Deorbit Maneuver and Targeting Strategy for Unmanned Mars Landers

Total Page:16

File Type:pdf, Size:1020Kb

Deorbit Maneuver and Targeting Strategy for Unmanned Mars Landers The Space Congress® Proceedings 1968 (5th) The Challenge of the 1970's Apr 1st, 8:00 AM Deorbit Maneuver and Targeting Strategy for Unmanned Mars Landers W. J. Pragluski Martin Marietta Corporation D. Marquet Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Pragluski, W. J. and Marquet, D., "Deorbit Maneuver and Targeting Strategy for Unmanned Mars Landers" (1968). The Space Congress® Proceedings. 3. https://commons.erau.edu/space-congress-proceedings/proceedings-1968-5th/session-6/3 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. DEORBIT MANEUVER AND TARGETING STRATEGY FOR UNMANNED MARS LANDERS by W. J, Pragluski, D. Marquet Martin Marietta Corporation, Denver, Colorado SUMMARY Several deorbit maneuver strategies for unman­ certainties. This aspect of the error analysis ned Mars soft landers are evaluated in terms of pro­ leads to the definition of an entry corridor and pulsive efficiency, targeting capability, communica­ selection of potential landing areas for 'early tion link geometry, and sensitivity to system uncer­ missions. tainties. These strategies include (1) minimum de- orbit impulse, (2) minimum entry condition uncertain­ The final aspect of the analysis includes the ties, (3) minimum variation in the lander antenna effect of targeting flexibility on the post land­ aspect angle during entry, (4) minimum communication ing communication link characteristics between the range from the lander to the orbiting spacecraft dur­ lander and orbiting spacecraft. The influence of ing entry. The selected maneuver strategy is a com­ both aspects of the error analysis on the post bination of the above which restricts orbiter lead landing communication link is discussed. angles to the range between 0 deg and -10 deg. The analysis covers a range of elliptical orbits with ' INTRODtJCTION periapsis altitudes of 500 to 2500 KM and apoapsis altitudes of 10,000 to 20,000 KM. The nominal The analysis of deorbit maneuver strategy orbit which is selected in order to best satisfy only be meaningful if it is made within the bound­ all mission considerations is 1300 KM by 12,500 KM aries imposed by scientific objectives of the mis­ (hp x hA) . sion, system capabilities, and constraints imposed on the mission profile by subsystem design, consid­ Mission considerations include orbit orienta­ erations. To establish a deorbit maneuver strategy tion of the orbiting spacecraft for planet surface all of the flight operations in- the vicinity of mapping, landing site location between 15 to 30 Ma r s - mu st be considered i n c lud i ng or b i t, s e 1 ec t 1on 9 degrees from the terminator for entry TV imaging, deorbit impulse size.,, guidance subsystem accura­ and orbit characteristics which insure a 50-year cies, co iranu n i c a t ion subsystem 1 i nk geome t r i e s , and, orbit lifetime and non-occultation of either the last, but hardly least, the ability to place the Sun or Star Canopus for 30 days after encounter. lander at scientifically interesting landing areas. These constraints, coupled with the uncertainties The analysis presented 'below touches on many of introduced by trans-Mars navigation uncertainty and the more important aspects which must be considered. orbit insertion maneuver uncertainties, are used in It includes propulsion subsystem considerations for the definition of minimum targeting flexibility re­ orbit insertion, orbit trim, and deorbit, the error quired to land at a preselected location (latitude analysis associated with these maneuvers, targeting, and longitude) and the regions of Mars which can be capability, and communication subsystem link geom­ selected for landing. The selection of a landing etry 'characteristics. These analyses lead to the site after surveillance from orbit where as much selection of a deorbit maneuver strategy and range targeting flexibility as possible is desired is of suggested orbits. also considered. Before proceeding with the analysis, a brief Two aspects of the error analysis are consid­ description of the total mission, profile is present­ ered. The first deals with the range of orbits ed below to provide, the proper perspective. This relative to a preselected nominal which might be includes the more important mission, constraints experienced. The sources leading to this range assumed in this analysis. Only the operations in uncertainty include cruise navigation, orbit in­ the vicinity of Mars are presented. In any detail* sertion maneuver, and orbit trim maneuver. The deorbit maneuver strategy must be capable of com­ MISSION PROFILE AMD COMSimilTS pensating for these orbit uncertainties if a pre­ selected landing site is to be acquired. Total Mission Profile The second aspect of the error analysis deals The mission profile considered is shown In with the flight conditions at entry and landing Figure 1. The planetary vehicle, orbit ing space­ site acquisition accuracy. The uncertainty sources craft and lander , is inje.ct.ed onto a trans-Mars • considered here include orbit ephemeris determina­ trajectory from an Earth parking orbit* A Sun- tion accuracy, deorbit maneuver, and atmosphere un­ Ganopus attitude control system is employed during 6.3-1 the cruise mode. At least two midcourse maneuvers representative opportunity to discuss some of the might be required during the trip of about 200 days orbit insertion and orbit geometry considerations. duration. Based on Earth tracking and the desired The energy contours for a Type I mission are pre­ landing site, the orbit insertion command is calcu- sented in Figure 2. The relationship between _ lated and sent to the planetary vehicle. At a pro­ Earth departure energy, C~ 9 and Mars approach grammed time the orbit insertion maneuver is execu­ energy, V « 3 is illustrated. Two constraint bound­ ted, At least four orbits are assumed to determine aries are also shown. The lower limit on encounter the ephemeris of the resulting orbit from Earth- date is established by limiting the ¥„„ to less than based tracking. An orbit trim maneuver may be re­ 3,25 KM/SEC. The declination of the departure asymp- quired to compensate for the off-nominal orbit has been constrained tote, § HE® to be less than resulting from approach and orbit uncertainties, 35 deg from a range safety consideration. The cross Potential landing sites may be viewed from orbit hatched region is where the most favorable pay load and a site selected. Four to five days after orbit margins occur,- This is the combination of insertion, depending on the desired landing site which results in near maximum pay loads in orbit in?rill longitude, the lander is separated from the orbiting about Mars, Three circled points of interest are 'Spacecraft, The lander orients itself for deorbit shown. Points (1) and, (2) axe used for the discus­ firing during a ha If -hour coast phase required to sion of periapsis shift requirements presented below. separate the two vehicles by at least 300 meters, Point (3) is used for the example of occultation con­ The deorbit engine 'is fired and the lander then, straints. coasts to the desired atmospheric entry point. Be­ tween .deorbit firing and entry the lander is reor­ Constraints iented to provide a nominal entry angle of attack of aero degrees, A ballistic entry is followed by The mission constraints considered in this parachute deployment at an altitude of about 18,000 paper are given in Table I. below, along with a brief ft above the surface. Vernier ignition and para­ comment on their source and influence on the mission. chute jettison occur at an altitude of about 5000 ft, Vernier shutdown occurs 10 feet above the surface NEAR MRS. PROPULSIVE PHASES and the lander free-falls to the surface* The de­ tails of the terminal phase system are discussed in faother paper and are not considered here* The orbit insertion phase is discussed in terns of the impulse required and the associated errors. Only insertion at the periapsis of the approach fhe 1973 Mars mission is selected 'here as a hyperbola 'is discussed in this section., The influ-* mius i IHElJJgEICK 1», Orbit lifetime of at least 50 years Non- sterilisation of the orbit­ Size of orbits ing spacecraft 2. Orbit insertion A V fl¥ less than Reasonable weights in orbit $ize of orbits and 1,75 shifts allowable 3% Inclination of orbit to Hartian Orbiting spacecraft mapping Allowable landing site lati­ equator greater than 30 deg mission tudes 4* * £Ton*occultation of either the Sun Orblt ing spacecraft at11tude Al lowable Incl ina tions a t or Ganopus for 30 days after en­ control reference and, power Mars counter source 5* Landing site located 'between, 15 to Entry TV imaging Allowable range of targeting 30 deg from the terminator parameter 6* Orbiter sub-periapsis between sero Orbiter TV imaging Allowable range of targeting to 45 deg from the terminator parameter and. periapsis shift 7* Orbit insertion, in view of Gold- Mi s s ion operat ions. Time of arrival; orbit orien­ stone tation 8* A VD < |,00 I/SIC leu sonable lander weights Allowable range of targeting parameter t, fu* < 3*25 KM/SBC 'Reasonable weights in orbit Allowable range of orbits and perlapsIs shlft ence of periapsis shift requirements on Z-iV T is maneuver impulse of 150 nips is assumed here with maneuver uncertainties of 5% of impulse (3 <T ) later. Impulsive maneuvers are assumed. discussed both normal and parallel to the nominal AV. The period error after trim will be .081 hours Orbit Insertion Impu1se. The maximum Av O.I. (one sigma) for the 1000 x 15 ,000 KM orbit used as considered is 1.75 KM/SEC (Table I).
Recommended publications
  • Astrodynamics
    Politecnico di Torino SEEDS SpacE Exploration and Development Systems Astrodynamics II Edition 2006 - 07 - Ver. 2.0.1 Author: Guido Colasurdo Dipartimento di Energetica Teacher: Giulio Avanzini Dipartimento di Ingegneria Aeronautica e Spaziale e-mail: [email protected] Contents 1 Two–Body Orbital Mechanics 1 1.1 BirthofAstrodynamics: Kepler’sLaws. ......... 1 1.2 Newton’sLawsofMotion ............................ ... 2 1.3 Newton’s Law of Universal Gravitation . ......... 3 1.4 The n–BodyProblem ................................. 4 1.5 Equation of Motion in the Two-Body Problem . ....... 5 1.6 PotentialEnergy ................................. ... 6 1.7 ConstantsoftheMotion . .. .. .. .. .. .. .. .. .... 7 1.8 TrajectoryEquation .............................. .... 8 1.9 ConicSections ................................... 8 1.10 Relating Energy and Semi-major Axis . ........ 9 2 Two-Dimensional Analysis of Motion 11 2.1 ReferenceFrames................................. 11 2.2 Velocity and acceleration components . ......... 12 2.3 First-Order Scalar Equations of Motion . ......... 12 2.4 PerifocalReferenceFrame . ...... 13 2.5 FlightPathAngle ................................. 14 2.6 EllipticalOrbits................................ ..... 15 2.6.1 Geometry of an Elliptical Orbit . ..... 15 2.6.2 Period of an Elliptical Orbit . ..... 16 2.7 Time–of–Flight on the Elliptical Orbit . .......... 16 2.8 Extensiontohyperbolaandparabola. ........ 18 2.9 Circular and Escape Velocity, Hyperbolic Excess Speed . .............. 18 2.10 CosmicVelocities
    [Show full text]
  • A Hot Subdwarf-White Dwarf Super-Chandrasekhar Candidate
    A hot subdwarf–white dwarf super-Chandrasekhar candidate supernova Ia progenitor Ingrid Pelisoli1,2*, P. Neunteufel3, S. Geier1, T. Kupfer4,5, U. Heber6, A. Irrgang6, D. Schneider6, A. Bastian1, J. van Roestel7, V. Schaffenroth1, and B. N. Barlow8 1Institut fur¨ Physik und Astronomie, Universitat¨ Potsdam, Haus 28, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam-Golm, Germany 2Department of Physics, University of Warwick, Coventry, CV4 7AL, UK 3Max Planck Institut fur¨ Astrophysik, Karl-Schwarzschild-Straße 1, 85748 Garching bei Munchen¨ 4Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA 5Texas Tech University, Department of Physics & Astronomy, Box 41051, 79409, Lubbock, TX, USA 6Dr. Karl Remeis-Observatory & ECAP, Astronomical Institute, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Sternwartstr. 7, 96049 Bamberg, Germany 7Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 8Department of Physics and Astronomy, High Point University, High Point, NC 27268, USA *[email protected] ABSTRACT Supernova Ia are bright explosive events that can be used to estimate cosmological distances, allowing us to study the expansion of the Universe. They are understood to result from a thermonuclear detonation in a white dwarf that formed from the exhausted core of a star more massive than the Sun. However, the possible progenitor channels leading to an explosion are a long-standing debate, limiting the precision and accuracy of supernova Ia as distance indicators. Here we present HD 265435, a binary system with an orbital period of less than a hundred minutes, consisting of a white dwarf and a hot subdwarf — a stripped core-helium burning star.
    [Show full text]
  • Electric Propulsion System Scaling for Asteroid Capture-And-Return Missions
    Electric propulsion system scaling for asteroid capture-and-return missions Justin M. Little⇤ and Edgar Y. Choueiri† Electric Propulsion and Plasma Dynamics Laboratory, Princeton University, Princeton, NJ, 08544 The requirements for an electric propulsion system needed to maximize the return mass of asteroid capture-and-return (ACR) missions are investigated in detail. An analytical model is presented for the mission time and mass balance of an ACR mission based on the propellant requirements of each mission phase. Edelbaum’s approximation is used for the Earth-escape phase. The asteroid rendezvous and return phases of the mission are modeled as a low-thrust optimal control problem with a lunar assist. The numerical solution to this problem is used to derive scaling laws for the propellant requirements based on the maneuver time, asteroid orbit, and propulsion system parameters. Constraining the rendezvous and return phases by the synodic period of the target asteroid, a semi- empirical equation is obtained for the optimum specific impulse and power supply. It was found analytically that the optimum power supply is one such that the mass of the propulsion system and power supply are approximately equal to the total mass of propellant used during the entire mission. Finally, it is shown that ACR missions, in general, are optimized using propulsion systems capable of processing 100 kW – 1 MW of power with specific impulses in the range 5,000 – 10,000 s, and have the potential to return asteroids on the order of 103 104 tons. − Nomenclature
    [Show full text]
  • AFSPC-CO TERMINOLOGY Revised: 12 Jan 2019
    AFSPC-CO TERMINOLOGY Revised: 12 Jan 2019 Term Description AEHF Advanced Extremely High Frequency AFB / AFS Air Force Base / Air Force Station AOC Air Operations Center AOI Area of Interest The point in the orbit of a heavenly body, specifically the moon, or of a man-made satellite Apogee at which it is farthest from the earth. Even CAP rockets experience apogee. Either of two points in an eccentric orbit, one (higher apsis) farthest from the center of Apsis attraction, the other (lower apsis) nearest to the center of attraction Argument of Perigee the angle in a satellites' orbit plane that is measured from the Ascending Node to the (ω) perigee along the satellite direction of travel CGO Company Grade Officer CLV Calculated Load Value, Crew Launch Vehicle COP Common Operating Picture DCO Defensive Cyber Operations DHS Department of Homeland Security DoD Department of Defense DOP Dilution of Precision Defense Satellite Communications Systems - wideband communications spacecraft for DSCS the USAF DSP Defense Satellite Program or Defense Support Program - "Eyes in the Sky" EHF Extremely High Frequency (30-300 GHz; 1mm-1cm) ELF Extremely Low Frequency (3-30 Hz; 100,000km-10,000km) EMS Electromagnetic Spectrum Equitorial Plane the plane passing through the equator EWR Early Warning Radar and Electromagnetic Wave Resistivity GBR Ground-Based Radar and Global Broadband Roaming GBS Global Broadcast Service GEO Geosynchronous Earth Orbit or Geostationary Orbit ( ~22,300 miles above Earth) GEODSS Ground-Based Electro-Optical Deep Space Surveillance
    [Show full text]
  • Use of MESSENGER Radioscience Data to Improve Planetary Ephemeris and to Test General Relativity
    A&A 561, A115 (2014) Astronomy DOI: 10.1051/0004-6361/201322124 & © ESO 2014 Astrophysics Use of MESSENGER radioscience data to improve planetary ephemeris and to test general relativity A. K. Verma1;2, A. Fienga3;4, J. Laskar4, H. Manche4, and M. Gastineau4 1 Observatoire de Besançon, UTINAM-CNRS UMR6213, 41bis avenue de l’Observatoire, 25000 Besançon, France e-mail: [email protected] 2 Centre National d’Études Spatiales, 18 avenue Édouard Belin, 31400 Toulouse, France 3 Observatoire de la Côte d’Azur, GéoAzur-CNRS UMR7329, 250 avenue Albert Einstein, 06560 Valbonne, France 4 Astronomie et Systèmes Dynamiques, IMCCE-CNRS UMR8028, 77 Av. Denfert-Rochereau, 75014 Paris, France Received 24 June 2013 / Accepted 7 November 2013 ABSTRACT The current knowledge of Mercury’s orbit has mainly been gained by direct radar ranging obtained from the 60s to 1998 and by five Mercury flybys made with Mariner 10 in the 70s, and with MESSENGER made in 2008 and 2009. On March 18, 2011, MESSENGER became the first spacecraft to orbit Mercury. The radioscience observations acquired during the orbital phase of MESSENGER drastically improved our knowledge of the orbit of Mercury. An accurate MESSENGER orbit is obtained by fitting one-and-half years of tracking data using GINS orbit determination software. The systematic error in the Earth-Mercury geometric positions, also called range bias, obtained from GINS are then used to fit the INPOP dynamical modeling of the planet motions. An improved ephemeris of the planets is then obtained, INPOP13a, and used to perform general relativity tests of the parametrized post-Newtonian (PPN) formalism.
    [Show full text]
  • Go, No-Go for Apollo Based on Orbital Life Time
    https://ntrs.nasa.gov/search.jsp?R=19660014325 2020-03-24T02:45:56+00:00Z I L GO, NO-GO FOR APOLLO BASED ON ORBITAL LIFE TIME I hi 01 GPO PRICE $ Q N66(ACCESSION -2361 NUMBER1 4 ITHRU) Pf - CFSTI PRICE(S) $ > /7 (CODE) IPAGES) 'I 2 < -55494 (CATEGORY) f' (NASA CR OR rwx OR AD NUMBER) Hard copy (HC) /# d-a I Microfiche (M F) I By ff653 Julv65 F. 0. VONBUN NOVEMBER 1965 t GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND ABSTRACT A simple expression for the go, no-go criterion is derived in analytical form. This provides a better understanding of the prob- lems involved which is lacking when large computer programs are used. A comparison between "slide rule" results and computer re- sults is indicated on Figure 2. An example is given using a 185 km near circular parking or- bit. It is shown that a 3a speed error of 6 m/s and a 3c~flight path angle error of 4.5 mrad result in a 3c~perigee error of 30 km which is tolerable when a 5 day orbital life time of the Apollo (SIVB + Service + Command Module) is required. iii CONTENTS Page INTRODUCTION ...................................... 1 I. VARLATIONAL EQUATION FOR THE PERIGEE HEIGHT h,. 1 11. THE ERROR IN THE ORBITAL PERIGEE HEIGHT ah,. 5 III. CRITERION FOR GO, NO-GO IN SIMPLE FORM . 5 REFERENCES ....................................... 10 LIST OF ILLUSTRATIONS Figure Page 1 Orbital Insertion Geometry . 2 2 Perigee Error for Apollo Parking Orbits (e 0, h, = 185 km) . 6 3 Height of the Apollo Parking Orbit After Insertion .
    [Show full text]
  • Spacex Rocket Data Satisfies Elementary Hohmann Transfer Formula E-Mail: [email protected] and [email protected]
    IOP Physics Education Phys. Educ. 55 P A P ER Phys. Educ. 55 (2020) 025011 (9pp) iopscience.org/ped 2020 SpaceX rocket data satisfies © 2020 IOP Publishing Ltd elementary Hohmann transfer PHEDA7 formula 025011 Michael J Ruiz and James Perkins M J Ruiz and J Perkins Department of Physics and Astronomy, University of North Carolina at Asheville, Asheville, NC 28804, United States of America SpaceX rocket data satisfies elementary Hohmann transfer formula E-mail: [email protected] and [email protected] Printed in the UK Abstract The private company SpaceX regularly launches satellites into geostationary PED orbits. SpaceX posts videos of these flights with telemetry data displaying the time from launch, altitude, and rocket speed in real time. In this paper 10.1088/1361-6552/ab5f4c this telemetry information is used to determine the velocity boost of the rocket as it leaves its circular parking orbit around the Earth to enter a Hohmann transfer orbit, an elliptical orbit on which the spacecraft reaches 1361-6552 a high altitude. A simple derivation is given for the Hohmann transfer velocity boost that introductory students can derive on their own with a little teacher guidance. They can then use the SpaceX telemetry data to verify the Published theoretical results, finding the discrepancy between observation and theory to be 3% or less. The students will love the rocket videos as the launches and 3 transfer burns are very exciting to watch. 2 Introduction Complex 39A at the NASA Kennedy Space Center in Cape Canaveral, Florida. This launch SpaceX is a company that ‘designs, manufactures and launches advanced rockets and spacecraft.
    [Show full text]
  • Interplanetary Trajectory Design Using Dynamical Systems Theory THESIS REPORT by Linda Van Der Ham
    Interplanetary Trajectory Design using Dynamical Systems Theory THESIS REPORT by Linda van der Ham 8 February 2012 The image on the front is an artist impression of the Interplanetary Super- highway [NASA, 2002]. Preface This MSc. thesis forms the last part of the curriculum of Aerospace Engineering at Delft University of Technology in the Netherlands. It covers subjects from the MSc. track Space Exploration, focusing on astrodynamics and space missions, as well as new theory as studied in the literature study performed previously. Dynamical Systems Theory was one of those new subjects, I had never heard of before. The existence of a so-called Interplanetary Transport Network intrigued me and its use for space exploration would mean a total new way of transfer. During the literature study I did not find any practical application of the the- ory to interplanetary flight, while it was stated as a possibility. This made me wonder whether it was even an option, a question that could not be answered until the end of my thesis work. I would like to thank my supervisor Ron Noomen, for his help and enthusi- asm during this period; prof. Wakker for his inspirational lectures about the wonders of astrodynamics; the Tudat group, making research easier for a lot of students in the future. My parents for their unlimited support in every way. And Wouter, for being there. Thank you all and enjoy! i ii Abstract In this thesis, manifolds in the coupled planar circular restricted three-body problem (CR3BP) as means of interplanetary transfer are examined. The equa- tions of motion or differential equations of the CR3BP are studied according to Dynamical Systems Theory (DST).
    [Show full text]
  • Trajectory Design Tools for Libration and Cis-Lunar Environments
    Trajectory Design Tools for Libration and Cis-Lunar Environments David C. Folta, Cassandra M. Webster, Natasha Bosanac, Andrew Cox, Davide Guzzetti, and Kathleen C. Howell National Aeronautics and Space Administration/ Goddard Space Flight Center, Greenbelt, MD, 20771 [email protected], [email protected] School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN 47907 {nbosanac,cox50,dguzzett,howell}@purdue.edu ABSTRACT science orbit. WFIRST trajectory design is based on an optimal direct-transfer trajectory to a specific Sun- Innovative trajectory design tools are required to Earth L2 quasi-halo orbit. support challenging multi-body regimes with complex dynamics, uncertain perturbations, and the integration Trajectory design in support of lunar and libration of propulsion influences. Two distinctive tools, point missions is becoming more challenging as more Adaptive Trajectory Design and the General Mission complex mission designs are envisioned. To meet Analysis Tool have been developed and certified to these greater challenges, trajectory design software provide the astrodynamics community with the ability must be developed or enhanced to incorporate to design multi-body trajectories. In this paper we improved understanding of the Sun-Earth/Moon discuss the multi-body design process and the dynamical solution space and to encompass new capabilities of both tools. Demonstrable applications to optimal methods. Thus the support community needs confirmed missions, the Lunar IceCube Cubesat lunar to improve the efficiency and expand the capabilities mission and the Wide-Field Infrared Survey Telescope of current trajectory design approaches. For example, (WFIRST) Sun-Earth L2 mission, are presented. invariant manifolds, derived from dynamical systems theory, have been applied to the trajectory design of 1.
    [Show full text]
  • Exergy Efficiency of Interplanetary Transfer Vehicles
    2018 Conference on Systems Engineering Research Exergy Efficiency of Interplanetary Transfer Vehicles Sean T. Owena, Michael D. Watsonb*, Mitchell A. Rodriguezc aUniversity of Alabama in Huntsville, Huntsville, AL 35899, USA bNASA Marshall Space Flight Center, Huntsville, AL 35812 cJacobs Space Exploration Group, Huntsville, AL 35806, USA Abstract In order to optimize systems, systems engineers require some sort of measure with which to compare vastly different system components. One such measure is system exergy, or the usable system work. Exergy balance analysis models provide a comparison of different system configurations, allowing systems engineers to compare different systems configuration options. This paper presents the exergy efficiency of several Mars transportation system configurations, using data on the interplanetary trajectory, engine performance, and vehicle mass. The importance of the starting and final parking orbits is addressed in the analysis, as well as intermediate hyperbolic escape and entry orbits within Earth and Mars’ spheres of influence (SOIs). Propulsion systems analyzed include low-enriched uranium (LEU) nuclear thermal propulsion (NTP), high-enriched uranium (HEU) NTP, LEU methane (CH4) NTP, and liquid oxygen (LOX)/liquid hydrogen (LH2) chemical propulsion. © 2018 The Authors. Keywords: Interplanetary; Propulsion System; Sphere of Influence; Systems Engineering; System Exergy; Trajectory 1. Introduction everal space agencies, including NASA, are planning manned exploration of Mars in the upcoming decades. Many different mission S architectures have been proposed for accomplishing this. It is the role of systems engineers to compare and optimize different space transportation systems and components, up to and including full mission architectures. To do this, some measure is needed that applies * Corresponding author.
    [Show full text]
  • THE BINARY COLLISION APPROXIMATION: Iliiilms BACKGROUND and INTRODUCTION Mark T
    O O i, j / O0NF-9208146--1 DE92 040887 Invited paper for Proceedings of the International Conference on Computer Simulations of Radiation Effects in Solids, Hahn-Meitner Institute Berlin Berlin, Germany August 23-28 1992 The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE-AC05-84OR214O0. Accordingly, the U S. Government retains a nonexclusive, royalty* free licc-nc to publish or reproduce the published form of uiii contribution, or allow othen to do jo, for U.S. Government purposes." THE BINARY COLLISION APPROXIMATION: IliiilMS BACKGROUND AND INTRODUCTION Mark T. Robinson >._« « " _>i 8 « g i. § 8 " E 1.2 .§ c « •o'c'lf.S8 ° °% as SOLID STATE DIVISION OAK RIDGE NATIONAL LABORATORY Managed by MARTIN MARIETTA ENERGY SYSTEMS, INC. Under Contract No. DE-AC05-84OR21400 § g With the ••g ^ U. S. DEPARTMENT OF ENERGY OAK RIDGE, TENNESSEE August 1992 'g | .11 DISTRIBUTION OP THIS COOL- ::.•:•! :•' !S Ui^l J^ THE BINARY COLLISION APPROXIMATION: BACKGROUND AND INTRODUCTION Mark T. Robinson Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6032, U. S. A. ABSTRACT The binary collision approximation (BCA) has long been used in computer simulations of the interactions of energetic atoms with solid targets, as well as being the basis of most analytical theory in this area. While mainly a high-energy approximation, the BCA retains qualitative significance at low energies and, with proper formulation, gives useful quantitative information as well. Moreover, computer simulations based on the BCA can achieve good statistics in many situations where those based on full classical dynamical models require the most advanced computer hardware or are even impracticable.
    [Show full text]
  • A Delta-V Map of the Known Main Belt Asteroids
    Acta Astronautica 146 (2018) 73–82 Contents lists available at ScienceDirect Acta Astronautica journal homepage: www.elsevier.com/locate/actaastro A Delta-V map of the known Main Belt Asteroids Anthony Taylor *, Jonathan C. McDowell, Martin Elvis Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA, USA ARTICLE INFO ABSTRACT Keywords: With the lowered costs of rocket technology and the commercialization of the space industry, asteroid mining is Asteroid mining becoming both feasible and potentially profitable. Although the first targets for mining will be the most accessible Main belt near Earth objects (NEOs), the Main Belt contains 106 times more material by mass. The large scale expansion of NEO this new asteroid mining industry is contingent on being able to rendezvous with Main Belt asteroids (MBAs), and Delta-v so on the velocity change required of mining spacecraft (delta-v). This paper develops two different flight burn Shoemaker-Helin schemes, both starting from Low Earth Orbit (LEO) and ending with a successful MBA rendezvous. These methods are then applied to the 700,000 asteroids in the Minor Planet Center (MPC) database with well-determined orbits to find low delta-v mining targets among the MBAs. There are 3986 potential MBA targets with a delta- v < 8kmsÀ1, but the distribution is steep and reduces to just 4 with delta-v < 7kms-1. The two burn methods are compared and the orbital parameters of low delta-v MBAs are explored. 1. Introduction [2]. A running tabulation of the accessibility of NEOs is maintained on- line by Lance Benner3 and identifies 65 NEOs with delta-v< 4:5kms-1.A For decades, asteroid mining and exploration has been largely dis- separate database based on intensive numerical trajectory calculations is missed as infeasible and unprofitable.
    [Show full text]