Buy Pteris Ensiformis Victoriae - Plant Online at Nurserylive | Best Plants at Lowest Price

Total Page:16

File Type:pdf, Size:1020Kb

Buy Pteris Ensiformis Victoriae - Plant Online at Nurserylive | Best Plants at Lowest Price Buy pteris ensiformis victoriae - plant online at nurserylive | Best plants at lowest price Pteris ensiformis victoriae - Plant cretan brake Rating: Not Rated Yet Price Variant price modifier: Base price with tax Price with discount ?1234567 Salesprice with discount Sales price ?1234567 Sales price without tax ?1234567 Discount Tax amount Ask a question about this product Description Pteris is a genus of about 280 species of ferns in the Pteridoideae subfamily of the Pteridaceae. They are native to tropical and subtropical regions of the world. Many of them have linear frond segments, and some have sub-palmate division Common name: cretan brake Color: dark-brown Bloom time: Non-flowering Height: 1.00 to 2.00 feet Difficulty level: easy to grow Planting & Care Trembling brake or Australian brake (Pteris tremula) is one of the largest brake ferns with fronds 10 to 24 inches long. It is a fast grower and enthusiastic in its production of newly unfolding fiddleheads. Fronds are long, delicate and pale green. It is easily cultivated and hardy in U. S. Sunlight: Full Sun Soil: well-drained soil Water: medium Temprature: 18°C (64°F) Fertilizer: Apply any organic fertilizer Care: The cretan brake or ribbon fern (Pteris cretica) grows at a moderate rate and is hardy in USDA zones 8 to 10. Its fronds reach heights of 8 to 24 inches but are deciduous in winter. The stipes or divisions along the fronds are nearly as long as the fronds themselves, giving the leaves the appearance of open hands. 1 / 2 Buy pteris ensiformis victoriae - plant online at nurserylive | Best plants at lowest price Special Feature: Houseplant for shady areas. Use Medicinal use: Pteris (brake) is a genus of about 280 species of ferns in the Pteridoideae subfamily of the Pteridaceae. They are native to tropical and subtropical regions of the world. Culinary use: leaves Note: for medicinal use, please consult appropriate doctor before use. Reference: http://homeguides.sfgate.com/fast-pteris-ferns-grow-72694.html http://www.missouribotanicalgarden.org/PlantFinder/PlantFinderDetails.aspx?kempercode=b616 Reviews Wednesday, 11 December 2019 Good for the price paid Sanjay Ahirwal 2 / 2 Powered by TCPDF (www.tcpdf.org).
Recommended publications
  • Biodiversity Plan for the South East of South Australia 1999
    SUMMARY Biodiversity Plan for the South East of South Australia 1999 rks & W Pa i Department for Environment ld l a l i f n e o i t Heritage and Aboriginal Affairs a N South Government of South Australia Australia AUTHORS Tim Croft (National Parks & Wildlife SA) Georgina House (QED) Alison Oppermann (National Parks & Wildlife SA) Ann Shaw Rungie (QED) Tatia Zubrinich (PPK Environment & Infrastructure Pty Ltd) CARTOGRAPHY AND DESIGN National Parks & Wildlife SA (Cover) Geographic Analysis and Research Unit, Planning SA Pierris Kahrimanis PPK Environment & Infrastructure Pty Ltd ACKNOWLEDGEMENTS The authors are grateful to Professor Hugh Possingham, the Nature Conservation Society, and the South Australian Farmers Federation in providing the stimulus for the Biodiversity Planning Program and for their ongoing support and involvement Dr Bob Inns and Professor Possingham have also contributed significantly towards the information and design of the South East Biodiversity Plan. We also thank members of the South East community who have provided direction and input into the plan through consultation and participation in workshops © Department for Environment, Heritage and Aboriginal Affairs, 1999 ISBN 0 7308 5863 4 Cover Photographs (top to bottom) Lowan phebalium (Phebalium lowanense) Photo: D.N. Kraehenbuehl Swamp Skink (Egernia coventryi) Photo: J. van Weenen Jaffray Swamp Photo: G. Carpenter Little Pygmy Possum (Cercartetus lepidus) Photo: P. Aitken Red-necked Wallaby (Macropus rufogriseus) Photo: P. Canty 2 diversity Plan for the South East of South Australia — Summary Foreword The conservation of our natural biodiversity is essential for the functioning of natural systems. Aside from the intrinsic importance of conserving the diversity of species many of South Australia's economic activities are based on the sustainable use, conservation and management of biodiversity.
    [Show full text]
  • Morphological and Anatomical Adaptations to Dry, Shady Environments in Adiantum Reniforme Var
    Morphological and anatomical adaptations to dry, shady environments in Adiantum reniforme var. sinense (Pteridaceae) Di Wu1, Linbao Li1, Xiaobo Ma1, Guiyun Huang1 and Chaodong Yang2 1 Rare Plants Research Institute of Yangtze River, Three Gorges Corporation, Yichang, China 2 Engineering Research Center of Ecology and Agriculture Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China ABSTRACT The natural distribution of the rare perennial fern Adiantum reniforme var. sinense (Pteridaceae), which is endemic to shady cliff environments, is limited to small areas of Wanzhou County, Chongqing, China. In this study, we used brightfield and epifluorescence microscopy to investigate the anatomical structures and histochemical features that may allow this species to thrive in shady, dry cliff environments. The A. reniforme var. sinense sporophyte had a primary structure and a dictyostele. The plants of this species had an endodermis, sclerenchyma layers and hypodermal sterome, reflecting an adaption to dry cliff environments. Blades had a thin cuticle and isolateral mesophyll, suggesting a tolerance of shady environments. These characteristics are similar to many sciophyte ferns such as Lygodium japonicum and Pteris multifida. Thus, the morphological and anatomical characteristics of A. reniforme var. sinense identified in this study are consistent with adaptations to shady, dry cliff environments. Subjects Conservation Biology, Plant Science Keywords Endodermis, Dictyostele, Sclerenchyma layer, Suberin lamellae, Thin cuticle Submitted 14 April 2020 Accepted 24 August 2020 INTRODUCTION Published 30 September 2020 Adiantum reniforme var. sinense (Pteridaceae, subfamily Vittarioideae) is a rare Corresponding authors Guiyun Huang, cliff-dwelling perennial pteridophyte, with a natural distribution limited to small areas of [email protected] Wanzhou County, Chongqing, China.
    [Show full text]
  • Gametophyte Morphology and Development of Six Species of Pteris (Pteridaceae) from Java Island Indonesia
    THE JOURNAL OF TROPICAL LIFE SCIENCE OPEN ACCESS Freely available online VOL. 5, NO. 2, pp. 98-104, May, 2015 Gametophyte Morphology and Development of Six Species of Pteris (Pteridaceae) from Java Island Indonesia Dwi Sunarti Puspitasari1, Tatik Chikmawati2*, Titien Ngatinem Praptosuwiryo3 1Plant Biology Graduate Program, Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Darmaga Campus, Bogor, Indonesia 2Department of Biology, Faculty of Mathematics and Natural Sciences Bogor Agricultural University, Darmaga Campus, Bogor, Indonesia 3Center for Plant Conservation- Bogor Botanical Gardens, Indonesian Institute of Sciences, Bogor, West Java, Indonesia ABSTRACT The morphology of sporophyte, the type of reproduction, and cytology of Pteris had been reported, while the gametophyte morphology of Pteris in Java island has not been studied yet. The objective of this study was to describe the gametophyte morphology and development of P. biaurita, P. ensiformis, P. exelsa, P. longipinnula, P. tripartita, and P. vittata in Java island. Spores were obtained from fertile leaves of Pteris plants originated from several locations in Java island. The number of spores per sporangium was counted from fresh fertile leaves with mature sporangia. As much as 0.002 g spores was sown in a transparent box with sterile medium contain of ver- miculite, sphagnum moss, and perlite with ratio 2:2:1. The gametophyte development of each species was observed under a microscope every 7 days. The spores of P. ensiformis were germinated faster, ten days after sowing, while the spores of P. longipinnula were germinated slower, 18 days after sowing. The pattern of spore germination is Vittaria-type.
    [Show full text]
  • The Island Rule and Its Application to Multiple Plant Traits
    The island rule and its application to multiple plant traits Annemieke Lona Hedi Hendriks A thesis submitted to the Victoria University of Wellington in partial fulfilment of the requirements for the degree of Master of Science in Ecology and Biodiversity Victoria University of Wellington, New Zealand 2019 ii “The larger the island of knowledge, the longer the shoreline of wonder” Ralph W. Sockman. iii iv General Abstract Aim The Island Rule refers to a continuum of body size changes where large mainland species evolve to become smaller and small species evolve to become larger on islands. Previous work focuses almost solely on animals, with virtually no previous tests of its predictions on plants. I tested for (1) reduced floral size diversity on islands, a logical corollary of the island rule and (2) evidence of the Island Rule in plant stature, leaf size and petiole length. Location Small islands surrounding New Zealand; Antipodes, Auckland, Bounty, Campbell, Chatham, Kermadec, Lord Howe, Macquarie, Norfolk, Snares, Stewart and the Three Kings. Methods I compared the morphology of 65 island endemics and their closest ‘mainland’ relative. Species pairs were identified. Differences between archipelagos located at various latitudes were also assessed. Results Floral sizes were reduced on islands relative to the ‘mainland’, consistent with predictions of the Island Rule. Plant stature, leaf size and petiole length conformed to the Island Rule, with smaller plants increasing in size, and larger plants decreasing in size. Main conclusions Results indicate that the conceptual umbrella of the Island Rule can be expanded to plants, accelerating understanding of how plant traits evolve on isolated islands.
    [Show full text]
  • A Taxonomic Account of Pteridophytic Flora of Adampur Forest, Moulvibazar District, Bangladesh
    Dhaka Univ. J. Biol. Sci. 27(1): 101-111, 2018 (January) A TAXONOMIC ACCOUNT OF PTERIDOPHYTIC FLORA OF ADAMPUR FOREST, MOULVIBAZAR DISTRICT, BANGLADESH NADRA TABASSUM* Department of Botany, University of Dhaka, Dhaka-1000, Bangladesh Key words: Taxonomic account, Pteridophytic flora, Adampur forest, Bangladesh Abstract A total of 17 pteridophyte species belonging to 11 genera and 9 families have been identified from Adampur forest of Moulvibazar district in Bangladesh are dealt with. Updated nomenclature with important synonyms, family name, English name, local name, citation of the specimen examined and a crisp description has been furnished under each species. Photographs of the species have been provided for easy identification. The voucher specimens have been deposited in the Dhaka University Salar Khan Herbarium, Department of Botany, University of Dhaka. Introduction Pteridophytes are widely distributed throughout the world. They show luxuriant growth from sea level to the highest mountains in moist and shady tropical and temperate forests(1). From the evolutionary point of view, pteridophytes are quite important for their evolutionary trend of vascular system and portraying the succession of seed habitat in the plants. Besides, they established a link between the lower group of plant and advanced seed bearing plants and consequently pteridophytes have been placed between the bryophytes and higher vascular plants. Despite being the ancient plants their vegetation is under threat in dominance of seed bearing plants(2). Some species are very beneficial to humans and many species attracts plant lovers for their graceful, fascinating and beautiful foliage (3). Although pteridophytes including ferns have been neglected due to its less economic importance but since ancient time ferns are of human interest for medical value as well.
    [Show full text]
  • Screening Ornamentals for Their Potential As As Accumulator Plants
    Journal of Agricultural Science; Vol. 5, No. 10; 2013 ISSN 1916-9752 E-ISSN 1916-9760 Published by Canadian Center of Science and Education Screening Ornamentals for Their Potential as As Accumulator Plants Stewart T. Reed1, Tomas Ayala-Silva1, Christopher B. Dunn1, Garry G. Gordon2 & Alan Meerow1 1 USDA, Agricultural Research Service, Subtropical Horticulture Research Station, 13601 Old Cutler Road, Miami, FL 33158, USA 2 Department of Homeland Security, U.S. Customs and Border Protection, Miami Cargo Clearance Center, 6601 NW 25TH Street Room 272, Miami, FL 33122, USA Correspondence: Stewart T. Reed, USDA, Agricultural Research Service, Subtropical Horticulture Research Station, 13601 Old Cutler Road, Miami, FL 33158, USA. Tel: 1-786-573-7048. E-mail: [email protected] Received: August 12, 2013 Accepted: August 28, 2013 Online Published: September 15, 2013 doi:10.5539/jas.v5n10p20 URL: http://dx.doi.org/10.5539/jas.v5n10p20 Abstract Arsenic-based pesticides, herbicides and insecticides are used in horticultural operations resulting in soil contamination around greenhouse structures. Phytoremediation and phytostabilization are two techniques for treating arsenic (As) contaminated soil. Several ornamental plant species, Iris (Iris savannarum), switchgrass (Panicum virgatum), Tithonia rotundiflora, Coreopsis lanceolata, sunflower (Helianthus annuus), and marigold (Tagetes erecta), were evaluated for their potential use as accumulator plants. Based on dry weight, tithonia and coreopsis were most sensitive to As. Tithonia had an 85% reduction in dry weight at 0.75 mg As L-1 and coreopsis a 65% reduction at 2.25 mg As L-1 solution concentration. Iris dry weight increased with increasing solution concentrations but As did not accumulate in tissue.
    [Show full text]
  • Central Coast Group PO Box 1604, Gosford NSW 2250 Austplants.Com.Au/Central-Coast
    Central Coast Group PO Box 1604, Gosford NSW 2250 austplants.com.au/Central-Coast Ferns for Central Coast Gardens Ferns can add a lush beauty to your garden or home. Dating back to the Carboniferous period, some 350 million years ago, ferns are one of the oldest plant forms. On the Central Coast there are many beautiful ferns indigenous to this area. Why not try some of these ferns: in your garden, indoors, in a hanging basket, in or near a water feature. What is a fern? Ferns belong to a group of non-flowering plants that include algae, mosses and liverworts. From large tree ferns such as Cyathea, to the tiny delicate Maidenhair Fern, Adiantum, ferns have one thing in common. They all produce spores. What growing conditions do ferns like? Most ferns prefer a cool, moist position in light dappled shade, protected from strong winds. Generally ferns like a soil containing plenty of organic matter. Heavy mulching around the root area will keep the roots cool and prevent water loss. A free draining mix should be used for plants grown in pots or baskets. Ferns grown indoors should be kept away from direct sunlight, draughts and heaters. Do ferns have any pests or diseases? Generally ferns are not troubled by many pests or diseases. However, slugs and snails can sometimes be a problem, as can scale, insect pests and mealy bug. If your plants suffer from any of these problems, consult your local nursery, as treatment of these pests is constantly being improved and updated. Where do ferns grow? Ferns can be found growing as: epiphytes sometimes attached to a tree high up in the canopy.
    [Show full text]
  • Phytoliths of Pteridophytes
    South African Journal of Botany 77 (2011) 10–19 Minireview Phytoliths of pteridophytes J. Mazumdar UGC Centre for Advanced Study, Department of Botany, The University of Burdwan, Burdwan-713104, India Received 3 June 2010; received in revised form 14 July 2010; accepted 28 July 2010 Abstract Study of phytoliths of pteridophytes is an emerging area of research. Literature on this aspect is limited but increasing. Some recent findings have shown that phytoliths may have systematic and phylogenetic utility in pteridophytes. Phytoliths are functionally significant for the development and survival of pteridophytes. Experiments with some pteridophytes have revealed various aspects of silica uptake, deposition and biological effects. © 2010 SAAB. Published by Elsevier B.V. All rights reserved. Keywords: Biogenic silica; Ferns; Pteridophytes; Phytolith; Silicification 1. Introduction In spite of environmental effects on silica uptake, ongoing investigations indicate that phytolith formation is primarily Many plants deposit silica as solid hydrated Silicone dioxide under genetic control (Piperno, 2006). Phytoliths have been (SiO2,nH2O) in the cell lumen or in intercellular spaces, where used successfully as taxonomic tools in angiosperms, especially it is known as “phytoliths” or “plant stones” (Greek, phyto = in monocots (Piperno, 1988; Tubb et al., 1993). Less plant, lithos = stone) or “silicophytoliths” or “opal phytoliths” or information is available about pteridophytic phytoliths. The “plant opal” or “opaline silica” or “biogenic silica” or “bioliths”. objective of this review is to evaluate the present status and The term “phytolith” may also be applied to other mineral future prospects of phytolith research in pteridophytes. structures of plant origin, including calcium oxalate crystals, but is more usually restricted to silica particles (Prychid et al., 2004).
    [Show full text]
  • Phytochrome Diversity in Green Plants and the Origin of Canonical Plant Phytochromes
    ARTICLE Received 25 Feb 2015 | Accepted 19 Jun 2015 | Published 28 Jul 2015 DOI: 10.1038/ncomms8852 OPEN Phytochrome diversity in green plants and the origin of canonical plant phytochromes Fay-Wei Li1, Michael Melkonian2, Carl J. Rothfels3, Juan Carlos Villarreal4, Dennis W. Stevenson5, Sean W. Graham6, Gane Ka-Shu Wong7,8,9, Kathleen M. Pryer1 & Sarah Mathews10,w Phytochromes are red/far-red photoreceptors that play essential roles in diverse plant morphogenetic and physiological responses to light. Despite their functional significance, phytochrome diversity and evolution across photosynthetic eukaryotes remain poorly understood. Using newly available transcriptomic and genomic data we show that canonical plant phytochromes originated in a common ancestor of streptophytes (charophyte algae and land plants). Phytochromes in charophyte algae are structurally diverse, including canonical and non-canonical forms, whereas in land plants, phytochrome structure is highly conserved. Liverworts, hornworts and Selaginella apparently possess a single phytochrome, whereas independent gene duplications occurred within mosses, lycopods, ferns and seed plants, leading to diverse phytochrome families in these clades. Surprisingly, the phytochrome portions of algal and land plant neochromes, a chimera of phytochrome and phototropin, appear to share a common origin. Our results reveal novel phytochrome clades and establish the basis for understanding phytochrome functional evolution in land plants and their algal relatives. 1 Department of Biology, Duke University, Durham, North Carolina 27708, USA. 2 Botany Department, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany. 3 University Herbarium and Department of Integrative Biology, University of California, Berkeley, California 94720, USA. 4 Royal Botanic Gardens Edinburgh, Edinburgh EH3 5LR, UK. 5 New York Botanical Garden, Bronx, New York 10458, USA.
    [Show full text]
  • Confocal Volumetric Μxrf and Fluorescence Computed Μ-Tomography Reveals Arsenic Three-Dimensional Distribution Within Intact Pteris Vittata Fronds
    Confocal Volumetric µXRF and Fluorescence Computed µ-Tomography Reveals Arsenic Three-Dimensional Distribution within Intact Pteris vittata Fronds Antony van der Ent, Martin de Jonge, Kathryn Spiers, Dennis Brueckner, Emmanuelle Montargès-Pelletier, Guillaume Echevarria, Xiaoming Wang, Mei Lei, Rachel Mak, James Lovett, et al. To cite this version: Antony van der Ent, Martin de Jonge, Kathryn Spiers, Dennis Brueckner, Emmanuelle Montargès- Pelletier, et al.. Confocal Volumetric µXRF and Fluorescence Computed µ-Tomography Reveals Arsenic Three-Dimensional Distribution within Intact Pteris vittata Fronds. Environmental Science and Technology, American Chemical Society, 2020, 54 (2), pp.745-757. 10.1021/acs.est.9b03878. hal-02401572 HAL Id: hal-02401572 https://hal.archives-ouvertes.fr/hal-02401572 Submitted on 16 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Confocal volumetric µXRF and fluorescence computed 2 µ-tomography reveals arsenic three-dimensional distribution 3 within intact Pteris vittata fronds 4 5 Antony van der Ent1,2*, Martin D. de Jonge3, Kathryn M. Spiers4, Dennis Brueckner4,5,6, 6 Emmanuelle Montargès-Pelletier7, Guillaume Echevarria2, Xiao-Ming Wan8, Mei Lei8, 7 Rachel Mak9, James Lovett10, Hugh H. Harris10* 8 9 1Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, 10 The University of Queensland, Australia.
    [Show full text]
  • National Wetland Plant List: 2016 Wetland Ratings
    Lichvar, R.W., D.L. Banks, W.N. Kirchner, and N.C. Melvin. 2016. The National Wetland Plant List: 2016 wetland ratings. Phytoneuron 2016-30: 1–17. Published 28 April 2016. ISSN 2153 733X THE NATIONAL WETLAND PLANT LIST: 2016 WETLAND RATINGS ROBERT W. LICHVAR U.S. Army Engineer Research and Development Center Cold Regions Research and Engineering Laboratory 72 Lyme Road Hanover, New Hampshire 03755-1290 DARIN L. BANKS U.S. Environmental Protection Agency, Region 7 Watershed Support, Wetland and Stream Protection Section 11201 Renner Boulevard Lenexa, Kansas 66219 WILLIAM N. KIRCHNER U.S. Fish and Wildlife Service, Region 1 911 NE 11 th Avenue Portland, Oregon 97232 NORMAN C. MELVIN USDA Natural Resources Conservation Service Central National Technology Support Center 501 W. Felix Street, Bldg. 23 Fort Worth, Texas 76115-3404 ABSTRACT The U.S. Army Corps of Engineers (Corps) administers the National Wetland Plant List (NWPL) for the United States (U.S.) and its territories. Responsibility for the NWPL was transferred to the Corps from the U.S. Fish and Wildlife Service (FWS) in 2006. From 2006 to 2012 the Corps led an interagency effort to update the list in conjunction with the U.S. Environmental Protection Agency (EPA), the FWS, and the USDA Natural Resources Conservation Service (NRCS), culminating in the publication of the 2012 NWPL. In 2013 and 2014 geographic ranges and nomenclature were updated. This paper presents the fourth update of the list under Corps administration. During the current update, the indicator status of 1689 species was reviewed. A total of 306 ratings of 186 species were changed during the update.
    [Show full text]
  • A Review on the Potential Uses of Ferns M
    Ethnobotanical Leaflets 12: 281-285. 2008. A Review on the Potential Uses of Ferns M. Mannar Mannan, M. Maridass* and B.Victor Animal Health Research Unit, St. Xavier’s College (Autonomous) Palayamkottai, Tamil Nadu – 627002 *Corresponding Author: Dr. M. Maridass, DST-SERC-Young Scientist Animal Health Research Unit St. Xavier’s College (Autonomous), Palayamkottai, Tamil Nadu – 627002. Email: [email protected] Issued 24 May 2008 Introduction Man has been using plants as a source of food, medicines and many other necessities of life since ancient times. Even to this day the primitive tribal societies that exist depend on the plant life in their surroundings. Though there were investigations of the edible economic values of the higher plants, especially the pteridophytes and angiosperms have been unfortunately ignored. The pteridophytes are used in Homoeopathic, Ayurvedic, Tribal and Unani medicines and provides food, insecticides and ornamentations. Ferns used as food With very few exception ferns have not been widely used as a source of food. The fern stems, rhizomes, leaves, young fronds and shoots and some whole plants are used for food. Tree ferns have often been used as food and starch in Hawaii. Also, ferns are supposed to increase milk production when fed to cows in Sicily. The young fronds and underground stem of the fern Asplenium ensiforme are used for food by hilly tribes. In Malaysia, Blechnum orientalis L., rhizome is eaten and whole plant is used as feed and as poultice in boil. The fronds of Ceratopteris thalictroides are used as a vegetable. The young fronds of Diplazium esculentum are eaten either as salad or as vegetable after cooking.
    [Show full text]