Microstructural Details in Shells of the Gastropod Genera Carychiella and Carychium of the Middle Miocene

Total Page:16

File Type:pdf, Size:1020Kb

Microstructural Details in Shells of the Gastropod Genera Carychiella and Carychium of the Middle Miocene Microstructural details in shells of the gastropod genera Carychiella and Carychium of the Middle Miocene ADRIENNE JOCHUM, THOMAS A. NEUBAUER AND MATHIAS HARZHAUSER Jochum, A., Neubauer, T. A. & Harzhauser, M. 2015: Microstructural details in shells of the gastropod genera Carychiella and Carychium of the Middle Miocene. Lethaia, DOI: 10.1111/let.12134. Microstructural details are revealed via scanning electron microscopy (SEM) in two carychiid species from the early Middle Miocene of Styria, SE Austria. The proto- conchs of the shells of Carychiella eumicrum (Bourguignat 1857) and Carychium gibbum (Sandberger 1875) show different types of microstructure on the embryonic shell during ontogeny. Total, superficial punctate structure on the shell of Carychi- ella eumicrum contrasts with the protoconch–teleoconch demarcation (p/t bound- ary) observed on the protoconch of Carychium gibbum. Both species exhibit aragonitic microstructure. Diagenetic effects, prismatic, homogeneous and crossed lamellar microstructures are detectible in both species. Rheomorphic folding and dense pitting within the columella of Carychiella eumicrum suggest a structure– function relationship for tensile strength and bulk weight reduction in carychiid snails. We hypothesize that total superficial pitting on the shell of C. eumicum, seen here for the first time in the Carychiidae, suggests paedomorphosis as a life-history strategy to palaeoecological conditions of the Rein Basin during the early Middle Miocene. □ Carychiella, Carychium, middle Miocene, mollusc assemblage, Rein Basin (Styria Austria), shell structure. Adrienne Jochum [[email protected]], Naturhistorisches Museum der Burgergemeinde Bern, Bernastr. 15, Bern CH-3005, Switzerland Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, Bern CH-3012, Switzerland; Thomas A. Neubauer [[email protected]], and Mathias Harzhauser [[email protected]], Department of Geology and Paleontology, Natu- ral History Museum Vienna, Burgring 7, Vienna A-1010, Austria; manuscript received on 29/04/2014; manuscript accepted on 11/03/2015. The Carychiidae represent a fascinating taxon of die- potential new characters for phylogenetic analysis in hard, terrestrial gastropods. Although it is assumed congruence with recent molecular analyses of extant they have a sketchy 330- to 300-million-year-old fos- species (Weigand & Jochum 2010; Weigand et al. sil record (Tracy et al. 1993; Bandel 1994), they are 2011, 2012a,b, 2013) and fossil Carychiidae. well represented in the rich mollusc assemblages of Carychium Muller€ 1773, frequently dominates the Neogene of Europe (Boettger 1870; Wenz 1923; mollusc assemblages and often characterizes com- Strauch 1977; Meijer 1986; Prisyazhnyuk & Stworze- munities, such as the ‘Carychium beds’ of the Vienna wicz 1995; Stworzewicz 1999; Harzhauser & Kowalke Basin (Jirıcek & Senes 1974; Bernor et al. 2004). 2002; Bernor et al. 2004; Binder 2004; Harzhauser & Carychiidae are considered facies indicators for Binder 2004; Harzhauser & Piller 2004; Frank 2006; moist lakeshore habitats during the warm temperate Salvador 2015; Harzhauser et al. 2014a). As the to marginally tropical early Middle Miocene Bade- Carychiidae are amongst the earliest gastropod nian stage (Lueger 1981; Harzhauser & Kowalke groups to have completed the transition from a mar- 2002). Extant Carychium inhabit shady, moist, inter- ine/estuarine habitat to a terrestrial mode of life, stitial layers of leaf, grass and wood litter of mesic they provide a model for studying the adaptations environments in riparian zones, damp meadows, and ecology characterizing the radiation of terrestrial mountain forests and tropical woodlands. The Cary- pulmonates (Barker 2001). The purpose of this study chiidae show a Holarctic distribution (Pilsbry 1948; was to examine and report discernible microstruc- Morton 1955) and today comprise two genera: Cary- tures found in carychiid fossils of this well-docu- chium (epigean) and Zospeum (troglobitic). mented mollusc assemblage of the early Middle Understanding the Carychiidae has as much to do Miocene. In this study using SEM, we describe shell with carychiid evolutionary history, ontogeny, bio- microstructures preserved in the two known cary- chemistry and palaeoecology as with their reciprocal chiid species of the Rein Basin, Styria, SE Austria influences in the constructional morphology of the (Harzhauser et al. 2014a). This investigation is part remarkably thin and translucent carychiid shell. of an ongoing search for ecological information and Luchtel et al. (1997) emphasized that gastropod shell DOI 10.1111/let.12134 © 2015 Lethaia Foundation. Published by John Wiley & Sons Ltd 2 A. Jochum et al. LETHAIA 10.1111/let.12134 structure varies from species to species, and within comprise a microstructure identifiable and charac- each species, distinctive details are specifically con- teristic for specific taxa at the genus to family levels figured for general shape, pigment, mineral organi- (Hedegaard & Wenk 1998; Fuchigami & Sasaki zation and other features. Kano et al. (2008) 2005; Medakovic & Popovic 2012). Although knowl- observed that the smaller the snail’s body size, the edge of the structure and composition of the organic more simplified anatomical structures become and components constituting the biominerals within the that a more specialized ecology is required to sustain crystalline composites has grown considerably, that it. Within the Ellobioidea, the degree of inner shell of their fossilization process is still sparse (Guzman resorption varies within the different sub-families, et al. 2009). Moreover, the specificity of structural whereby shell sculpture is considered most informa- organization reflects structure–function relation- tive at lower taxonomic levels and varies between ships, which have recently become increasingly use- genera (Martins 2007). To comprehend the Cary- ful in designing models for material sciences chiidae and their role as baseline taxa in molluscan (Ehrlich et al. 2011). assemblages, it is essential to recognize and compare Our knowledge of mineralogy in the Carychiidae the peculiarities of shell structure in both extant and is limited to three studies (Medakovic et al. 1999; fossil taxa. Although advanced assessment tech- Slapnik & Medakovic 2007; Medakovic & Popovic niques such as X-ray diffraction (XRD), scanning 2012), whereby X-ray powder diffraction (XRD) was electron microscopy (SEM), nanocomputer tomog- used on Zospeum shells to investigate mineral com- raphy (NanoCT), transmission electron microscopy position and phase fractions. A high concentration (TEM) and atomic force microscopy (AFM) have of aragonite and a small fraction of calcite in the given many authors insight into the complex struc- shells were detected. As calcite is a better insulator ture of calcareous mollusc shells (Berman et al. than aragonite, these authors attributed the calcite 1993; Hedegaard & Wenk 1998; Chateigner et al. fraction to adaptation to the fluctuating tempera- 2000; Hess et al. 2008; De Paula & Silveira 2009; tures in certain cave habitats. As very little is known Fryda et al. 2009; Furuhashi et al. 2009; Guzman about ellobioid, let alone extant or fossil carychiid et al. 2009; Vendrasco et al. 2010; Rodrıguez-Navar- microstructure, our investigation presents new ro et al. 2012; Hickman 2013), very few studies (Jo- information about the microstructure of the Cary- chum 2011; Medakovic & Popovic 2012; Jochum chiidae. et al. 2013) have been conducted at the microstruc- tural level on terrestrial ellobioid taxa. It is well Carychiid taxonomy and systematics known that environmental influences play a pivotal role in shell mineralization and thus, influence shell As fossil and extant carychiid gastropods are known form, development and repair (McMahon & to be highly morphologically variable (Watson & Whitehead 1987; De Paula & Silveira 2009; Medak- Verdcourt 1953; Strauch 1977; Burch & Van Dev- ovic & Popovic 2012; Hickman 2013). As the Cary- ender 1980; Stworzewicz 1999; Weigand & Jochum chiidae inhabit semi-subterranean, subterranean and 2010; Weigand et al. 2012a,b; Weigand et al. 2013), extreme subterranean habitats, some existing 980 m they have been subject to frequent taxonomic re- below the surface (Weigand et al. 2013), their shells evaluation. Consequently, the plethora of forms has harbour a potential reservoir of valuable informa- systematically been shuffled and reshuffled into gen- tion. era and sub-genera, based on the degree of character Mollusc shells are polycrystalline complexes of expression in shell size, shape, form, dentition, whorl calcium carbonate, diverse proteins rich in acidic number, whorl height and, most specifically, the amino acids and glycoproteins (Lowenstam & Wei- degree of sinuosity of the columellar lamella ner 1989; Berman et al. 1993; Hedegaard & Wenk (Strauch 1977; Lueger 1981; Prisyazhnyuk & Stwor- 1998). Gastropod and bivalve shells demonstrate a zewicz 1995; Salvador 2015). For the herein treated comparable range of shell mineralogy and micro- carychiids, we follow the latest taxonomic and sys- structure (Carter et al. 1998), whereby gastropod tematic revisions of Miocene freshwater deposits by shells comprise an outer organic periostracal sheet Harzhauser et al. (2014a,b). Although recent molec- and an inner carbonate layer (Saleuddin & Petit ular analyses focusing on phylogenetic and phylo- 1983; Slapnik & Medakovic 2007). Their rigidity and geographical studies of extant
Recommended publications
  • Trojama Cave System (Velebit Mts., Croatia)
    A peer-reviewed open-access journal SubterraneanNew Biology Zospeum 11: 45–53 (2013)species (Gastropoda, Ellobioidea, Carychiidae) from 980 m depth... 45 doi: 10.3897/subtbiol.11.5966 RESEARCH artICLE Subterranean Published by www.pensoft.net/journals/subtbiol The International Society Biology for Subterranean Biology New Zospeum species (Gastropoda, Ellobioidea, Carychiidae) from 980 m depth in the Lukina Jama – Trojama cave system (Velebit Mts., Croatia) Alexander M. Weigand1,2,† 1 Department of Phylogeny and Systematics, Institute for Ecology, Evolution and Diversity, Biosciences, Goethe- University Frankfurt, Max-von-Laue Straße 13, 60438 Frankfurt am Main, Germany 2 Croatian Biospeleo- logical Society, Demetrova 1, 10000 Zagreb, Croatia † http://zoobank.org/C15902F9-515F-4D53-94A7-59058492A569 Corresponding author: Alexander M. Weigand ([email protected]) Academic editor: Oana Moldovan | Received 12 June 2013 | Accepted 14 August 2013 | Published 30 August 2013 http://zoobank.org/5F4196B5-E479-4F16-A87A-9808FA8521E3 Citation: Weigand AM (2013) New Zospeum species (Gastropoda, Ellobioidea, Carychiidae) from 980 m depth in the Lukina Jama–Trojama cave system (Velebit Mts., Croatia). Subterranean Biology 11: 45–53. doi: 10.3897/ subtbiol.11.5966 Abstract A new species of the eutroglobiont gastropod taxon Zospeum Bourguignat, 1856 is described. Zospeum tholussum sp. n. is characterized based on a population from the Lukina Jama–Trojama cave system (Ve­ lebit Mts., Croatia). A single living specimen occurred at 980 m depth. The species is morphologically related to Zospeum amoenum (Frauenfeld, 1856), but can be readily distinguished from the latter by the presence of a weak columellar fold and its dome­like structured 2nd whorl. DNA barcoding is capable to clearly delineate Z.
    [Show full text]
  • Arianta 6, 2018
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arianta Jahr/Year: 2018 Band/Volume: 6 Autor(en)/Author(s): diverse Artikel/Article: Abstracts Talks Alpine and other land snails 11-27 ARIANTA 6 and correspond ecologically. For instance, the common redstart is a bird species breeding in the lowlands, whereas the black redstart is native to higher altitudes. Some species such as common swift and kestrel, which are originally adapted to enduring in rocky areas, even found a secondary habitat in the house facades and street canyons of towns and big cities. Classic rock dwellers include peregrine, eagle owl, rock­thrush, snowfinch and alpine swift. The presentation focuses on the biology, causes of threat as well as conservation measures taken by the national park concerning the species golden eagle, wallcreeper, crag martin and ptarmigan. Birds breeding in the rocks might not be that high in number, but their survival is all the more fascinating and worth protecting as such! Abstracts Talks Alpine and other land snails Arranged in chronological order of the program Range­constrained co­occurrence simulation reveals little niche partitioning among rock­dwelling Montenegrina land snails (Gastropoda: Clausiliidae) Zoltán Fehér1,2,3, Katharina Jaksch­Mason1,2,4, Miklós Szekeres5, Elisabeth Haring1,4, Sonja Bamberger1, Barna Páll­Gergely6, Péter Sólymos7 1 Central Research Laboratories, Natural History Museum Vienna, Austria; [email protected]
    [Show full text]
  • A New Approach to an Old Conundrumdna Barcoding Sheds
    Molecular Ecology Resources (2010) doi: 10.1111/j.1755-0998.2010.02937.x DNA BARCODING A new approach to an old conundrum—DNA barcoding sheds new light on phenotypic plasticity and morphological stasis in microsnails (Gastropoda, Pulmonata, Carychiidae) ALEXANDER M. WEIGAND,* ADRIENNE JOCHUM,* MARKUS PFENNINGER,† DIRK STEINKE‡ and ANNETTE KLUSSMANN-KOLB*,† *Institute for Ecology, Evolution and Diversity, Siesmayerstrasse 70, Goethe-University, 60323 Frankfurt am Main, Germany, †Research Centre Biodiversity and Climate, Siesmayerstrasse 70, 60323 Frankfurt am Main, Germany, ‡Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road West, Guelph, ON N1G 2V7, Canada Abstract The identification of microsnail taxa based on morphological characters is often a time-consuming and inconclusive process. Aspects such as morphological stasis and phenotypic plasticity further complicate their taxonomic designation. In this study, we demonstrate that the application of DNA barcoding can alleviate these problems within the Carychiidae (Gastro- poda, Pulmonata). These microsnails are a taxon of the pulmonate lineage and most likely migrated onto land indepen- dently of the Stylommatophora clade. Their taxonomical classification is currently based on conchological and anatomical characters only. Despite much confusion about historic species assignments, the Carychiidae can be unambiguously subdi- vided into two taxa: (i) Zospeum species, which are restricted to karst caves, and (ii) Carychium species, which occur in a broad range of environmental conditions. The implementation of discrete molecular data (COI marker) enabled us to cor- rectly designate 90% of the carychiid microsnails. The remaining cases were probably cryptic Zospeum and Carychium taxa and incipient species, which require further investigation into their species status. Because conventional reliance upon mostly continuous (i.e.
    [Show full text]
  • ED45E Rare and Scarce Species Hierarchy.Pdf
    104 Species 55 Mollusc 8 Mollusc 334 Species 181 Mollusc 28 Mollusc 44 Species 23 Vascular Plant 14 Flowering Plant 45 Species 23 Vascular Plant 14 Flowering Plant 269 Species 149 Vascular Plant 84 Flowering Plant 13 Species 7 Mollusc 1 Mollusc 42 Species 21 Mollusc 2 Mollusc 43 Species 22 Mollusc 3 Mollusc 59 Species 30 Mollusc 4 Mollusc 59 Species 31 Mollusc 5 Mollusc 68 Species 36 Mollusc 6 Mollusc 81 Species 43 Mollusc 7 Mollusc 105 Species 56 Mollusc 9 Mollusc 117 Species 63 Mollusc 10 Mollusc 118 Species 64 Mollusc 11 Mollusc 119 Species 65 Mollusc 12 Mollusc 124 Species 68 Mollusc 13 Mollusc 125 Species 69 Mollusc 14 Mollusc 145 Species 81 Mollusc 15 Mollusc 150 Species 84 Mollusc 16 Mollusc 151 Species 85 Mollusc 17 Mollusc 152 Species 86 Mollusc 18 Mollusc 158 Species 90 Mollusc 19 Mollusc 184 Species 105 Mollusc 20 Mollusc 185 Species 106 Mollusc 21 Mollusc 186 Species 107 Mollusc 22 Mollusc 191 Species 110 Mollusc 23 Mollusc 245 Species 136 Mollusc 24 Mollusc 267 Species 148 Mollusc 25 Mollusc 270 Species 150 Mollusc 26 Mollusc 333 Species 180 Mollusc 27 Mollusc 347 Species 189 Mollusc 29 Mollusc 349 Species 191 Mollusc 30 Mollusc 365 Species 196 Mollusc 31 Mollusc 376 Species 203 Mollusc 32 Mollusc 377 Species 204 Mollusc 33 Mollusc 378 Species 205 Mollusc 34 Mollusc 379 Species 206 Mollusc 35 Mollusc 404 Species 221 Mollusc 36 Mollusc 414 Species 228 Mollusc 37 Mollusc 415 Species 229 Mollusc 38 Mollusc 416 Species 230 Mollusc 39 Mollusc 417 Species 231 Mollusc 40 Mollusc 418 Species 232 Mollusc 41 Mollusc 419 Species 233
    [Show full text]
  • The Molluscs and Crustaceans of Glasgow Botanic Gardens, Scotland
    The Glasgow Naturalist (online 2020) Volume 27, Part 3, 93-95 https://doi.org/10.37208/tgn27317 *Melanoides tuberculata (O.F. Müller, 1774). Red-rimmed melania. In a tropical pond in the Lily The molluscs and crustaceans of House (TW). There were thin and truncated Melanoides specimens found in the same pond and in the pond in the Glasgow Botanic Gardens, Scotland Orchid House (TW), but it is safe to assume that they too are M. tuberculata as it is a very variable species R.B. Weddle (BR) Arionidae 89 Novar Drive, Glasgow G12 9SS Arion owenii Davies, 1979. Tawny soil slug (AS). Arion rufus (Linnaeus, 1758). Large red slug (AS). E-mail: [email protected] Arion subfuscus (Draparnaud, 1805). Dusky slug. Main Gardens and North Kelvin area (AS; J. Dempster, 2018). Carychiinae This note focuses on mollusc and crustacean species that Carychium minimum O.F. Müller, 1774. Short- are additional to those listed as present in Glasgow toothed herald snail. Kibble Palace (TW). Botanic Gardens by Hancock (1999). Helicidae Cepaea hortensis (O.F. Müller, 1774). White-lipped MOLLUSCA snail. Arboretum (AS); Main Gardens (A. Malcolm, Since Hancock’s original On the Wildside account 2015). (Hancock, 1999) there have been several visits to the Cepaea nemoralis (Linnaeus, 1758). Brown-lipped Gardens, particularly to the glasshouses, by specialist snail. North Kelvin area (R.B. Weddle, 2011); Main conchologists, and several bioblitzes. This note Gardens summarises the recent findings and reviews one of the (A. Malcolm, 2018) historical records mentioned by Hancock. The absence of both Cepaea species from Hancock’s list is puzzling since there are records in Glasgow generally Nineteen species have been added to Hancock’s list, since the late 19th century (Glasgow Museums BRC).
    [Show full text]
  • Volume of Abstracts
    INQUA–SEQS 2002 Conference INQUA–SEQS ‘02 UPPER PLIOCENE AND PLEISTOCENE OF THE SOUTHERN URALS REGION AND ITS SIGNIFICANCE FOR CORRELATION OF THE EASTERN AND WESTERN PARTS OF EUROPE Volume of Abstracts Ufa – 2002 INTERNATIONAL UNION FOR QUATERNARY RESEARCH INQUA COMMISSION ON STRATIGRAPHY INQUA SUBCOMISSION ON EUROPEAN QUATERNARY STRATIGRAPHY RUSSIAN ACADEMY OF SCIENCES UFIMIAN SCIENTIFIC CENTRE INSTITUTE OF GEOLOGY STATE GEOLOGICAL DEPARTMENT OF THE BASHKORTOSTAN REPUBLIC RUSSIAN SCIENCE FOUNDATION FOR BASIC RESEARCH ACADEMY OF SCIENCES OF THE BASHKORTOSTAN REPUBLIC OIL COMPANY “BASHNEFT” BASHKIR STATE UNIVERSITY INQUA–SEQS 2002 Conference 30 June – 7 July, 2002, Ufa (Russia) UPPER PLIOCENE AND PLEISTOCENE OF THE SOUTHERN URALS REGION AND ITS SIGNIFICANCE FOR CORRELATION OF THE EASTERN AND WESTERN PARTS OF EUROPE Volume Of Abstracts Ufa–2002 ББК УДК 551.79+550.384 Volume of Abstracts of the INQUA SEQS – 2002 conference, 30 June – 7 July, 2002, Ufa (Russia). Ufa, 2002. 95 pp. ISBN The information on The Upper Pliocene – Pleistocene different geological aspects of the Europe and adjacent areas presented in the Volume of abstracts of the INQUA SEQS – 2002 conference, 30 June – 7 July, 2002, Ufa (Russia). Abstracts have been published after the insignificant correcting. ISBN © Institute of Geology Ufimian Scientific Centre RAS, 2002 Organisers: Institute of Geology – Ufimian Scientific Centre – Russian Academy of Sciences INQUA, International Union for Quaternary Research INQUA – Commission on Stratigraphy INQUA – Subcommission on European Quaternary Stratigraphy (SEQS) SEQS – EuroMam and EuroMal Academy of Sciences of the Bashkortostan Republic State Geological Department of the Bashkortostan Republic Oil Company “Bashneft” Russian Science Foundation for Basic Research Bashkir State University Scientific Committee: Dr.
    [Show full text]
  • Malaco Le Journal Électronique De La Malacologie Continentale Française
    MalaCo Le journal électronique de la malacologie continentale française www.journal-malaco.fr MalaCo (ISSN 1778-3941) est un journal électronique gratuit, annuel ou bisannuel pour la promotion et la connaissance des mollusques continentaux de la faune de France. Equipe éditoriale Jean-Michel BICHAIN / Paris / [email protected] Xavier CUCHERAT / Audinghen / [email protected] Benoît FONTAINE / Paris / [email protected] Olivier GARGOMINY / Paris / [email protected] Vincent PRIE / Montpellier / [email protected] Les manuscrits sont à envoyer à : Journal MalaCo Muséum national d’Histoire naturelle Equipe de Malacologie Case Postale 051 55, rue Buffon 75005 Paris Ou par Email à [email protected] MalaCo est téléchargeable gratuitement sur le site : http://www.journal-malaco.fr MalaCo (ISSN 1778-3941) est une publication de l’association Caracol Association Caracol Route de Lodève 34700 Saint-Etienne-de-Gourgas JO Association n° 0034 DE 2003 Déclaration en date du 17 juillet 2003 sous le n° 2569 Journal électronique de la malacologie continentale française MalaCo Septembre 2006 ▪ numéro 3 Au total, 119 espèces et sous-espèces de mollusques, dont quatre strictement endémiques, sont recensées dans les différents habitats du Parc naturel du Mercantour (photos Olivier Gargominy, se reporter aux figures 5, 10 et 17 de l’article d’O. Gargominy & Th. Ripken). Sommaire Page 100 Éditorial Page 101 Actualités Page 102 Librairie Page 103 Brèves & News ▪ Endémisme et extinctions : systématique des Endodontidae (Mollusca, Pulmonata) de Rurutu (Iles Australes, Polynésie française) Gabrielle ZIMMERMANN ▪ The first annual meeting of Task-Force-Limax, Bünder Naturmuseum, Chur, Switzerland, 8-10 September, 2006: presentation, outcomes and abstracts Isabel HYMAN ▪ Collecting and transporting living slugs (Pulmonata: Limacidae) Isabel HYMAN ▪ A List of type specimens of land and freshwater molluscs from France present in the national molluscs collection of the Hebrew University of Jerusalem Henk K.
    [Show full text]
  • Molluscs, by Michael J
    Cambourne New Settlement Iron Age and Romano-British settlement on the clay uplands of west Cambridgeshire Volume 2: Specialist Appendices Web Report 15 Molluscs, by Michael J. Allen Cambourne New Settlement Iron Age and Romano-British Settlement on the Clay Uplands of West Cambridgeshire By James Wright, Matt Leivers, Rachael Seager Smith and Chris J. Stevens with contributions from Michael J. Allen, Phil Andrews, Catherine Barnett, Kayt Brown, Rowena Gale, Sheila Hamilton-Dyer, Kevin Hayward, Grace Perpetua Jones, Jacqueline I. McKinley, Robert Scaife, Nicholas A. Wells and Sarah F. Wyles Illustrations by S.E. James Volume 2: Specialist Appendices Part 1. Artefacts Part 2. Ecofacts Wessex Archaeology Report No. 23 Wessex Archaeology 2009 Published 2009 by Wessex Archaeology Ltd Portway House, Old Sarum Park, Salisbury, SP4 6EB http://www.wessexarch.co.uk Copyright © 2009 Wessex Archaeology Ltd All rights reserved ISBN 978-1-874350-49-1 Project website http://www.wessexarch.co.uk/projects/cambridgeshire/cambourne WA reports web pages http://www.wessexarch.co.uk/projects/cambridgeshire/cambourne/reports ii Contents Web pdf 1 Contents and Concordance of sites and summary details of archive ................................ iii Part 1. Artefacts 2 Prehistoric pottery, by Matt Leivers.....................................................................................1 2 Late Iron Age pottery, by Grace Perpetua Jones................................................................11 2 Romano-British pottery, by Rachael Seager Smith ...........................................................14
    [Show full text]
  • Ringiculid Bubble Snails Recovered As the Sister Group to Sea Slugs
    www.nature.com/scientificreports OPEN Ringiculid bubble snails recovered as the sister group to sea slugs (Nudipleura) Received: 13 May 2016 Yasunori Kano1, Bastian Brenzinger2,3, Alexander Nützel4, Nerida G. Wilson5 & Accepted: 08 July 2016 Michael Schrödl2,3 Published: 08 August 2016 Euthyneuran gastropods represent one of the most diverse lineages in Mollusca (with over 30,000 species), play significant ecological roles in aquatic and terrestrial environments and affect many aspects of human life. However, our understanding of their evolutionary relationships remains incomplete due to missing data for key phylogenetic lineages. The present study integrates such a neglected, ancient snail family Ringiculidae into a molecular systematics of Euthyneura for the first time, and is supplemented by the first microanatomical data. Surprisingly, both molecular and morphological features present compelling evidence for the common ancestry of ringiculid snails with the highly dissimilar Nudipleura—the most species-rich and well-known taxon of sea slugs (nudibranchs and pleurobranchoids). A new taxon name Ringipleura is proposed here for these long-lost sisters, as one of three major euthyneuran clades with late Palaeozoic origins, along with Acteonacea (Acteonoidea + Rissoelloidea) and Tectipleura (Euopisthobranchia + Panpulmonata). The early Euthyneura are suggested to be at least temporary burrowers with a characteristic ‘bubble’ shell, hypertrophied foot and headshield as exemplified by many extant subtaxa with an infaunal mode of life, while the expansion of the mantle might have triggered the explosive Mesozoic radiation of the clade into diverse ecological niches. The traditional gastropod subclass Euthyneura is a highly diverse clade of snails and slugs with at least 30,000 living species1,2.
    [Show full text]
  • 24 Relationships Within the Ellobiidae
    Origin atld evoltctiorzai-y radiatiotz of the Mollrisca (ed. J. Taylor) pp. 285-294, Oxford University Press. O The Malacological Sociery of London 1996 R. Clarke. 24 paleozoic .ine sna~ls. RELATIONSHIPS WITHIN THE ELLOBIIDAE ANTONIO M. DE FRIAS MARTINS Departamento de Biologia, Universidade dos Aqores, P-9502 Porzta Delgada, S6o Miguel, Agores, Portugal ssification , MusCum r Curie. INTRODUCTION complex, and an assessment is made of its relevance in :eny and phylogenetic relationships. 'ulmonata: The Ellobiidae are a group of primitive pulmonate gastropods, Although not treated in this paper, conchological features (apertural dentition, inner whorl resorption and protoconch) . in press. predominantly tropical. Mostly halophilic, they live above the 28s rRNA high-tide mark on mangrove regions, salt-marshes and rolled- and radular morphology were studied also and reference to ~t limpets stone shores. One subfamily, the Carychiinae, is terrestrial, them will be made in the Discussion. inhabiting the forest leaf-litter on mountains throughout ago1 from the world. MATERIAL AND METHODS 'finities of The Ellobiidae were elevated to family rank by Lamarck (1809) under the vernacular name "Les AuriculacCes", The anatomy of 35 species representing 19 genera was ~Ctiquedu properly latinized to Auriculidae by Gray (1840). Odhner studied (Table 24.1). )llusques). (1925), in a revision of the systematics of the family, preferred For the most part the animals were immersed directly in sciences, H. and A. Adarns' name Ellobiidae (in Pfeiffer, 1854). which 70% ethanol. Some were relaxed overnight in isotonic MgCl, ochemical has been in general use since that time. and then preserved in 70% ethanol. A reduced number of Grouping of the increasingly growing number of genera in specimens of most species was fixed in Bouin's, serially Gebriider the family was based mostly on conchological characters.
    [Show full text]
  • Palaeoenvironmental Dynamics of the MIS 11 Interglacial in North-Western
    Palaeoenvironmental dynamics of the MIS 11 interglacial in north-western Europe based on the malacological succession from La Celle (Seine Valley, France): Relationship with glacial refugia and palaeobiodiversity Nicole Limondin-Lozouet, Julie Dabkowski, Pierre Antoine To cite this version: Nicole Limondin-Lozouet, Julie Dabkowski, Pierre Antoine. Palaeoenvironmental dynamics of the MIS 11 interglacial in north-western Europe based on the malacological succession from La Celle (Seine Valley, France): Relationship with glacial refugia and palaeobiodiversity. Palaeogeography, Palaeoclimatology, Palaeoecology, Elsevier, 2020, 560, pp.110044. 10.1016/j.palaeo.2020.110044. hal-02990686 HAL Id: hal-02990686 https://hal.archives-ouvertes.fr/hal-02990686 Submitted on 31 Aug 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Palaeoenvironmental dynamics of the MIS 11 interglacial in north-western Europe based on the malacological succession from La Celle (Seine Valley, France): Relationship with glacial refugia and palaeobiodiversity Nicole Limondin-Lozouet, Julie Dabkowski, Pierre Antoine To cite this version: Nicole Limondin-Lozouet, Julie Dabkowski, Pierre Antoine. Palaeoenvironmental dynamics of the MIS 11 interglacial in north-western Europe based on the malacological succession from La Celle (Seine Valley, France): Relationship with glacial refugia and palaeobiodiversity.
    [Show full text]
  • Guidelines for the Capture and Management of Digital Zoological Names Information Francisco W
    Guidelines for the Capture and Management of Digital Zoological Names Information Francisco W. Welter-Schultes Version 1.1 March 2013 Suggested citation: Welter-Schultes, F.W. (2012). Guidelines for the capture and management of digital zoological names information. Version 1.1 released on March 2013. Copenhagen: Global Biodiversity Information Facility, 126 pp, ISBN: 87-92020-44-5, accessible online at http://www.gbif.org/orc/?doc_id=2784. ISBN: 87-92020-44-5 (10 digits), 978-87-92020-44-4 (13 digits). Persistent URI: http://www.gbif.org/orc/?doc_id=2784. Language: English. Copyright © F. W. Welter-Schultes & Global Biodiversity Information Facility, 2012. Disclaimer: The information, ideas, and opinions presented in this publication are those of the author and do not represent those of GBIF. License: This document is licensed under Creative Commons Attribution 3.0. Document Control: Version Description Date of release Author(s) 0.1 First complete draft. January 2012 F. W. Welter- Schultes 0.2 Document re-structured to improve February 2012 F. W. Welter- usability. Available for public Schultes & A. review. González-Talaván 1.0 First public version of the June 2012 F. W. Welter- document. Schultes 1.1 Minor editions March 2013 F. W. Welter- Schultes Cover Credit: GBIF Secretariat, 2012. Image by Levi Szekeres (Romania), obtained by stock.xchng (http://www.sxc.hu/photo/1389360). March 2013 ii Guidelines for the management of digital zoological names information Version 1.1 Table of Contents How to use this book ......................................................................... 1 SECTION I 1. Introduction ................................................................................ 2 1.1. Identifiers and the role of Linnean names ......................................... 2 1.1.1 Identifiers ..................................................................................
    [Show full text]