Global Warming
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
A Scale and Aerosol Aware Convective Parameterization
EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Open Access Atmos. Chem. Phys. Discuss., 13, 23845–23893,Atmospheric 2013 Atmospheric www.atmos-chem-phys-discuss.net/13/23845/2013/Chemistry Chemistry doi:10.5194/acpd-13-23845-2013 ACPD © Author(s) 2013. CC Attribution 3.0 License.and Physics and Physics Discussions 13, 23845–23893, 2013 Open Access Open Access Atmospheric Atmospheric This discussion paper is/hasMeasurement been under review for the journal AtmosphericMeasurement Chemistry A scale and aerosol and Physics (ACP). Please referTechniques to the corresponding final paper in ACP ifTechniques available. aware convective Discussions parameterization Open Access Open Access A scale and aerosol aware stochastic G. A. Grell and Biogeosciences Biogeosciences convective parameterization for weatherDiscussions S. R. Freitas Open Access Open Access and air quality modelingClimate Climate Title Page of the Past of the Past G. A. Grell1 and S. R. Freitas2 Discussions Abstract Introduction Open Access 1 Open Access Conclusions References Earth Systems Research Laboratory of the National Oceanic and AtmosphericEarth System Administration (NOAA), Boulder,Earth Colorado System 80305-3337, USA 2 Dynamics Tables Figures Center for Weather ForecastingDynamics and Climate Studies, INPE, Cachoeira Paulista, Discussions Sao Paulo, Brazil J I Open Access Received: 27 July 2013 – Accepted:Geoscientific 15 August 2013 – Published: 11 SeptemberGeoscientific 2013Open Access Instrumentation Instrumentation Correspondence to: G. A. Grell ([email protected]) J I Methods and Methods and Published by Copernicus PublicationsData Systems on behalf of the European GeosciencesData Systems Union. -
What Lies Beneath 2 FOREWORD
2018 RELEASE THE UNDERSTATEMENT OF EXISTENTIAL CLIMATE RISK BY DAVID SPRATT & IAN DUNLOP | FOREWORD BY HANS JOACHIM SCHELLNHUBER BREAKTHROUGHONLINE.ORG.AU Published by Breakthrough, National Centre for Climate Restoration, Melbourne, Australia. First published September 2017. Revised and updated August 2018. CONTENTS FOREWORD 02 INTRODUCTION 04 RISK UNDERSTATEMENT EXCESSIVE CAUTION 08 THINKING THE UNTHINKABLE 09 THE UNDERESTIMATION OF RISK 10 EXISTENTIAL RISK TO HUMAN CIVILISATION 13 PUBLIC SECTOR DUTY OF CARE ON CLIMATE RISK 15 SCIENTIFIC UNDERSTATEMENT CLIMATE MODELS 18 TIPPING POINTS 21 CLIMATE SENSITIVITY 22 CARBON BUDGETS 24 PERMAFROST AND THE CARBON CYCLE 25 ARCTIC SEA ICE 27 POLAR ICE-MASS LOSS 28 SEA-LEVEL RISE 30 POLITICAL UNDERSTATEMENT POLITICISATION 34 GOALS ABANDONED 36 A FAILURE OF IMAGINATION 38 ADDRESSING EXISTENTIAL CLIMATE RISK 39 SUMMARY 40 What Lies Beneath 2 FOREWORD What Lies Beneath is an important report. It does not deliver new facts and figures, but instead provides a new perspective on the existential risks associated with anthropogenic global warming. It is the critical overview of well-informed intellectuals who sit outside the climate-science community which has developed over the last fifty years. All such expert communities are prone to what the French call deformation professionelle and the German betriebsblindheit. Expressed in plain English, experts tend to establish a peer world-view which becomes ever more rigid and focussed. Yet the crucial insights regarding the issue in question may lurk at the fringes, as BY HANS JOACHIM SCHELLNHUBER this report suggests. This is particularly true when Hans Joachim Schellnhuber is a professor of theoretical the issue is the very survival of our civilisation, physics specialising in complex systems and nonlinearity, where conventional means of analysis may become founding director of the Potsdam Institute for Climate useless. -
Capitalism and Planetary Destruction: Activism for Climate Change Emergency
!"#$"%&#'()*+,-'.&%/+0$'123)%4'5'6%&,$+,3! "#$%&'!()!*(+(+,-!../!01(2' ! 78+$)%90':)$3!!34'!56789$'!8:!5!:$8;47$<!5&'=>'>!?'6:8#=!#@!A45.7'6!0!*../!001BC,!#@!74'!5%74#6D:! E##F-!!#+;&$3'!2&:*3<'$23'=)"%$2'>:8"0$%+&#'?3@)#"$+):'&:8'6"A#+,'638&*)*+30-'123'!&03'B)%' 7,)0),+&#+0;-!7#!E'!.%E$8:4'>!E<!G#%7$'>;'!8=!(+(0/! ! "#$%&#'%()!#*+!,'#*-&#./!0-(&.12&%3*4!52&%6%()!73.!"'%)#&-!"8#*9-! :)-.9-*2/! H8F'!A#$'! C:+@3%0+$4')B'7&0$'():8):! "#$%&'()$*&#+ 348:! 56789$'! 8:! 8=! 7I#! :'978#=:/! J=! :'978#=! 0-! J! >8:9%::! 74'! 6'$578#=:48.! E'7I''=! 95.875$8:&! 5=>! .$5='756<!>':76%978#=-!5=>!8=!:'978#=!(-!5978?8:&!@#6!9$8&57'!945=;'!'&'6;'=9</!J!E';8=!:'978#=!0! I874! 5! E68'@! :%&&56<! #@! 74'! 5;6''&'=7! &5>'! 57! 74'! (+0C! K=87'>! L578#=:! A$8&57'! A45=;'! A#=@'6'=9'!8=!M568:/!J!74'=!9#=:8>'6!74'!6'$578#=:48.!E'7I''=!95.875$8:&!5=>!.$5='756<!>':76%978#=-! @#9%:8=;! #=! 74'! =';578?'! 6#$'! #@! 9'6758=! 95.875$8:7! I#6$>! $'5>'6:-! =5&'$<! N#=5$>! 36%&.-! O586! P#$:#=56#! 5=>! Q9#77! H#668:#=/! L'R7! J! 5>>6'::! 74'! M568:! 9$8&57'! 945=;'! 599#6>! @#%6! <'56:! #=S! H5>68>!*ATM!(C,-!:%;;':78=;!7457!I'!&5<!E'!#=!5!76'=>!@#6!7#75$!.$5='756<!9575:76#.4'/!J!9#=9$%>'! :'978#=!0!I874!5!@#6I56>!$##F!7#!U$5:;#I!(+(0!*ATM!(V,-!:%;;':78=;!7457!I'!45?'!5!&#%=758=!7#! 9$8&E/!J=!:'978#=!(-!5@7'6!E68'@$<!#%7$8=8=;!74'!$#=;!48:7#6<!#@!9$8&57'!945=;'!5I56'='::-!74'!6#$'! #@!5978?8:&!8=!@#:7'68=;!9$8&57'!945=;'!'&'6;'=9<!8:!5=5$<:'>-!I874!6'@'6'=9'!7#!U6'75!34%=E'6;-! 5=>!&#?'&'=7:!8=:.86'>!E<!4'6!'R5&.$'-!5:!I'$$!5:!WR78=978#=!G'E'$$8#=/!34'!95:'!8:!&5>'!7457!5! -
Physical Processes
Part IV: Physical Processes IFS DOCUMENTATION { Cy41r1 Operational implementation 12 May 2015 PART IV: PHYSICAL PROCESSES Table of contents Chapter 1 Overview Chapter 2 Radiation Chapter 3 Turbulent transport and interactions with the surface Chapter 4 Subgrid-scale orographic drag Chapter 5 Non-orographic gravity wave drag Chapter 6 Convection Chapter 7 Clouds and large-scale precipitation Chapter 8 Surface parametrization Chapter 9 Methane oxidation Chapter 10 Ozone chemistry parametrization Chapter 11 Climatological data Chapter 12 Basic physical constants and thermodynamic functions References c Copyright 2015 European Centre for Medium-Range Weather Forecasts Shinfield Park, Reading, RG2 9AX, England Literary and scientific copyrights belong to ECMWF and are reserved in all countries. This publication is not to be reprinted or translated in whole or in part without the written permission of the Director. Appropriate non-commercial use will normally be granted under the condition that reference is made to ECMWF. The information within this publication is given in good faith and considered to be true, but ECMWF accepts no liability for error, omission and for loss or damage arising from its use. IFS Documentation { Cy41r1 1 Part IV: Physical Processes Chapter 1 Overview Table of contents 1.1 Introduction 1.2 Overview of the code 1.1 INTRODUCTION The physical processes associated with radiative transfer, turbulent mixing, convection, clouds, surface exchange, subgrid-scale orographic drag and non-orographic gravity wave drag have a strong impact on the large scale flow of the atmosphere. However, these mechanisms are often active at scales smaller than the resolved scales of the model grid. -
Global-Change Controls on Soil-Carbon Accumulation and Loss in Coastal Vegetated Ecosystems
PERSPECTIVE https://doi.org/10.1038/s41561-019-0435-2 Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems Amanda C. Spivak 1*, Jonathan Sanderman 2, Jennifer L. Bowen 3, Elizabeth A. Canuel 4 and Charles S. Hopkinson1 Coastal seagrass, mangrove and salt-marsh ecosystems—also termed blue-carbon ecosystems—play an important role in the global carbon cycle. Much of the organic carbon they store rests in soils that have accumulated over thousands of years. Rapidly changing climate and environmental conditions, including sea-level rise, warming, eutrophication and landscape development, will impact decomposition and thus the global reservoir of blue soil organic carbon. Yet, it remains unclear how these distur- bances will affect the key biogeochemical mechanisms controlling decomposition—mineral protection, redox zonation, water content and movement, and plant–microbe interactions. We assess the spatial and temporal scales over which decomposition mechanisms operate and how their effectiveness may change following disturbances. We suggest that better integration of decomposition mechanisms into blue-carbon models may improve predictions of soil organic carbon stores and facilitate incor- poration of coastal vegetated ecosystems into global budgets and management tools. lue-carbon ecosystems play an outsized role in the global sediments are saturated, with redox and diffusional gradients, and carbon cycle. They occupy 0.07–0.22% of the Earth’s sur- relatively constant temperature, light and physical conditions. In face and bury 0.08–0.22 PgC yr–1, which is comparable to contrast, soil water content and chemistry vary among blue-carbon B –1 0.2 PgC yr transferred to the seafloor and equivalent to ~10% ecosystems and over intertidal elevation gradients, reflecting local of the entire net residual land sink of 1–2 PgC yr–1 (refs. -
Wallace Smith Broecker (1931-2019) Geochemist Who Transformed Understanding of the Climate System
COMMENT OBITUARY Wallace Smith Broecker (1931-2019) Geochemist who transformed understanding of the climate system. t was Wallace Smith Broecker who coupled with changes in ocean circulation, at pointed out in the 1980s that massive the surface and deep down. The climate sys- changes in global climate can arise from tem, Broecker noted in 1998, is like “an angry Imodest changes in ocean circulation. After beast and we are poking it with sticks” as we all, the oceans contain roughly 50 times pour greenhouse gases into the atmosphere. more carbon than does the atmosphere, and On 8 August 1975, Broecker published a are responsible for nearly half of global heat paper in Science entitled ‘Climate change: transport towards the poles. Are we on the brink of a pronounced global With monumental intellect and unbridled warming?’ (W. S. Broecker Science 189, curiosity, Broecker defined much of today’s 460–463; 1975). It was the first scientific use understanding of the climate system. His of ‘global warming’, something he did not neat, elegant solutions to complex Earth- want to be remembered for. He later offered science problems — expressed in more than a reward to anyone who could find an earlier 500 publications and 17 books — reshaped usage. The paper was remarkably well timed, entire disciplines. however: global temperatures have risen His path-breaking career spanned nearly consistently above baseline values since 1976. seven decades, during which he defined the Despite a shower of awards and positions ocean’s role in global climate change and car- recognizing his leadership, Broecker led a JEAN-LOUIS ATLAN/PARIS MATCH/GETTY ATLAN/PARIS JEAN-LOUIS bon cycling, and used palaeoclimatic records simple life: jeans and jumpers, a dented car to understand how climate changed in the and a small, spartan apartment near Colum- past and its implications for our collective ocean circulation in which surface waters cool bia University. -
Cairns Human Society Passed T
Asian J. Exp. Sci., Vol. 24, No. 2, 2010; 297-299 Has Human Society Passed a Tipping Point for Effective Reduction of Greenhouse Gas Emissions? John Cairns, Jr. Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA Abstract : Recent publications have indicated that a 2°C increase of global average temperature, once thought acceptable, may involve serious risks (Greg, 2004). A global mean temperature increase of 4°C would be hotter than any time in the last 30 million years, and this increase could be realized as early as 2060–2070 (Leahy, 2009). The prospects of plans for major, immediate reduction of anthropogenic greenhouse gas emissions at the climate conference at Copenhagen in December 2009 do not seem likely. A climate bill in the US Congress probably will be weakened by numerous amendments, and China and India are not eager to implement major reductions in greenhouse gas emissions. Even if the Copenhagen Conference recommends major reductions, they are likely to be fiercely resisted because of present economic conditions. Neither politicians nor citizens seem prepared to make the “sacrifices” needed for rapid reductions of greenhouse gas emissions. Key words : Rapid climate change, Reduced agricultural productivity, Inadequate freshwater, Societal tipping points, Climate tipping points, Climate conferences. Political reality must be grounded in physical Assimilative Capacity reality or it’s completely useless. In nature, energy and nutrients keep moving John Schellnhuber because the output (wastes) of some species is input Director, Potsdam Institute (resources) for other species. Humans take resources for Climate Impact Research and turn them into things that nature cannot assimilate Two degrees C is already gone as a target. -
Daniel L. Swain
1 Daniel L. Swain Assistant Research Scientist, Institute of the Environment & Sustainability Office Phone: (303) 497-1117 University of California, Los Angeles, CA Email: [email protected] ORCID: 0000-0003-4276-3092 Research Fellow, Capacity Center for Climate and Weather Extremes National Center for Atmospheric Research, Boulder, CO Twitter: @Weather_West Blog: www.weatherwest.com California Climate Fellow The Nature Conservancy of California, San Francisco, CA Updated: Mar 3, 2021 Research interests Dynamics & impacts of regional climate change, hydrologic extremes, wildfires & climate, extreme event detection/attribution, natural hazard risk, climate adaptation, science writing & communication Education Ph.D., Earth System Science, Stanford University 2016 Dissertation: “Character and causes of changing North Pacific climate extremes” Advisor: Dr. Noah Diffenbaugh B.S., Atmospheric Science, University of California, Davis (Highest Honors) 2011 Selected honors and awards Vice Magazine “Human of the Year” 2020 National Academy of Sciences Kavli Fellow 2019 Finalist, AAAS Early Career Award for Public Engagement with Science 2018 NatureNet Postdoctoral Fellowship, Nature Conservancy/University of California 2016-2018 ARCS Fellowship, Achievement Rewards for College Scientists Foundation 2015-2016 Switzer Environmental Fellowship, Robert and Patricia Switzer Foundation 2015-2016 Graduate Student Award for Scholarly & Research Achievement, Stanford University 2015 Fellow, Rising Environmental Leaders Program, Stanford Woods Inst. for the -
EC.719 D-Lab: Water, Climate, and Health, Lec 2
Water, Climate Change and Health Photo: Apollo 8 image of "Earthrise” by William Anders, AS8-14-2383, Dec. 24, 1968 .iiniin. Susan Murcott, Week 2 --D-Lab: Water, Climate Change and Health 1 4 Challenging Questions (add answers on index card) 1. Define “life.” 2. Complete this sentence: “Planet Earth is ill because…” 3. What makes a planet habitable? 4. In honor of Valentines Day: complete this sentence: “Love [in relation to Water, Climate Change and Health] is…” 2 Outline • Human Health, Planetary Health, Planetary Boundaries • Comparing Venus, Earth and Mars • What Makes a Planet Habitable? • Inside Story of Paris Agreement • Solutions (Maslin, Ch 8) & Terminology • Adaptation • Mitigation • Geoengineering • Solar Radiation Management 3 Human Body Temperature • For a typical adult: 97 F to 99 F. • Infants and children: 97.9 F to 100.4 F. • A body temperature higher than your normal range is a fever. • Hypothermia is when the body temperature dips too low. • Either extreme is a medical emergency © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ 4 Human Health – Example of a healthy individual, with each of the parameters falling within an standard average range Comprehensive Metabolic Panel – Details Feb. 4, 2019 5 Is the Earth a living planet? Is it ill? • In many ways, climate change for Earth can be seen in the same way as illness and the human body. Mark Maslin, Climate Change p 162. I have asked that you take on for discussion that the Earth is in some sense alive and that the diagnosis and treatment of its ills become an empirical practice…The notion of the planet visiting a doctor is odd. -
Noah Diffenbaugh Kara J Foundation Professor and Kimmelman Family Senior Fellow at the Woods Institute for the Environment Earth System Science
Noah Diffenbaugh Kara J Foundation Professor and Kimmelman Family Senior Fellow at the Woods Institute for the Environment Earth System Science Bio BIO Dr. Noah Diffenbaugh is the Kara J Foundation Professor and Kimmelman Family Senior Fellow at Stanford University. He studies the climate system, including the processes by which climate change could impact agriculture, water resources, and human health. Dr. Diffenbaugh has served the scholarly community in a number of roles, including as a current Editor of the peer-review journal Earth's Future, and as Editor-in-Chief of the peer-review journal Geophysical Research Letters from 2014-2018. He has also served as a Lead Author for the Intergovernmental Panel on Climate Change (IPCC), and has provided testimony and scientific expertise to Federal, State and local officials. Dr. Diffenbaugh is an elected Fellow of the American Geophysical Union (AGU), and is a recipient of the James R. Holton Award and William Kaula Award from the AGU, and a CAREER award from the National Science Foundation. He has been recognized as a Kavli Fellow by the U.S. National Academy of Sciences, and as a Google Science Communication Fellow. ACADEMIC APPOINTMENTS • Professor, Earth System Science • Senior Fellow, Stanford Woods Institute for the Environment • Affiliate, Precourt Institute for Energy ADMINISTRATIVE APPOINTMENTS • Kara J Foundation Professor, School of Earth, Energy and Environmental Sciences, Stanford University, (2017- present) • Kimmelman Family Senior Fellow, Woods Institute for the Environment, Stanford University, (2017- present) • Professor of Earth System Science, Stanford University, (2016- present) • Senior Fellow, Woods Institute for the Environment, Stanford University, (2013- present) • Associate Professor of Environmental Earth System Science, Stanford University, (2013-2016) 5 OF 10 HONORS AND AWARDS • Fellow, American Geophysical Union (2020) • William Kaula Award, American Geophysical Union (2020) • James R. -
Teoria De Gaia; Transdisciplinaridade
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO PUC – SP HOMERO JORGE MAZZOLA INCERTEZAS, BIFURCAÇÕES E DILEMAS NA JORNADA HUMANA DOUTORADO EM CIÊNCIAS SOCIAIS SÃO PAULO 2017 HOMERO JORGE MAZZOLA INCERTEZAS, BIFURCAÇÕES E DILEMAS NA JORNADA HUMANA Tese apresentada à Banca Examinadora da Pontifícia Universidade Católica de São Paulo, PUC-SP, como exigência parcial para obtenção do título de DOUTOR em Ciências Sociais, sob a orientação do Prof. Dr. Edgard de Assis Carvalho. SÃO PAULO 2017 BANCA EXAMINADORA __________________________________________ __________________________________________ __________________________________________ __________________________________________ __________________________________________ AGRADECIMENTO ESPECIAL O meu profundo agradecimento à FUNDASP, pela concessão de bolsa e licença da docência na FEA/PUCSP, o que possibilitou a conclusão de meu programa de doutorado em Ciências Sociais. AGRADECIMENTOS Agradeço ao meu orientador, Prof. Dr. Edgard de Assis Carvalho. Palavras são insuficientes para expressar seu empenho em me abrir portas de novos conhecimentos e me proporcionar liberdade para a elaboração desta tese. Reitero minha gratidão por sua seriedade, sua ética, seu compromisso acadêmico inabalável e por compartilhar sua erudição, que se tornaram para mim uma referência viva e presente, a qual espero ser capaz de passar adiante como modelo a ser difundido e seguido. Às professoras doutoras Graziela C. Vidal e Vivian Blaso, a minha gratidão pelas críticas construtivas no momento da qualificação. Aos membros da banca, professores Edmilson Felipe da Silva, Francisco Agustin Machado Echalar, Graziela Cristina Vital, Lucia Helena Vitalli Rangel, Mauro Luiz Peron e Vivian Blaso, que juntamente com meu orientador, prof. Edgard, contribuíram para a realização de meu projeto. Agradeço aos meus professores da pós-graduação em Ciências Sociais da PUC de São Paulo, pelos ensinamentos, compreensão e incentivo dados durante a condução deste trabalho Meu reconhecimento à Profa. -
FINAL DRAFT Technical Summary IPCC SR Ocean and Cryosphere
FINAL DRAFT Technical Summary IPCC SR Ocean and Cryosphere Technical Summary Editorial Team): Hans-Otto Pörtner (Germany), Debra Roberts (South Africa), Valerie Masson-Delmotte (France), Panmao Zhai (China), Elvira Poloczanska (UK/Australia), Katja Mintenbeck (Germany), Melinda Tignor (USA), Jan Petzold (Germany), Nora Weyer (Germany), Andrew Okem (Nigeria), Marlies Craig (South Africa), Maike Nicolai (Germany), Andrés Alegría (Honduras), Stefanie Langsdorf (Germany), Bard Rama (Kosovo), Anka Freund (Germany) Authors: Amro Abd-Elgawad (Egypt), Nerilie Abram (Australia), Carolina Adler (Switzerland/Australia), Andrés Alegría (Honduras), Javier Arístegui (Spain), Nathaniel L. Bindoff (Australia), Laurens Bouwer (Netherlands), Bolívar Cáceres (Ecuador), Rongshuo Cai (China), Sandra Cassotta (Denmark), Lijing Cheng (China), So-Min Cheong (Republic of Korea), William W. L. Cheung (Canada), Maria Paz Chidichimo (Argentina), Miguel Cifuentes-Jara (Costa Rica), Matthew Collins (UK), Susan Crate (USA), Rob Deconto (USA), Chris Derksen (Canada), Alexey Ekaykin (Russian Federation), Hiroyuki Enomoto (Japan), Thomas Frölicher (Switzerland), Matthias Garschagen (Germany), Jean-Pierre Gattuso (France), Tuhin Ghosh (India), Bruce Glavovic (New Zealand), Nicolas Gruber (Switzerland), Stephan Gruber (Canada/Germany), Valeria A. Guinder (Argentina), Robert Hallberg (USA), Sherilee Harper (Canada), John Hay (Cook Islands), Nathalie Hilmi (France), Jochen Hinkel (Germany), Yukiko Hirabayashi (Japan), Regine Hock (USA), Elisabeth Holland (Fiji), Anne Hollowed