Strategies for On-Orbit Assembly of Modular Spacecraft
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Astrodynamics
Politecnico di Torino SEEDS SpacE Exploration and Development Systems Astrodynamics II Edition 2006 - 07 - Ver. 2.0.1 Author: Guido Colasurdo Dipartimento di Energetica Teacher: Giulio Avanzini Dipartimento di Ingegneria Aeronautica e Spaziale e-mail: [email protected] Contents 1 Two–Body Orbital Mechanics 1 1.1 BirthofAstrodynamics: Kepler’sLaws. ......... 1 1.2 Newton’sLawsofMotion ............................ ... 2 1.3 Newton’s Law of Universal Gravitation . ......... 3 1.4 The n–BodyProblem ................................. 4 1.5 Equation of Motion in the Two-Body Problem . ....... 5 1.6 PotentialEnergy ................................. ... 6 1.7 ConstantsoftheMotion . .. .. .. .. .. .. .. .. .... 7 1.8 TrajectoryEquation .............................. .... 8 1.9 ConicSections ................................... 8 1.10 Relating Energy and Semi-major Axis . ........ 9 2 Two-Dimensional Analysis of Motion 11 2.1 ReferenceFrames................................. 11 2.2 Velocity and acceleration components . ......... 12 2.3 First-Order Scalar Equations of Motion . ......... 12 2.4 PerifocalReferenceFrame . ...... 13 2.5 FlightPathAngle ................................. 14 2.6 EllipticalOrbits................................ ..... 15 2.6.1 Geometry of an Elliptical Orbit . ..... 15 2.6.2 Period of an Elliptical Orbit . ..... 16 2.7 Time–of–Flight on the Elliptical Orbit . .......... 16 2.8 Extensiontohyperbolaandparabola. ........ 18 2.9 Circular and Escape Velocity, Hyperbolic Excess Speed . .............. 18 2.10 CosmicVelocities -
Electric Propulsion System Scaling for Asteroid Capture-And-Return Missions
Electric propulsion system scaling for asteroid capture-and-return missions Justin M. Little⇤ and Edgar Y. Choueiri† Electric Propulsion and Plasma Dynamics Laboratory, Princeton University, Princeton, NJ, 08544 The requirements for an electric propulsion system needed to maximize the return mass of asteroid capture-and-return (ACR) missions are investigated in detail. An analytical model is presented for the mission time and mass balance of an ACR mission based on the propellant requirements of each mission phase. Edelbaum’s approximation is used for the Earth-escape phase. The asteroid rendezvous and return phases of the mission are modeled as a low-thrust optimal control problem with a lunar assist. The numerical solution to this problem is used to derive scaling laws for the propellant requirements based on the maneuver time, asteroid orbit, and propulsion system parameters. Constraining the rendezvous and return phases by the synodic period of the target asteroid, a semi- empirical equation is obtained for the optimum specific impulse and power supply. It was found analytically that the optimum power supply is one such that the mass of the propulsion system and power supply are approximately equal to the total mass of propellant used during the entire mission. Finally, it is shown that ACR missions, in general, are optimized using propulsion systems capable of processing 100 kW – 1 MW of power with specific impulses in the range 5,000 – 10,000 s, and have the potential to return asteroids on the order of 103 104 tons. − Nomenclature -
AFSPC-CO TERMINOLOGY Revised: 12 Jan 2019
AFSPC-CO TERMINOLOGY Revised: 12 Jan 2019 Term Description AEHF Advanced Extremely High Frequency AFB / AFS Air Force Base / Air Force Station AOC Air Operations Center AOI Area of Interest The point in the orbit of a heavenly body, specifically the moon, or of a man-made satellite Apogee at which it is farthest from the earth. Even CAP rockets experience apogee. Either of two points in an eccentric orbit, one (higher apsis) farthest from the center of Apsis attraction, the other (lower apsis) nearest to the center of attraction Argument of Perigee the angle in a satellites' orbit plane that is measured from the Ascending Node to the (ω) perigee along the satellite direction of travel CGO Company Grade Officer CLV Calculated Load Value, Crew Launch Vehicle COP Common Operating Picture DCO Defensive Cyber Operations DHS Department of Homeland Security DoD Department of Defense DOP Dilution of Precision Defense Satellite Communications Systems - wideband communications spacecraft for DSCS the USAF DSP Defense Satellite Program or Defense Support Program - "Eyes in the Sky" EHF Extremely High Frequency (30-300 GHz; 1mm-1cm) ELF Extremely Low Frequency (3-30 Hz; 100,000km-10,000km) EMS Electromagnetic Spectrum Equitorial Plane the plane passing through the equator EWR Early Warning Radar and Electromagnetic Wave Resistivity GBR Ground-Based Radar and Global Broadband Roaming GBS Global Broadcast Service GEO Geosynchronous Earth Orbit or Geostationary Orbit ( ~22,300 miles above Earth) GEODSS Ground-Based Electro-Optical Deep Space Surveillance -
Orbit and Spin
Orbit and Spin Overview: A whole-body activity that explores the relative sizes, distances, orbit, and spin of the Sun, Earth, and Moon. Target Grade Level: 3-5 Estimated Duration: 2 40-minute sessions Learning Goals: Students will be able to… • compare the relative sizes of the Earth, Moon, and Sun. • contrast the distance between the Earth and Moon to the distance between the Earth and Sun. • differentiate between the motions of orbit and spin. • demonstrate the spins of the Earth and the Moon, as well as the orbits of the Earth around the Sun, and the Moon around the Earth. Standards Addressed: Benchmarks (AAAS, 1993) The Physical Setting, 4A: The Universe, 4B: The Earth National Science Education Standards (NRC, 1996) Physical Science, Standard B: Position and motion of objects Earth and Space Science, Standard D: Objects in the sky, Changes in Earth and sky Table of Contents: Background Page 1 Materials and Procedure 5 What I Learned… Science Journal Page 14 Earth Picture 15 Sun Picture 16 Moon Picture 17 Earth Spin Demonstration 18 Moon Orbit Demonstration 19 Extensions and Adaptations 21 Standards Addressed, detailed 22 Background: Sun The Sun is the center of our Solar System, both literally—as all of the planets orbit around it, and figuratively—as its rays warm our planet and sustain life as we know it. The Sun is very hot compared to temperatures we usually encounter. Its mean surface temperature is about 9980° Fahrenheit (5800 Kelvin) and its interior temperature is as high as about 28 million° F (15,500,000 Kelvin). -
Go, No-Go for Apollo Based on Orbital Life Time
https://ntrs.nasa.gov/search.jsp?R=19660014325 2020-03-24T02:45:56+00:00Z I L GO, NO-GO FOR APOLLO BASED ON ORBITAL LIFE TIME I hi 01 GPO PRICE $ Q N66(ACCESSION -2361 NUMBER1 4 ITHRU) Pf - CFSTI PRICE(S) $ > /7 (CODE) IPAGES) 'I 2 < -55494 (CATEGORY) f' (NASA CR OR rwx OR AD NUMBER) Hard copy (HC) /# d-a I Microfiche (M F) I By ff653 Julv65 F. 0. VONBUN NOVEMBER 1965 t GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND ABSTRACT A simple expression for the go, no-go criterion is derived in analytical form. This provides a better understanding of the prob- lems involved which is lacking when large computer programs are used. A comparison between "slide rule" results and computer re- sults is indicated on Figure 2. An example is given using a 185 km near circular parking or- bit. It is shown that a 3a speed error of 6 m/s and a 3c~flight path angle error of 4.5 mrad result in a 3c~perigee error of 30 km which is tolerable when a 5 day orbital life time of the Apollo (SIVB + Service + Command Module) is required. iii CONTENTS Page INTRODUCTION ...................................... 1 I. VARLATIONAL EQUATION FOR THE PERIGEE HEIGHT h,. 1 11. THE ERROR IN THE ORBITAL PERIGEE HEIGHT ah,. 5 III. CRITERION FOR GO, NO-GO IN SIMPLE FORM . 5 REFERENCES ....................................... 10 LIST OF ILLUSTRATIONS Figure Page 1 Orbital Insertion Geometry . 2 2 Perigee Error for Apollo Parking Orbits (e 0, h, = 185 km) . 6 3 Height of the Apollo Parking Orbit After Insertion . -
Analysis of Transfer Maneuvers from Initial
Revista Mexicana de Astronom´ıa y Astrof´ısica, 52, 283–295 (2016) ANALYSIS OF TRANSFER MANEUVERS FROM INITIAL CIRCULAR ORBIT TO A FINAL CIRCULAR OR ELLIPTIC ORBIT M. A. Sharaf1 and A. S. Saad2,3 Received March 14 2016; accepted May 16 2016 RESUMEN Presentamos un an´alisis de las maniobras de transferencia de una ´orbita circu- lar a una ´orbita final el´ıptica o circular. Desarrollamos este an´alisis para estudiar el problema de las transferencias impulsivas en las misiones espaciales. Consideramos maniobras planas usando ecuaciones reci´enobtenidas; con estas ecuaciones se com- paran las maniobras circulares y el´ıpticas. Esta comparaci´on es importante para el dise˜no´optimo de misiones espaciales, y permite obtener mapeos ´utiles para mostrar cu´al es la mejor maniobra. Al respecto, desarrollamos este tipo de comparaciones mediante 10 resultados, y los mostramos gr´aficamente. ABSTRACT In the present paper an analysis of the transfer maneuvers from initial circu- lar orbit to a final circular or elliptic orbit was developed to study the problem of impulsive transfers for space missions. It considers planar maneuvers using newly derived equations. With these equations, comparisons of circular and elliptic ma- neuvers are made. This comparison is important for the mission designers to obtain useful mappings showing where one maneuver is better than the other. In this as- pect, we developed this comparison throughout ten results, together with some graphs to show their meaning. Key Words: celestial mechanics — methods: analytical — space vehicles 1. INTRODUCTION The large amount of information from interplanetary missions, such as Pioneer (Dyer et al. -
Strategy for Human Spaceflight In
Developing the sustainable foundations for returning Americans to the Moon and enabling a new era of commercial spaceflight in low Earth orbit (LEO) are the linchpins of our national human spaceflight policy. As we work to return Americans to the Moon, we plan to do so in partnership with other nations. We will therefore coordinate our lunar exploration strategy with our ISS partners while maintaining and expanding our partnerships in LEO. As we work to create a new set of commercial human spaceflight capabilities, we will enable U.S. commercial enterprises to develop and operate under principles of long-term sustainability for space activity and recognize that their success cannot depend on Federal funding and programs alone. The National Space Council recognized the need for such a national strategy for human spaceflight in LEO and economic growth in space, and in February of 2018, called on NASA, the Department of State, and the Department of Commerce to work together to develop one. This strategy follows the direction established by the Administration through Space Policy Directives 1, 2, and 3, which created an innovative new framework for American leadership by reinvigorating America’s human exploration of the Moon and Mars; streamlining regulations on the commercial use of space; and establishing the first national policy for space traffic management. Our strategy for the future of human spaceflight in LEO and for economic growth in space will operate within the context of these directives. Through interagency dialogue, and in coordination with the Executive Office of the President, we have further defined our overarching goals for human spaceflight in LEO as follows: 1. -
Sun-Synchronous Satellites
Topic: Sun-synchronous Satellites Course: Remote Sensing and GIS (CC-11) M.A. Geography (Sem.-3) By Dr. Md. Nazim Professor, Department of Geography Patna College, Patna University Lecture-3 Concept: Orbits and their Types: Any object that moves around the Earth has an orbit. An orbit is the path that a satellite follows as it revolves round the Earth. The plane in which a satellite always moves is called the orbital plane and the time taken for completing one orbit is called orbital period. Orbit is defined by the following three factors: 1. Shape of the orbit, which can be either circular or elliptical depending upon the eccentricity that gives the shape of the orbit, 2. Altitude of the orbit which remains constant for a circular orbit but changes continuously for an elliptical orbit, and 3. Angle that an orbital plane makes with the equator. Depending upon the angle between the orbital plane and equator, orbits can be categorised into three types - equatorial, inclined and polar orbits. Different orbits serve different purposes. Each has its own advantages and disadvantages. There are several types of orbits: 1. Polar 2. Sunsynchronous and 3. Geosynchronous Field of View (FOV) is the total view angle of the camera, which defines the swath. When a satellite revolves around the Earth, the sensor observes a certain portion of the Earth’s surface. Swath or swath width is the area (strip of land of Earth surface) which a sensor observes during its orbital motion. Swaths vary from one sensor to another but are generally higher for space borne sensors (ranging between tens and hundreds of kilometers wide) in comparison to airborne sensors. -
Spacex Rocket Data Satisfies Elementary Hohmann Transfer Formula E-Mail: [email protected] and [email protected]
IOP Physics Education Phys. Educ. 55 P A P ER Phys. Educ. 55 (2020) 025011 (9pp) iopscience.org/ped 2020 SpaceX rocket data satisfies © 2020 IOP Publishing Ltd elementary Hohmann transfer PHEDA7 formula 025011 Michael J Ruiz and James Perkins M J Ruiz and J Perkins Department of Physics and Astronomy, University of North Carolina at Asheville, Asheville, NC 28804, United States of America SpaceX rocket data satisfies elementary Hohmann transfer formula E-mail: [email protected] and [email protected] Printed in the UK Abstract The private company SpaceX regularly launches satellites into geostationary PED orbits. SpaceX posts videos of these flights with telemetry data displaying the time from launch, altitude, and rocket speed in real time. In this paper 10.1088/1361-6552/ab5f4c this telemetry information is used to determine the velocity boost of the rocket as it leaves its circular parking orbit around the Earth to enter a Hohmann transfer orbit, an elliptical orbit on which the spacecraft reaches 1361-6552 a high altitude. A simple derivation is given for the Hohmann transfer velocity boost that introductory students can derive on their own with a little teacher guidance. They can then use the SpaceX telemetry data to verify the Published theoretical results, finding the discrepancy between observation and theory to be 3% or less. The students will love the rocket videos as the launches and 3 transfer burns are very exciting to watch. 2 Introduction Complex 39A at the NASA Kennedy Space Center in Cape Canaveral, Florida. This launch SpaceX is a company that ‘designs, manufactures and launches advanced rockets and spacecraft. -
Interplanetary Trajectory Design Using Dynamical Systems Theory THESIS REPORT by Linda Van Der Ham
Interplanetary Trajectory Design using Dynamical Systems Theory THESIS REPORT by Linda van der Ham 8 February 2012 The image on the front is an artist impression of the Interplanetary Super- highway [NASA, 2002]. Preface This MSc. thesis forms the last part of the curriculum of Aerospace Engineering at Delft University of Technology in the Netherlands. It covers subjects from the MSc. track Space Exploration, focusing on astrodynamics and space missions, as well as new theory as studied in the literature study performed previously. Dynamical Systems Theory was one of those new subjects, I had never heard of before. The existence of a so-called Interplanetary Transport Network intrigued me and its use for space exploration would mean a total new way of transfer. During the literature study I did not find any practical application of the the- ory to interplanetary flight, while it was stated as a possibility. This made me wonder whether it was even an option, a question that could not be answered until the end of my thesis work. I would like to thank my supervisor Ron Noomen, for his help and enthusi- asm during this period; prof. Wakker for his inspirational lectures about the wonders of astrodynamics; the Tudat group, making research easier for a lot of students in the future. My parents for their unlimited support in every way. And Wouter, for being there. Thank you all and enjoy! i ii Abstract In this thesis, manifolds in the coupled planar circular restricted three-body problem (CR3BP) as means of interplanetary transfer are examined. The equa- tions of motion or differential equations of the CR3BP are studied according to Dynamical Systems Theory (DST). -
On-Orbit Assembly of Space Assets: a Path to Affordable and Adaptable Space Infrastructure
CENTER FOR SPACE POLICY AND STRATEGY FEBRUARY 2018 ON-ORBIT ASSEMBLY OF SPACE ASSETS: A PATH TO AFFORDABLE AND ADAPTABLE SPACE INFRASTRUCTURE DANIELLE PISKORZ AND KAREN L. JONES THE AEROSPACE CORPORATION © 2018 The Aerospace Corporation. All trademarks, service marks, and trade names contained herein are the property of their respective owners. Approved for public release; distribution unlimited. OTR201800234 DANIELLE PISKORZ Dr. Danielle Piskorz is a member of the technical staff in The Aerospace Corporation’s Visual and Infrared Sensor Systems Department. She provides data and mission performance analysis in the area of space situational awareness. Her space policy experience derives from positions at the Science and Technology Policy Institute and the National Academies of Sciences, Engineering, and Medicine, where she contributed to a broad range of projects in commercial and civil space. She holds a Ph.D. in planetary science from the California Institute of Technology and a B.S. in physics from Massachusetts Institute of Technology. KAREN L. JONES Karen Jones is a senior project leader with The Aerospace Corporation’s Center for Space Policy and Strategy. She has experience and expertise in the disciplines of technology strategy, program evaluation, and regulatory and policy analysis spanning the public sector, telecommunications, aerospace defense, energy, and environmental industries. She has an M.B.A. from the Yale School of Management. CONTRIBUTORS The authors would like to acknowledge contributions from Roy Nakagawa, Henry Helvajian, and Thomas Heinsheimer of The Aerospace Corporation and David Barnhart of the University of Southern California. ABOUT THE CENTER FOR SPACE POLICY AND STRATEGY The Center for Space Policy and Strategy is a specialized research branch within The Aerospace Corporation, a nonprofit organization that operates a federally funded research and development center providing objective technical analysis for programs of national significance. -
Trajectory Design Tools for Libration and Cis-Lunar Environments
Trajectory Design Tools for Libration and Cis-Lunar Environments David C. Folta, Cassandra M. Webster, Natasha Bosanac, Andrew Cox, Davide Guzzetti, and Kathleen C. Howell National Aeronautics and Space Administration/ Goddard Space Flight Center, Greenbelt, MD, 20771 [email protected], [email protected] School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN 47907 {nbosanac,cox50,dguzzett,howell}@purdue.edu ABSTRACT science orbit. WFIRST trajectory design is based on an optimal direct-transfer trajectory to a specific Sun- Innovative trajectory design tools are required to Earth L2 quasi-halo orbit. support challenging multi-body regimes with complex dynamics, uncertain perturbations, and the integration Trajectory design in support of lunar and libration of propulsion influences. Two distinctive tools, point missions is becoming more challenging as more Adaptive Trajectory Design and the General Mission complex mission designs are envisioned. To meet Analysis Tool have been developed and certified to these greater challenges, trajectory design software provide the astrodynamics community with the ability must be developed or enhanced to incorporate to design multi-body trajectories. In this paper we improved understanding of the Sun-Earth/Moon discuss the multi-body design process and the dynamical solution space and to encompass new capabilities of both tools. Demonstrable applications to optimal methods. Thus the support community needs confirmed missions, the Lunar IceCube Cubesat lunar to improve the efficiency and expand the capabilities mission and the Wide-Field Infrared Survey Telescope of current trajectory design approaches. For example, (WFIRST) Sun-Earth L2 mission, are presented. invariant manifolds, derived from dynamical systems theory, have been applied to the trajectory design of 1.