Wireless Power Transmission Para Drones.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Departamento de Universidade de Aveiro Electr´onica,Telecomunica¸c~oese Inform´atica 2014 Ant´onioJorge Dinis Wireless Power Transmission para Drones da Silva de Carvalho Departamento de Universidade de Aveiro Electr´onica,Telecomunica¸c~oese Inform´atica 2014 Ant´onioJorge Dinis Wireless Power Transmission para Drones da Silva de Carvalho Wireless Power Transmission for Drones Disserta¸c~aoapresentada `aUniversidade de Aveiro para cumprimento dos requisitos necess´arios `a obten¸c~ao do grau de Mestre em Engenharia Electr´onicae Telecomunica¸c~oes, realizada sob a orienta¸c~aocient´ıfica do Doutor Nuno Miguel Gon¸calvesBorges de Carvalho, Professor Catedr´atico do Departamento Electr´onica,Telecomunica¸c~oese Inform´aticada Univer- sidade de Aveiro e sob co-orienta¸c~aocient´ıfica do Doutor Pedro Renato Tavares de Pinho, Professor Adjunto da Area´ Departamental de Engenharia Electr´onicae Telecomunica¸c~oese de Computadores do Instituto Superior de Engenharia de Lisboa. O j´uri presidente Professor Doutor Jos´eCarlos Esteves Duarte Pedro Professor Catedr´atico do Departamento Electr´onica, Telecomunica¸c~oes e In- form´aticada Universidade de Aveiro vogais Professor Doutor Rafael Ferreira da Silva Caldeirinha Professor Coordenador do Departamento de Engenharia Electrot´ecnicada Esc. Sup. de Tecnologia e Gest~aodo Inst. Polit´ecnicode Leiria do Instituto Polit´ecnico de Leiria Professor Doutor Nuno Miguel Gon¸calvesBorges de Carvalho Professor Catedr´atico do Departamento Electr´onica, Telecomunica¸c~oes e In- form´aticada Universidade de Aveiro Agradecimentos Seria ingrato da minha parte tomar todos os louros pelo trabalho aqui presente dado que sem o incentivo, ajuda e an´alisecr´ıtica de um grupo fant´asticode pessoas n~aoteria sido poss´ıvel chegar a este ponto. Aos meus orientadores, pela orienta¸c~ao t´ecnica prestada nesta minha primeira abordagem `ainvestiga¸c~aoacad´emicae pelo seu gosto em inovar e descobrir novos desafios no mundo da R´adioFrequ^encia. Ao Ricardo Gon¸calves,aluno de Doutoramento, por todos os seus conselhos, sempre concretos e elucidativos. Aos meus pais, que toda a minha vida me apoiaram com carinhoso empenho, e irm~aos,que me incetivam a sonhar mais alto. A` minha namorada, Marta Veiga, que me apoiou sempre nas decis~oesmais dif´ıceisao longo do meu percurso em Aveiro, se esfor¸cou,e esfor¸ca,por me manter focado e com as ideias organizadas, nunca me deixando desistir. Aos meus colegas do laborat´oriode R´adioFrequ^encia,que ajudaram a tornar os momentos de maior frustra¸c~aoem recorda¸c~oesdivertidas. Aos amigos que fiz em Aveiro e com quem partilhei objectivos, expectativas e aventuras. A` equipa t´ecnicado Instituto de Telecomunica¸c~oesque se mostrou sempre dispon´ıvelpara ajudar. Obrigado. Palavras-chave Agregados de antenas, Antenas, Antenas microstrip, Rectennas, Trans- miss~aode pot^encia sem fios, Ve´ıculosa´ereosn~aotripulados Resumo Drone ´ea designa¸c~aonormalmente atribu´ıda a ve´ıculos a´ereosn~aotrip- ulados que se t^emproliferado no mercado devido ao seu baixo custo e in´umerasaplica¸c~oes. Al´emdo seu uso em actividades l´udicas, como o j´a comum registo a´ereode eventos, demonstram um enorme potencial noutras aplica¸c~oes,tanto militares, miss~oesde busca e salvamento e reconhecimento de terreno, como comerciais, sendo exemplo a vigil^anciae inspec¸c~aode campos de colheita. No entanto, maioria dos dispositivos comerciais ac- tualmente dispon´ıveispadecem de uma grande limita¸c~aono que toca `asua depend^enciade baterias que, de modo a alimentar os motores do drone, rapidamente se descarregam. Al´em disso, o peso que estas baterias impli- cam levam a que seja necess´ariauma maior pot^enciapara que o drone se mantenha a voar. Estes problemas podem ser contornados, ou atenuados, recorrendo a sistemas de transmiss~aodedicada de energia electromagn´etica que possibilitem aos dispositivos manter v^oosem recurso a baterias ou carregando-as quando em uso. Ao longo desta disserta¸c~aoser´adescrito em detalhe um sistema de transfer^enciade energia sem fios projectado para trabalhar `afrequ^enciade 5.8 GHz, dando ^enfaseao desenho de um agre- gado de antenas microstrip, desenvolvido para possibilitar uma transmiss~ao directiva, e a rectenna proposta para recep¸c~aoda energia electromagn´etica e sua convers~aoem corrente cont´ınua. O sistema proposto possibilita ao quadric´opteroter energia suficiente para se conseguir ligar e estabelecer co- munica¸c~aocom o seu controlo remoto sendo que a arquitectura proposta demonstra potencial para ser adaptada em futuras abordagens. Keywords Antennas, Microwave antenna array, Microstrip antennas, Rectennas, Un- manned Aerial Vehicles, Wireless power transfer Abstract Drones are unmanned aerial vehicles that have proliferated the market due to their low cost and the many applications that can already be associated to them. Besides the common use of these devices for playful activities, as aerial event recording, they demonstrate an enormous potential in other ap- plications, such as military, as search and rescue or reconnaissance missions, or commercial, for example: surveillance and inspection of crops. However, most commercial devices currently available suffer from a major drawback in terms of their dependence of batteries which, in consequence of the large energy demand supplied to the drone's engines, quickly discharge. In ad- dition, the weight of these batteries typically implies that more power is needed to keep the drone flying. This drawback can be overcome, or at- tenuated, using dedicated wireless power transmission systems that enable the devices to maintain flight without the need of batteries or simply charg- ing them while in use. Throughout this dissertation a microwave wireless power transmission system working at 5.8 GHz will be described in detail, with emphasis on the design of the microstrip antenna array developed to allow directive transmission and the rectenna proposed for reception and power conversion. The proposed system allows the used quadcopter to boot and link with its remote control and demonstrates the potential to be adapted for other purposes. Contents Contents i List of Figures v List of Tables ix List of Acronyms xi 1 Introduction 1 1.1 Motivation . .2 1.2 Objectives . .3 1.3 Organization of the Dissertation . .3 1.4 Original Contributions . .4 2 State of the Art 5 2.1 A Timeline in Wireless Power Transmission . .5 2.1.1 William C. Brown and Microwave Power Transmission . .8 The Microwave-Powered Helicopter . 10 Combining Antennas and Rectifiers . 10 The Transmitter Beam . 11 2.2 Methods for Wireless Power Transmission . 11 2.2.1 Near Field Methods . 11 Inductive Coupling . 12 Resonant Inductive Coupling . 12 Capacitive Power Transfer . 13 2.2.2 Far Field Methods . 14 Laser . 14 Microwaves . 15 2.2.3 Wireless Power Reception . 15 2.3 Currently available Products . 16 2.3.1 Consumer Electronics . 16 2.3.2 IC focused Companies . 17 2.3.3 Automotive aimed . 18 2.4 Academic Research on Drones and WPT . 19 2.5 Conclusions . 19 i 3 Antennas 21 3.1 Fundamental Parameters of Antennas . 23 3.1.1 Radiation Pattern . 23 3.1.2 Directivity, Gain and Efficiency . 24 3.1.3 VSWR and Input Impedance . 25 3.1.4 Bandwidth . 26 3.1.5 Antenna Polarization . 26 3.1.6 Friis Transmission Equation . 27 3.2 Microstrip Antennas . 27 3.2.1 Feeding Networks . 29 Inset Feed . 29 Probe Feed . 30 Aperture and Coupled Feed . 30 3.2.2 Circular Polarization . 31 3.3 Antenna Arrays . 32 3.3.1 Linear Arrays . 33 3.3.2 Planar Arrays . 35 3.4 Conclusions . 35 4 From Radio Frequency to Direct Current 37 4.1 Semiconductor Diodes . 37 4.1.1 Schottky-Barrier Diodes . 38 4.1.2 Non-linear Behaviour . 39 4.1.3 Diode Model . 40 4.2 High Frequency Rectifiers . 41 4.2.1 Defining Conversion Efficiency . 42 4.2.2 Circuit Topologies . 43 4.2.3 Voltage Multipliers . 45 4.3 Conclusions . 45 5 System Architecture 47 5.1 System's description . 47 5.1.1 The Drone . 48 5.1.2 Link Budget Analysis . 49 5.2 Transmitter Antenna . 50 5.2.1 Design of a Helical Antenna . 51 5.2.2 Design of a Quasi-Dipole . 52 5.2.3 Design of a Microstrip Patch Antenna Array . 53 Single Patch . 53 Array Design . 56 5.3 Receiver . 58 5.3.1 Antenna . 58 5.3.2 RF-DC Converter . 60 Single shunt rectifiers . 62 5.3.3 DC-DC Converter . 64 5.4 Conclusions . 64 ii 6 Implementation and Experimental Results 67 6.1 Microstrip Antenna Array . 67 6.1.1 Return Loss . 67 6.1.2 Gain and Radiation Pattern . 69 6.2 Receiver Antennas . 70 6.3 Single Shunt Rectifier . 74 6.4 Powering the Drone . 82 6.5 Conclusions . 83 7 Conclusions and Future Work 85 7.1 General Analysis . 85 7.2 Future Work . 87 7.3 Final Remarks . 87 Appendices 89 A Article for the 8th Congress of the Portuguese Committee of URSI 91 B Article for the 9th European Conference on Antennas and Propagation 99 C State of the Art of Resonant Inductive Coupling 105 References 107 iii iv List of Figures 2.1 A photograph of Nikola Tesla sitting inside a circular framework demonstrating the largest Tesla coils ever built. .6 2.2 Photograph of William C. Brown observing a panel of dipole antennas. .8 2.3 Proposed RAMP. .9 2.4 On the left, a photograph of William C. Brown hold the helicopter prototype and, on the right, of the helicopter in-flight. 10 2.5 Coil arrangement for inductive coupling. 12 2.6 MIT's demonstration panel for wirelessly powering a 60 W lightbulb through resonant inductive coupling. ..