, Lisa Fogarty6, Amelia Fraser-McKelvie7,8, Ken Freeman1, Rajika Kuruwita1, Anne M. Medling1, Simon J. Murphy1,SimonJ.Murphy6,9, Matthew Owers4,10, Fiona Panther1,2, Sarah M. Sweet1, Adam D. Thomas1 and George Zhou11,1 1Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia 2ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Canberra, ACT, Australia 3School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK 4Department of Physics and Astronomy, Macquarie University, NSW 2109, Australia 5Observatoire Astronomique de l’Université de Genève, 51 ch. des Maillettes, 1290 Versoix, Switzerland 6Sydney Institute for Astronomy (SIfA), School of Physics, The University of Sydney, NSW 2006, Australia 7School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia 8Monash Centre for Astrophysics (MoCA), Monash University, Clayton, Victoria 3800, Australia 9Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark 10Australian Astronomical Observatory, PO Box 915, North Ryde, NSW 1670, Australia 11Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138, USA 12Email: [email protected] (RECEIVED July 11, 2016; ACCEPTED October 5, 2016) Abstract This paper presents the first major data release and survey description for the ANU WiFeS SuperNovA Programme. ANU WiFeS SuperNovA Programme is an ongoing supernova spectroscopy campaign utilising the Wide Field Spectrograph on the Australian National University 2.3-m telescope. The first and primary data release of this programme (AWSNAP-DR1) releases 357 spectra of 175 unique objects collected over 82 equivalent full nights of observing from 2012 July to 2015 August. These spectra have been made publicly available via the WISEREP supernova spectroscopy repository. We analyse the ANU WiFeS SuperNovA Programme sample of Type Ia supernova spectra, including measurements of narrow sodium absorption features afforded by the high spectral resolution of the Wide Field Spectrograph instrument. In some cases, we were able to use the integral-field nature of the Wide Field Spectrograph instrument to measure the rotation velocity of the SN host galaxy near the SN location in order to obtain precision sodium absorption velocities. We also present an extensive time series of SN 2012dn, including a near-nebular spectrum which both confirms its ‘super-Chandrasekhar’ status and enables measurement of the sub-solar host metallicity at the SN site. Keywords: supernovae: general – supernovae: individual: (SN 2012dn) 1 INTRODUCTION ously, these surveys have discovered hundreds of supernovae (SNe) of ‘traditional’ types (see Filippenko 1997, for a re- In the last decade, wide-field extragalactic transient view), enabling statistical analyses of the properties of these surveys—such as the Palomar Transient Factory (PTF; SNe. Rau et al. 2009; Law et al. 2009), the Panoramic Sur- Whilst imaging surveys have provided discovery and light vey Telescope and Rapid Response System (PanSTARRS; curves for this wealth of new transients, complementary spec- Kaiser et al. 2010), the Catalina Real-time Transient Sur- troscopy surveys have provided the critical insight into the vey (CRTS; Drake et al. 2009), the Texas Supernova Search physical origins of these events. Numerous supernova spec- (Quimby 2006; Yuan 2010), and the All-Sky Automated troscopy surveys have released thousands of high-quality Survey for Supernovae (ASAS-SN; Shappee et al. 2014; spectra of nearby SNe into the public domain (Matheson Holoien et al. 2016)—have revolutionised our understand- et al. 2008; Blondin et al. 2012; Silverman et al. 2012c;Fo- ing of the myriad ways in which stars explode through the latelli et al. 2013; Modjaz et al. 2014). These surveys have discovery of new classes of exotic transients. Simultane- frequently been dedicated to the spectroscopic follow-up of 1 Downloaded from https://www.cambridge.org/core. IP address: 43.130.79.121, on 08 Oct 2021 at 05:24:40, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/pasa.2016.47 2 Childress et al. Type Ia supernovae (SNe Ia) which, due to their rates and lu- Table 1. Details of WiFeS gratings. minosities, dominate any magnitude-limited imaging survey. λ λ Such surveys have revealed that photometrically similar SNe Grating min max Pixel size Resolution can still exhibit diversity of spectroscopic behaviour, indicat- B3000 3 500 A˚ 5 700 A0.77˚ A1.5˚ A˚ ing spectra remain a critical tool for revealing the full nature R3000 5 400 A˚ 9 570 A1.25˚ A2.5˚ A˚ of the supernova progenitors (particularly for SNe Ia). Addi- R7000 5 400 A˚ 7 020 A0.44˚ A0.9˚ A˚ tionally, spectra remain critical for supernova classification— particularly at early phases when the full photometric evolu- tion has yet to be revealed. Such early classifications then inform the use of additional SN follow-up facilities, includ- 2 OBSERVATIONS AND DATA DESCRIPTION ing those operating outside the optical window. Recently, the Public ESO Spectroscopic Survey for Tran- Observations for AWSNAP were conducted with the sient Objects (PESSTO; Smartt et al. 2015) began a multi- WiFeS—(Dopita et al. 2007, 2010) on the ANU 2.3-m tele- year programme on the NTT 3.6-m telescope in Chile, with scope at Siding Spring Observatory in northern New South the goal of obtaining high-quality spectral time series for Wales, Australia. Observing nights were classically sched- roughly 100 transients (of all kinds) to be released to the uled with a single night of observing every 8–15 d. On some public. This survey has already released hundreds of spectra occasions, special objects of interest were observed during in its first two annual data releases, and continues to release all non-AWSNAP nights. A full list of the AWSNAP transient SN classification spectra within typically1dfromobserva- spectra is presented in Table A3 in Appendix A. In the sec- tion. Other ongoing SN spectroscopy programmes, such as tions that follow, we describe the processing of the WiFeS the Asiago Supernova Programme (Tomasella et al. 2014), data, then characterise both the long-term performance of the also make important contributions to the transient com- WiFeS instrument and observing conditions at Siding Spring. munity through timely SN classification and spectroscopy releases. 2.1. Data reduction and supernova spectrum Here, we describe our ongoing spectroscopy programme extraction AWSNAP—the ANU WiFeS SuperNovAProgramme— which uses the Wide Field Spectrograph (WiFeS; Dopita et al. The WiFeS instrument is an image-slicing integral field spec- 2007, 2010) on the Australian National University (ANU) trograph with a wide 25 arcsec × 38 arcsec field of view. 2.3-m telescope at Siding Spring Observatory in Australia. For AWSNAP, this frequently provided simultaneous inte- In this paper, we describe the data processing procedures for gral field observations of SNe and their host galaxies. The this ongoing programme, and describe the first AWSNAP WiFeS image slicer breaks the field of view into 25 ‘slitlets’ data release (AWSNAP DR1) comprising 357 spectra of 175 of width 1 arcsec, which then pass through a dichroic beam- supernova of various types obtained during 82 classically splitter and volume phase holographic (VPH) gratings before scheduled observing nights over a 3-yr period from 2012 arriving at 4k × 4k CCD detectors. AWSNAP observations July to 2015 August. Most of these spectra have been re- were always conducted with a CCD binning of 2 in the ver- leased publicly via the Weizmann Interactive Supernova data tical direction—this sets the vertical spatial scale of the de- REPository (WISeREP1— Yaron & Gal-Yam 2012), with the tector to be 1 arcsec, yielding final integral field elements (or remainder set to be released within the next year as part of ‘spaxels’) of size 1 arcsec × 1 arcsec. Typically seeing at forthcoming PESSTO papers. This programme will continue Siding Spring is roughly 2 arcsec (see Section 2.3). to observe SNe of interest and classify SN discoveries from The VPH gratings utilised by WiFeS provide a higher transient searches such as the new SkyMapper Transients wavelength resolution than traditional glass gratings. The Survey (Keller et al. 2007). We aim to release future SN clas- low- and high-resolution gratings provide resolutions of R = sification spectra from AWSNAP publicly via WISeREP in 3 000 and R = 7 000, respectively, yielding velocity resolu- −1 parallel with any classification announcements. tions of up to σv ∼ 45 km s which is ideal for observ- This paper is organised as follows. Section 2 describes the ing nebular emission lines from ionised regions in galax- WiFeS data processing and SN spectrum extraction proce- ies. For SNe, this can reveal narrow absorption features (see dures. Section 3 presents general properties of our SN sam- Section 4.2) from circumstellar material (CSM) which are ple and compares AWSNAP DR1 to other public SN spectra typically smeared out by lower resolution spectrographs. releases. In Section 4, we present some analysis of the prop- AWSNAP observations were generally conducted with the erties of the SNe Ia in our sample, including measurement of lower resolution B3000 and R3000 gratings for the blue and narrow sodium absorption features afforded by the interme- red arms of the spectrograph, respectively, with the RT560 diate resolution of the WiFeS spectrograph. Some concluding dichroic beamsplitter. Occasionally, the R7000 grating was remarks follow in Section 5.
Recommended publications
  • Hot Interstellar Matter in Elliptical Galaxies
    Hot Interstellar Matter in Elliptical Galaxies For further volumes: http://www.springer.com/series/5664 Astrophysics and Space Science Library EDITORIAL BOARD Chairman W. B. BURTON, National Radio Astronomy Observatory, Charlottesville, Virginia, U.S.A. ([email protected]); University of Leiden, The Netherlands ([email protected]) F. BERTOLA, University of Padua, Italy J. P. CASSINELLI, University of Wisconsin, Madison, U.S.A. C. J. CESARSKY, Commission for Atomic Energy, Saclay, France P. EHRENFREUND, Leiden University, The Netherlands O. ENGVOLD, University of Oslo, Norway A. HECK, Strasbourg Astronomical Observatory, France E. P. J. VAN DEN HEUVEL, University of Amsterdam, The Netherlands V. M. KASPI, McGill University, Montreal, Canada J. M. E. KUIJPERS, University of Nijmegen, The Netherlands H. VAN DER LAAN, University of Utrecht, The Netherlands P. G. MURDIN, Institute of Astronomy, Cambridge, UK F. PACINI, Istituto Astronomia Arcetri, Firenze, Italy V. RADHAKRISHNAN, Raman Research Institute, Bangalore, India B . V. S O M OV, Astronomical Institute, Moscow State University, Russia R. A. SUNYAEV, Space Research Institute, Moscow, Russia Dong-Woo Kim Silvia Pellegrini Editors Hot Interstellar Matter in Elliptical Galaxies 123 Editors Dong-Woo Kim Harvard Smithsonian Center for Astrophysics Garden Street 60 02138 Cambridge Massachusetts USA [email protected] Silvia Pellegrini Dipartimento di Astronomia Universita` di Bologna Via Ranzani 1 40127 Bologna Italy [email protected] Cover figure: Chandra image of NGC 7619. From Kim et al. (2008). Reproduced by permission of the AAS. ISSN 0067-0057 ISBN 978-1-4614-0579-5 e-ISBN 978-1-4614-0580-1 DOI 10.1007/978-1-4614-0580-1 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2011938147 c Springer Science+Business Media, LLC 2012 This work is subject to copyright.
    [Show full text]
  • THE 1000 BRIGHTEST HIPASS GALAXIES: H I PROPERTIES B
    The Astronomical Journal, 128:16–46, 2004 July A # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 1000 BRIGHTEST HIPASS GALAXIES: H i PROPERTIES B. S. Koribalski,1 L. Staveley-Smith,1 V. A. Kilborn,1, 2 S. D. Ryder,3 R. C. Kraan-Korteweg,4 E. V. Ryan-Weber,1, 5 R. D. Ekers,1 H. Jerjen,6 P. A. Henning,7 M. E. Putman,8 M. A. Zwaan,5, 9 W. J. G. de Blok,1,10 M. R. Calabretta,1 M. J. Disney,10 R. F. Minchin,10 R. Bhathal,11 P. J. Boyce,10 M. J. Drinkwater,12 K. C. Freeman,6 B. K. Gibson,2 A. J. Green,13 R. F. Haynes,1 S. Juraszek,13 M. J. Kesteven,1 P. M. Knezek,14 S. Mader,1 M. Marquarding,1 M. Meyer,5 J. R. Mould,15 T. Oosterloo,16 J. O’Brien,1,6 R. M. Price,7 E. M. Sadler,13 A. Schro¨der,17 I. M. Stewart,17 F. Stootman,11 M. Waugh,1, 5 B. E. Warren,1, 6 R. L. Webster,5 and A. E. Wright1 Received 2002 October 30; accepted 2004 April 7 ABSTRACT We present the HIPASS Bright Galaxy Catalog (BGC), which contains the 1000 H i brightest galaxies in the southern sky as obtained from the H i Parkes All-Sky Survey (HIPASS). The selection of the brightest sources is basedontheirHi peak flux density (Speak k116 mJy) as measured from the spatially integrated HIPASS spectrum. 7 ; 10 The derived H i masses range from 10 to 4 10 M .
    [Show full text]
  • Winter Constellations
    Winter Constellations *Orion *Canis Major *Monoceros *Canis Minor *Gemini *Auriga *Taurus *Eradinus *Lepus *Monoceros *Cancer *Lynx *Ursa Major *Ursa Minor *Draco *Camelopardalis *Cassiopeia *Cepheus *Andromeda *Perseus *Lacerta *Pegasus *Triangulum *Aries *Pisces *Cetus *Leo (rising) *Hydra (rising) *Canes Venatici (rising) Orion--Myth: Orion, the great ​ ​ hunter. In one myth, Orion boasted he would kill all the wild animals on the earth. But, the earth goddess Gaia, who was the protector of all animals, produced a gigantic scorpion, whose body was so heavily encased that Orion was unable to pierce through the armour, and was himself stung to death. His companion Artemis was greatly saddened and arranged for Orion to be immortalised among the stars. Scorpius, the scorpion, was placed on the opposite side of the sky so that Orion would never be hurt by it again. To this day, Orion is never seen in the sky at the same time as Scorpius. DSO’s ● ***M42 “Orion Nebula” (Neb) with Trapezium A stellar ​ ​ ​ nursery where new stars are being born, perhaps a thousand stars. These are immense clouds of interstellar gas and dust collapse inward to form stars, mainly of ionized hydrogen which gives off the red glow so dominant, and also ionized greenish oxygen gas. The youngest stars may be less than 300,000 years old, even as young as 10,000 years old (compared to the Sun, 4.6 billion years old). 1300 ly. ​ ​ 1 ● *M43--(Neb) “De Marin’s Nebula” The star-forming ​ “comma-shaped” region connected to the Orion Nebula. ● *M78--(Neb) Hard to see. A star-forming region connected to the ​ Orion Nebula.
    [Show full text]
  • Arxiv:2009.04090V2 [Astro-Ph.GA] 14 Sep 2020
    Research in Astronomy and Astrophysics manuscript no. (LATEX: tikhonov˙Dorado.tex; printed on September 15, 2020; 1:01) Distance to the Dorado galaxy group N.A. Tikhonov1, O.A. Galazutdinova1 Special Astrophysical Observatory, Nizhnij Arkhyz, Karachai-Cherkessian Republic, Russia 369167; [email protected] Abstract Based on the archival images of the Hubble Space Telescope, stellar photometry of the brightest galaxies of the Dorado group:NGC 1433, NGC1533,NGC1566and NGC1672 was carried out. Red giants were found on the obtained CM diagrams and distances to the galaxies were measured using the TRGB method. The obtained values: 14.2±1.2, 15.1±0.9, 14.9 ± 1.0 and 15.9 ± 0.9 Mpc, show that all the named galaxies are located approximately at the same distances and form a scattered group with an average distance D = 15.0 Mpc. It was found that blue and red supergiants are visible in the hydrogen arm between the galaxies NGC1533 and IC2038, and form a ring structure in the lenticular galaxy NGC1533, at a distance of 3.6 kpc from the center. The high metallicity of these stars (Z = 0.02) indicates their origin from NGC1533 gas. Key words: groups of galaxies, Dorado group, stellar photometry of galaxies: TRGB- method, distances to galaxies, galaxies NGC1433, NGC 1533, NGC1566, NGC1672 1 INTRODUCTION arXiv:2009.04090v2 [astro-ph.GA] 14 Sep 2020 A concentration of galaxies of different types and luminosities can be observed in the southern constella- tion Dorado. Among them, Shobbrook (1966) identified 11 galaxies, which, in his opinion, constituted one group, which he called “Dorado”.
    [Show full text]
  • The Formation and Evolution of S0 Galaxies
    The Formation and Evolution of S0 Galaxies Alejandro P. Garc´ıa Bedregal Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy January 2007 A mi Abu y Tata, Angelines y Guillermo ii Supervisor: Dr. Alfonso Arag´on-Salamanca Co-supervisor: Prof. Michael R. Merrifield Examiners: Prof. Roger Davies (University of Oxford) Dr. Meghan Gray (University of Nottingham) Submitted: 1 December 2006 Examined: 16 January 2007 Final version: 22 January 2007 Abstract This thesis studies the origin of local S0 galaxies and their possible links to other morphological types, particularly during their evolution. To address these issues, two different – and complementary – approaches have been adopted: a detailed study of the stellar populations of S0s in the Fornax Cluster and a study of the Tully–Fisher Relation of local S0s in different environments. The data utilised for the study of Fornax S0s includes new long-slit spectroscopy for a sample of 9 S0 galaxies obtained using the FORS2 spectrograph at the 8.2m ESO VLT. From these data, several kinematic parameters have been extracted as a function of position along the major axes of these galaxies. These parameters are the mean velocity, velocity dispersion and higher-moment h3 and h4 coefficients. Comparison with published kinematics indicates that earlier data are often limited by their lower signal-to-noise ratio and relatively poor spectral resolution. The greater depth and higher resolution of the new data mean that we reach well beyond the bulges of these systems, probing their disk kinematics in some detail for the first time. Qualitative inspection of the results for individual galaxies shows that some of them are not entirely simple systems, perhaps indicating a turbulent past.
    [Show full text]
  • Download This Article in PDF Format
    A&A 374, 454–464 (2001) Astronomy DOI: 10.1051/0004-6361:20010750 & c ESO 2001 Astrophysics ROSAT -HRI observations of six southern galaxy pairs G. Trinchieri and R. Rampazzo Osservatorio Astronomico di Brera, via Brera 28, 20121 Milano, Italy Received 3 April 2001 / Accepted 25 May 2001 Abstract. We present the detailed analysis of the X–ray data for 6 pairs, isolated or in poor groups, observed at high resolution with the ROSAT HRI . In all cases, the stronger X–ray source is associated with the brighter early-type member and is extended. The extent varies from galactic to group scale, from 3 (RR 210b) to 182 kpc( RR 22a). The fainter members are detected only in two pairs, RR 210 and RR 259. Except for one case, no significant substructures have been detected in the X–ray maps, possibly also as a consequence of the poor statistics. The core radii of the X–ray surface brightness profiles are in the range 1–3 kpc. The distribution of the luminosities of galaxies in pairs encompasses a very wide range of both luminosities and LX/LB ratios, in spite of the very small number of objects studied so far. Our data provide no evidence that pair membership affects the X–ray properties of galaxies. Observation are discussed in the context of the pair/group evolution. Key words. galaxies: individual: general – galaxies: interactions – X–rays: galaxies 1. Introduction Since the number of poor groups studied is increas- ing, attempts at classifying them into an evolutionary se- Pairs of galaxies with elliptical members and isolated el- quence combining their X–ray properties to galaxy pop- lipticals in the field could represent different phases in the ulation (presence of satellite galaxies, ratio between early coalescence process of groups (e.g.
    [Show full text]
  • Globular Clusters and Galactic Nuclei
    Scuola di Dottorato “Vito Volterra” Dottorato di Ricerca in Astronomia– XXIV ciclo Globular Clusters and Galactic Nuclei Thesis submitted to obtain the degree of Doctor of Philosophy (“Dottore di Ricerca”) in Astronomy by Alessandra Mastrobuono Battisti Program Coordinator Thesis Advisor Prof. Roberto Capuzzo Dolcetta Prof. Roberto Capuzzo Dolcetta Anno Accademico 2010-2011 ii Abstract Dynamical evolution plays a key role in shaping the current properties of star clus- ters and star cluster systems. We present the study of stellar dynamics both from a theoretical and numerical point of view. In particular we investigate this topic on different astrophysical scales, from the study of the orbital evolution and the mutual interaction of GCs in the Galactic central region to the evolution of GCs in the larger scale galactic potential. Globular Clusters (GCs), very old and massive star clusters, are ideal objects to explore many aspects of stellar dynamics and to investigate the dynamical and evolutionary mechanisms of their host galaxy. Almost every surveyed galaxy of sufficiently large mass has an associated group of GCs, i.e. a Globular Cluster System (GCS). The first part of this Thesis is devoted to the study of the evolution of GCSs in elliptical galaxies. Basing on the hypothesis that the GCS and stellar halo in a galaxy were born at the same time and, so, with the same density distribution, a logical consequence is that the presently observed difference may be due to evolution of the GCS. Actually, in this scenario, GCSs evolve due to various mechanisms, among which dynamical friction and tidal interaction with the galactic field are the most important.
    [Show full text]
  • A Wide-Field H I Study of the NGC 1566 Group*
    Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 8 September 2004 (MN LATEX style file v1.4) ? A Wide-Field H i Study of the NGC 1566 Group Virginia A. Kilborn1,2, B¨arbel S. Koribalski2, Duncan A. Forbes1, David G. Barnes3, Ruth C. Musgrave1 1Centre for Astrophysics & Supercomputing, Swinburne University of Technology, Mail 31, PO Box 218, Hawthorn, VIC 3122, Australia 2Australia Telescope National Facility, CSIRO, P.O. Box 76, Epping, NSW 1710, Australia 3School of Physics, University of Melbourne, Parkville, VIC 3010, Australia Received date; accepted date ABSTRACT We report on neutral hydrogen observations of a ∼ 5.5◦ × 5.5◦ field around the NGC 1566 galaxy group with the multibeam narrow-band system on the 64-m Parkes telescope. We detected thirteen H i sources in the field, including two galaxies not previously known to be members of the group, bringing the total number of con- firmed galaxies in this group to 26. Each of the H i galaxies can be associated with an optically catalogued galaxy. No ’intergalactic H i clouds’ were found to an H i mass 8 limit of ∼ 3.5 × 10 M . We have estimated the expected H i content of the late-type galaxies in this group and find the total detected H i is consistent with our expecta- tions. However, while no global H i deficiency is inferred for this group, two galaxies exhibit individual H i deficiencies. Further observations are needed to determine the gas removal mechanisms in these galaxies. Key words: surveys, radio lines: galaxies, galaxies: individual (NGC 1566, NGC 1533, NGC 1549, NGC 1553), galaxies: clusters: general.
    [Show full text]
  • A Six-Parameter Space to Describe Galaxy Diversification⋆
    A&A 545, A80 (2012) Astronomy DOI: 10.1051/0004-6361/201218769 & c ESO 2012 Astrophysics A six-parameter space to describe galaxy diversification D. Fraix-Burnet1, T. Chattopadhyay2, A. K. Chattopadhyay3,E.Davoust4, and M. Thuillard5 1 Université Joseph Fourier – Grenoble 1/CNRS, Institut de Planétologie et d’Astrophysique de Grenoble, BP 53, 38041 Grenoble Cedex 9, France e-mail: [email protected] 2 Department of Applied Mathematics, Calcutta University, 92 A.P.C. Road, 700009 Kolkata, India 3 Department of Statistics, Calcutta University, 35 Ballygunge Circular Road, 700019 Kolkata, India 4 Université de Toulouse, CNRS, Institut de Recherches en Astrophysique et Planétologie, 14 Av. E. Belin, 31400 Toulouse, France 5 La Colline, 2072 St-Blaise, Switzerland Received 3 January 2012 / Accepted 9 June 2012 ABSTRACT Context. The diversification of galaxies is caused by transforming events such as accretion, interaction, or mergers. These explain the formation and evolution of galaxies, which can now be described by many observables. Multivariate analyses are the obvious tools to tackle the available datasets and understand the differences between different kinds of objects. However, depending on the method used, redundancies, incompatibilities, or subjective choices of the parameters can diminish the usefulness of these analyses. The behaviour of the available parameters should be analysed before any objective reduction in the dimensionality and any subsequent clustering analyses can be undertaken, especially in an evolutionary context. Aims. We study a sample of 424 early-type galaxies described by 25 parameters, 10 of which are Lick indices, to identify the most discriminant parameters and construct an evolutionary classification of these objects.
    [Show full text]
  • DEBRIS DISKS in OPEN STELLAR CLUSTERS by Nadiya Igorivna
    Debris Disks in Open Stellar Clusters Item Type text; Electronic Dissertation Authors Gorlova, Nadiya Igorivna Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 23/09/2021 12:45:37 Link to Item http://hdl.handle.net/10150/195908 DEBRIS DISKS IN OPEN STELLAR CLUSTERS by Nadiya Igorivna Gorlova A Dissertation Submitted to the Faculty of the DEPARTMENT OF ASTRONOMY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2 0 0 6 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dis- sertation prepared by Nadiya Igorivna Gorlova entitled Debris Disks in Open Stellar Clusters and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. Date: 8 September 2006 George Rieke Date: 8 September 2006 Renu Malhotra Date: 8 September 2006 Michael Meyer Date: 8 September 2006 James Muzerolle Final approval and acceptance of this dissertation is contingent upon the candi- date's submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. Date: 8 September 2006 Dissertation Director: George Rieke 3 STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the Univer- sity Library to be made available to borrowers under rules of the Library.
    [Show full text]
  • Prevalence of Tidal Interactions Among Local Seyfert Galaxies
    To be submitted to the Astrophysical Journal Preprint typeset using LATEX style emulateapj v. 04/21/05 PREVALENCE OF TIDAL INTERACTIONS AMONG LOCAL SEYFERT GALAXIES Cheng-Yu Kuo1,3 Institute of Astronomy & Astrophysics, Academia Sinica, PO Box 23-141, Taipei 10617, Taiwan Department of Astronomy, University of Virginia, Charlottesville, VA 22904 Jeremy Lim Institute of Astronomy & Astrophysics, Academia Sinica, PO Box 23-141, Taipei 10617, Taiwan Ya-Wen Tang1,2 Institute of Astronomy & Astrophysics, Academia Sinica, PO Box 23-141, Taipei 10617, Taiwan Department of Physics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan and Paul T. P. Ho1,4 Institute of Astronomy & Astrophysics, Academia Sinica, PO Box 23-141, Taipei 10617, Taiwan Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 To be submitted to the Astrophysical Journal ABSTRACT No mechanisms have hitherto been conclusively demonstrated to be responsible for initiating optically-luminous nuclear (Seyfert) activity in local disk galaxies. Only a small minority of such galax- ies are visibly disturbed in optical starlight, with the observed disturbances being at best marginally stronger than those found in matched samples of inactive galaxies. Here, we report the first system- atic study of an optically-selected sample of twenty-three active galaxies in atomic hydrogen (HI) gas, which is the most sensitive and enduring tracer known of tidal interactions. Eighteen of these galaxies are (generally) classified as Seyferts, with over half (and perhaps all) having [OIII] luminosities within two orders of magnitude of Quasi-Stellar Objects. Only ∼28% of these Seyfert galaxies are visibly dis- turbed in optical DSS2 images.
    [Show full text]
  • Arxiv:Astro-Ph/0610934V1 31 Oct 2006
    中国科技论文在线 http://www.paper.edu.cn Probing the Mass Distributions in NGC 1407 and Its Associated Group with the X-ray Imaging Spectroscopic and Optical Photometric and Line-strength Indices Data Zhongli Zhang1,2, Haiguang Xu1,2, Yu Wang1, Tao An3, Yueheng Xu4 and Xiang-Ping Wu2 ABSTRACT We present a study of the mass distributions in the bright E0 galaxy NGC 1407 and its associated group by analyzing the high quality Chandra and ROSAT X-ray spectroscopic data. In order to probe the stellar mass distri- bution we calculated the B-band mass-to-light ratio profile by comparing the observed line-strength indices and multi-color photometric data with different stellar synthesis model predictions. Based on the recent survey results we also have modeled the contribution from other group members to the stellar mass. We find that the gas is single-phase with a temperature of 0.7 keV within ≃ 1Re (1Re = 9.0 kpc), which is typical for elliptical galaxies. Outside 1Re the gas temperature increases quickly outwards to > 1 keV, indicating its group origin. With the high spatial resolution of Chandra we reveal that the X-ray surface brightness profile shows a central excess in the innermost region, and on both < the total mass and dark matter profiles there is a flattened feature at about ∼1Re, which coincides with the gas temperature transition from the galactic level to the group level. We speculate that this may be a mark of the boundary between the galaxy and group halos, as has been seen in some other cluster/group-dominating galaxies.
    [Show full text]