Wireless Power Transfer (WPT) Via Magnetic Induction Is an Emerging Technology That Is a Result of the Significant Advancements in Power Electronics

Total Page:16

File Type:pdf, Size:1020Kb

Wireless Power Transfer (WPT) Via Magnetic Induction Is an Emerging Technology That Is a Result of the Significant Advancements in Power Electronics CRANFIELD UNIVERSITY Samer Aldhaher Design and Optimization of Switched-Mode Circuits for Inductive Links School of Engineering Energy & Power Engineering Division PhD Thesis Academic Year: 2010 - 2014 Supervisor: Prof. Patrick Chi-Kwong Luk January 2014 ii CRANFIELD UNIVERSITY School of Engineering Energy & Power Engineering Division PhD THESIS Academic Year 2010 - 2014 Samer Aldhaher DESIGN AND OPTIMIZATION OF SWITCHED-MODE CIRCUITS FOR INDUCTIVE LINKS Supervisor: Prof. Patrick Chi-Kwong Luk January 2014 This thesis is submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy © Cranfield University 2014. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner. iv to my parents vi Abstract Wireless power transfer (WPT) via magnetic induction is an emerging technology that is a result of the significant advancements in power electronics. Mobiles phones can now be charged wirelessly by placing them on a charging surface. Electric vehicles can charge their batteries while being parked over a certain charging spot. The possible applications of this technology are vast and the potential it has to revolutionise and change the way that we use today’s application is huge. Wireless power transfer via magnetic induction, also referred to as inductive power transfer (IPT), does not necessarily aim to replace the cable. It is intended to coexist and operate in conjunction with the cable. Although significant progress has been achieved, it is still far from reaching this aim since many obstacles and design chal- lenges still need to be addressed. Low power efficiencies and limited transfer range are the two main issues for IPT. A tradeoff is usually associated with these two issues. Higher efficiencies are only achieved at very short transmission distances, whereas transferring large amounts of power at large distances is possible but at reduced effi- ciencies. This thesis addressed the limitations and design challenges in IPT systems such as low efficiency and short transmission range, in addition to poor power regulation and coil displacement and misalignment sensitivity. Novel circuit topologies and design solutions have developed for DC/AC inverters and DC/AC rectifiers that will allow for increased performance, higher efficiencies and reduced sensitivity to coil misalign- ments and displacements. This thesis contributes in four key areas towards IPT. Firstly, a detailed mathematical analysis has been performed on the electric circuit model of inductively coupled coils. This allows for better understanding on how power is distributed amongst the circuit’s elements. Equivalent circuit representations were presented to simplify the design process of IPT systems. Secondly, a review of the different classes and configurations of DC/AC inverters that can be used as primary coil drivers in IPT systems were presented. Class E DC/AC inverters were mathematically analysed in great detail and their performance as primary coil drivers in IPT systems was investigated. Thirdly, novel electronic tuning methods were presented to allow Class E primary coil drivers to operate at optimum switching conditions regardless of the distance between the coils of an IPT system and the value of the load. The saturable reactor was used as the electronic tunable element. Lastly, Class D and Class E AC/DC rectifiers have been used for the first time in IPT systems. Detailed mathematical analysis and extensive experimental results show their superior performance over the conventional half-wave and full-wave AC/DC rectifiers. viii Acknowledgements I would like to thank my supervisor Professor Patrick Luk for his supervision and experienced guidance. His continuous support and encouragements gave me more confidence in my work and abilities and led me to complete my project successfully. I would also like to thank my second supervisor Dr. James Whidborne for his valuable discussions, cooperation and support. This journey would not have been pleasant without my friends and fellow PhD students at Cranfield University, especially Milena Traczyk, Francis Salama, Quen- tain McEnteggert, Robert Christie, Kirsty Wallis, Sue Richardson, Atma Parkash and Solange Baena. I am very grateful to Glenda Metcalf for her continuous support, love and friendship since day one. I owe every part of this work, my education and every step forward in my life to my parents. I would like to thank them for their love, support and encouragement. x xi CONTENTS 1 introduction1 1.1 Overview of an Inductive Power Transfer System . 1 1.2 Motivation . 3 1.3 Aims and Objectives . 3 1.4 Methodology . 4 1.5 Thesis Structure . 4 1.6 Contributions . 6 1.7 Publications . 7 2 wireless power transfer technology9 2.1 Introduction . 9 2.2 Historical Achievements and Scientific Breakthroughs . 10 2.3 Wireless Power Transfer Methods . 14 2.3.1 Capacitive Coupling . 14 2.3.2 Laser Coupling . 15 2.3.3 Microwave Coupling . 16 2.3.4 Pressure Waves . 19 2.4 Related Work from the Literature in WPT via Magnetic Induction (IPT) 20 2.4.1 Current Applications and Technologies . 20 2.4.2 Research Trends . 30 2.5 Suggested applications based on IPT . 34 2.6 Conclusions . 39 3 inductive links 41 3.1 Introduction . 41 3.2 Modelling of Inductive Links . 41 3.2.1 Quantities and Parameters . 41 3.2.2 Equivalent Series Resistance and Quality Factor . 45 3.2.3 Circuit Representation . 47 3.3 Resonant Coupling . 50 3.4 Analysis of a Parallel Resonant Secondary Coil . 52 3.4.1 Near Resonance Operation . 53 3.4.2 Reflected Load Formulae . 53 3.4.3 Load and Frequency Variation Effects On The Reflected Impedances 58 3.5 Conclusions . 61 xii CONTENTS 4 resonant dc/ac inverters 63 4.1 Introduction . 63 4.2 Definitions . 64 4.3 Class D Inverters . 66 4.3.1 Half-Bridge Class D ZVS Inverter . 66 4.3.2 Class D Push-pull ZVS Inverter . 72 4.3.3 H-Bridge Class D ZVS Inverter . 73 4.3.4 Class D ZCS Inverter . 75 4.3.5 Class D Push-Pull ZCS Inverter . 77 4.4 Class E Inverters . 79 4.4.1 The Class E ZVS and ZVDS Inverter . 80 4.4.2 Class E push-pull ZVS and ZVDS Inverter . 87 4.4.3 Class E Inverter with Finite DC-feed Inductance . 87 4.4.4 State-space Modelling . 95 4.4.5 Sub-optimum Operation . 100 4.5 Other Classes and Configurations . 104 4.5.1 Class E Current-switching Inverter . 105 4.5.2 Class DE Inverters . 106 4.6 Conclusions . 107 5 design and optimization of class e primary coil drivers 109 5.1 Introduction . 109 5.2 Modelling and Analysis of an Inductive Link with a Class E Driver . 109 5.2.1 Design . 109 5.2.2 Analysis Using the Analytical Approach . 110 5.2.3 Analysis Using the State-space Representation Approach . 113 5.2.4 Design Example . 116 5.2.5 Performance Investigation . 117 5.2.6 Developing Tuning Methods and Requirements . 119 5.3 Saturable Reactors as Electronic Tuning Elements . 120 5.3.1 Magnetic Cores . 121 5.3.2 Design Trade-offs . 122 5.4 Tuning The Class E Inverter with Infinite DC-feed Inductance . 123 5.4.1 Frequency and C1 control . 123 5.4.2 Experimental Verification . 124 5.4.3 Implementation of the proposed tuning method . 126 5.5 Tuning The Class E Inverter With Finite DC-feed Inductance . 129 5.5.1 Frequency and Lf control . 130 5.5.2 Optimisation . 133 5.6 Tuning Methods Based on State-Space Modelling . 138 5.6.1 Duty cycle and Lf control . 139 CONTENTS xiii 5.6.2 Simulink modelling . 139 5.6.3 Implementation of the proposed tuning method . 140 5.7 Conclusions . 142 6 ac/dc rectifiers in ipt systems 145 6.1 Introduction . 145 6.1.1 Definitions . 146 6.2 Traditional Rectifiers . 148 6.2.1 Half-Wave Rectifiers . 148 6.2.2 Full-Wave Rectifiers . 149 6.2.3 Performance Investigation . 150 6.3 Class D Rectifiers . 152 6.3.1 Analysis of Class D Voltage-driven Rectifiers . 153 6.3.2 Analysis of Class D Current-driven Rectifiers . 156 6.3.3 Performance Investigation of Class D Voltage-driven Rectifiers . 158 6.4 Class E Rectifiers . 170 6.4.1 Principle of Operation . 172 6.4.2 Modelling and Analysis of a Class E ZVS, Low dv=dt Rectifier . 175 6.4.3 Input Current linearity and Harmonic Content . 180 6.4.4 Experimental Setup and Results . 183 6.5 Conclusions . 186 7 class e2 resonant dc/dc converters 189 7.1 Introduction . 189 7.2 Modelling and Analysis . 190 7.2.1 State-space Representation . 190 7.2.2 Switching Periods and Operating Modes . 192 7.2.3 Determining the Initial Conditions of the States . 193 7.2.4 Solving for Optimum Switching Conditions . 194 7.3 Design Case . 195 7.3.1 Initial Design . 195 7.3.2 Comparison with the Analytical Approach . 198 7.3.3 Compensation for Load Variations and Coil Misalignments . 200 7.4 Experimental Verification . 202 7.4.1 Implementation and Set-up . 202 7.4.2 Class E Rectifier Self-start and Driving circuit . 202 7.4.3 Results . 202 7.4.4 Load Variation . ..
Recommended publications
  • Nikola Tesla
    Nikola Tesla Nikola Tesla Tesla c. 1896 10 July 1856 Born Smiljan, Austrian Empire (modern-day Croatia) 7 January 1943 (aged 86) Died New York City, United States Nikola Tesla Museum, Belgrade, Resting place Serbia Austrian (1856–1891) Citizenship American (1891–1943) Graz University of Technology Education (dropped out) ‹ The template below (Infobox engineering career) is being considered for merging. See templates for discussion to help reach a consensus. › Engineering career Electrical engineering, Discipline Mechanical engineering Alternating current Projects high-voltage, high-frequency power experiments [show] Significant design o [show] Awards o Signature Nikola Tesla (/ˈtɛslə/;[2] Serbo-Croatian: [nǐkola têsla]; Cyrillic: Никола Тесла;[a] 10 July 1856 – 7 January 1943) was a Serbian-American[4][5][6] inventor, electrical engineer, mechanical engineer, and futurist who is best known for his contributions to the design of the modern alternating current (AC) electricity supply system.[7] Born and raised in the Austrian Empire, Tesla studied engineering and physics in the 1870s without receiving a degree, and gained practical experience in the early 1880s working in telephony and at Continental Edison in the new electric power industry. He emigrated in 1884 to the United States, where he became a naturalized citizen. He worked for a short time at the Edison Machine Works in New York City before he struck out on his own. With the help of partners to finance and market his ideas, Tesla set up laboratories and companies in New York to develop a range of electrical and mechanical devices. His alternating current (AC) induction motor and related polyphase AC patents, licensed by Westinghouse Electric in 1888, earned him a considerable amount of money and became the cornerstone of the polyphase system which that company eventually marketed.
    [Show full text]
  • A Generalized Approach to Planar Induction Heating Magnetics by Richard Yi Zhang B.E
    A Generalized Approach to Planar Induction Heating Magnetics by Richard Yi Zhang B.E. (Hons), University of Canterbury, New Zealand (2009) Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2012 c Massachusetts Institute of Technology 2012. All rights reserved. Author................................................................ Department of Electrical Engineering and Computer Science May 18, 2012 Certified by. John G. Kassakian Professor of Electrical Engineering and Computer Science Thesis Supervisor Accepted by . Leslie A. Kolodziejski Chair, Department Committee on Graduate Theses 2 A Generalized Approach to Planar Induction Heating Magnetics by Richard Yi Zhang Submitted to the Department of Electrical Engineering and Computer Science on May 18, 2012, in partial fulfillment of the requirements for the degree of Master of Science Abstract This thesis describes an efficient numerical simulation technique of magnetoquasistatic electromagnetic fields for planar induction heating applications. The technique is based on a volume-element discretization, integral formulation of Maxwell’s equa- tions, and uses the multilayer Green’s function to avoid volumetric meshing of the heated material. The technique demonstrates two orders of magnitude of computa- tional advantage compared to existing FEM techniques. Single-objective and multi- objective optimization of a domestic induction heating coil are performed using the new technique, using more advanced algorithms than those previously used due to the increase in speed. Both optimization algorithms produced novel, three-dimensional induction coil designs. Thesis Supervisor: John G. Kassakian Title: Professor of Electrical Engineering and Computer Science 3 4 Acknowledgments My work would not have been possible without the mentorship of my advisor, Prof.
    [Show full text]
  • Crowdfunding Is Hot
    FEBRUARY 2017 Volume 33 Issue 02 DIGEST Mad Marketing Maven HOW MADMAN MUNTZ BUILT 3 EMPIRES Army Salutes Soldier’s Invention SAVING TIME AND MONEY Big Help for Tiny Babies BUSINESS MODEL: GIVING BACK IT DOESN’T TAKE AN EINSTEIN TO KNOW ... CROWDFUNDING IS HOT $5.95 FULTON, MO FULTON, PERMIT 38 PERMIT US POSTAGE PAID POSTAGE US PRSRT STANDARD PRSRT EDITOR’S NOTE Inventors DIGEST EDITOR-IN-CHIEF REID CREAGER ART DIRECTOR CARRIE BOYD New Website Adds CONTRIBUTORS STAFF SGT. ROBERT R. ADAMS To the Conversation STEVE BRACHMANN DON DEBELAK For many of us, there’s nothing like the traditional magazine experience—hold- JACK LANDER ing the original, glossy physical product in your hands; turning the paper pages; JEREMY LOSAW tearing out portions and/or pages to display or save; and having a flexible, por- GENE QUINN table keepsake that’s never susceptible to electronic or battery failure. JOHN G. RAU A publication that provides both this and a strong internet presence is the best EDIE TOLCHIN of both worlds. With that in mind, Inventors Digest recently updated its website GRAPHIC DESIGNER (inventorsdigest.com). We wanted to make our online content more attractive and JORGE ZEGARRA streamlined, with the goal of inviting even more readers. There’s also more content than ever before; we’re loading more current articles from each issue and going INVENTORS DIGEST LLC back through the archives to pull older ones. This is part of a larger mission: to make PUBLISHER the website a central hub for the Inventors LOUIS FOREMAN Digest community and encourage readers to become active participants in national VICE PRESIDENT, INTERACTIVE AND WEB conversations involving invented-related MATT SPANGARD subjects.
    [Show full text]
  • User Manual Heritage® Induction Cooktop HICT305BG, HICT365BG
    User Manual Heritage® Induction Cooktop HICT305BG, HICT365BG Table of Contents Important Safety Instructions ............................................... 1 Consignes de sécurité importantes .........................4 Before Using the Cooktop ......................................................7 Using the Cooktop .................................................................10 Care and Cleaning .................................................................15 Troubleshooting ....................................................................16 Warranty ................................................................................. 17 Warranty Card ........................................................ Back Cover Part No. 113776 Rev. A To Our Valued Customer: Congratulations on your purchase of the very latest in Dacor® products! Our unique combination of features, style, and performance make us a great addition to your home. To familiarize yourself with the controls, functions, and full potential of your new Dacor induction cooktop, read this manual thoroughly, starting at the Important Safety Instructions section (Pg. 1). Dacor appliances are designed and manufactured with quality and pride, while working within the framework of our company values. Should you ever have an issue with your cooktop, first consult the Troubleshooting section (Pg. 14), which gives suggestions and remedies that may pre-empt a call for service. Valuable customer input helps us continually improve our products and services, so feel free to contact
    [Show full text]
  • Tesla's Magnifying Transmitter Principles of Working
    School of Electrical Engineering University of Belgrade Tesla's magnifying transmitter principles of working Dr Jovan Cvetić, full prof. School of Electrical Engineering Belgrade, Serbia [email protected] School of Electrical Engineering University of Belgrade Contens The development of the HF, HV generators with oscilatory (LC) circuits: I - Tesla transformer (two weakly coupled LC circuits, the energy of a single charge in the primary capacitor transforms in the energy stored in the capacitance of the secondary, used by Tesla before 1891). It generates the damped oscillations. Since the coils are treated as the lumped elements the condition that the length of the wire of the secondary coil = quarter the wave length has a small impact on the magnitude of the induced voltage on the secondary. Using this method the maximum secondary voltage reaches about 10 MV with the frequency smaller than 50 kHz. II – The transformer with an extra coil (Magnifying transformer, Colorado Springs, 1899/1900). The extra coil is treated as a wave guide. Therefore the condition that the length of the wire of the secondary coil = quarter the wave length (or a little less) is necessary for the correct functioning of the coil. The purpose of using the extra coil is the generation of continuous harmonic oscillations of the great magnitude (theoretically infinite if there are no losses). The energy of many single charges in the primary capacitor are synchronously transferred to the extra coil enlarging the magnitude of the oscillations of the stationary wave in the coil. The maximum voltage is limited only by the breakdown voltage of the insulation on the top of the extra coil and by its dimensions.
    [Show full text]
  • Animation! [Page 8–9] 772535 293004 the TOWER 9> Playing in the Online Dark
    9 euro | SPRING 2020 MODERN TIMES REVIEW THE EUROPEAN DOCUMENTARY MAGAZINE CPH:DOX THESSALONIKI DF ONE WORLD CINÉMA DU RÉEL Copenhagen, Denmark Thessaloniki, Greece Prague, Czech Paris, France Intellectually stimulating and emotionally engaging? [page 10–11] THE PAINTER AND THE THIEF THE PAINTER HUMAN IDFF MAJORDOCS BOOKS PHOTOGRAPHY Oslo, Norway Palma, Mallorca New Big Tech, New Left Cinema The Self Portrait; Dear Mr. Picasso Animation! [page 8–9] 772535 293004 THE TOWER 9> Playing in the online dark In its more halcyon early days, nature of these interactions. ABUSE: In a radical the internet was welcomed Still, the messages and shared psychosocial experiment, into households for its utopi- (albeit blurred for us) images an possibilities. A constantly are highly disturbing, the bra- the scope of online updating trove of searchable zenness and sheer volume of child abuse in the Czech information made bound en- the approaches enough to sha- Republic is uncovered. cyclopaedia sets all but obso- ke anyone’s trust in basic hu- lete; email and social media manity to the core («potential- BY CARMEN GRAY promised to connect citizens ly triggering» is a word applied of the world, no longer seg- to films liberally these days, Caught in the Net mented into tribes by physical but if any film warrants it, it is distance, in greater cultural un- surely this one). Director Vit Klusák, Barbora derstanding. The make-up artist recog- Chalupová In the rush of enthusiasm, nises one of the men and is Czech Republic, Slovakia the old truth was suspended, chilled to witness this behav- that tools are only as enlight- iour from someone she knows, ened as their users.
    [Show full text]
  • Modeling, Simulation and Verification of Contactless Power Transfer
    Modeling, Simulation and Verification of Contactless Power Transfer Systems J. Serrano(1,*), M. Perez-Tarragona´ (1), C. Carretero(2), J. Acero(1). (1)Department of Electronic Engineering and Communications. Universidad de Zaragoza. Maria de Luna, 1. 50018 Zaragoza. Spain. (2)Department of Applied Physics. Universidad de Zaragoza. Pedro Cerbuna, 12. 50009 Zaragoza, Spain. (*)E-mail: [email protected] Abstract—This work presents the analysis of a wireless power transfer system consisting of two coupled coils and ferrite slabs acting as flux con- centrators. The study makes use of Finite Element Method (FEM) simulations to predict the key per- formance indicators of the system such as coupling, quality factor and winding resistance. The simula- tions results were compared against experimental measurements on a prototype showing consistence. Keywords—Wireless power transfer, Electro- magnetic modeling, FEM simulation, Inductive Charging. Fig. 1. Wireless power transfer system. I. INTRODUCTION Wireless power transfer (WPT) applications will be later compared against measurements on are taking major importance among market trends a prototype. thanks to their versatility and user convenience. This solution allows the producers to remove In order to address this problem, in Section the cables and connectors which are one of the II, key performance indicators will be defined. main causes of breakdown. As this technology In Section III, the electromagnetic model will be consolidates, WPT systems are becoming more presented. In Section IV, the simulation procedure common and available for a large number of with COMSOL will be detailed. In Section V, devices. The modeling of these systems is, the model will be experimentally validated by therefore, of great interest.
    [Show full text]
  • FSM Induction Cooking Feature April 2014
    FSM Magazine – April 2014 Feature: Induction Cooking Please attribute any quotes on this information to Ray Hall, Managing Director, RH Hall Ltd How do induction cookers work compared to conventional equipment? Induction works by the process of passing a high frequency alternating current through an electrically conducting object (usually metal) to create a magnetic field of energy. This energy then induces an electric current in the metal object it comes into contact with it – i.e. in the case of cooking – it creates a flowing current in a metal pan which then produces resistive heating, which heats the food. In an induction cooker, a ferromagnetic coil is placed underneath a ceramic hob that transfers heat directly to the metal pan on top. Whilst the current is large, it is produced by a low voltage. The induction process works by ‘direct’ heating of a metal cooking vessel, as opposed to using ‘heat transfer’ which you have when burning gas on a traditional cooking stove. For nearly all models of induction cooktop, the cooking vessel must be made of a ferromagnetic metal or placed on an interface disk which enables non-induction cookware to be used on induction cooking surfaces. How widespread is their use becoming? Induction cooking equipment may still be more expensive than traditional methods at the moment, but it is becoming cheaper and more cost effective, especially since the interest and acceptance of it is widening and with more ranges becoming available in the market – most manufacturers now offer some form of induction cooking equipment – from the entry level – like our Maestrowave Induction Hob which runs off a 13 amp plug, to full induction ranges, which are an alternative to a traditional gas 6 burner range for example.
    [Show full text]
  • Design of a Battery-Powered Induction Stove by Daniel J Weber S.B., Massachusetts Institute of Technology, 2014
    Design of a Battery-Powered Induction Stove by Daniel J Weber S.B., Massachusetts Institute of Technology, 2014 Submitted to the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Electrical Engineering and Computer Science at the Massachusetts Institute of Technology June 2015 Copyright 2015 Massachusetts Institute of Technology. All rights reserved. Author: Department of Electrical Engineering and Computer Science May 22, 2015 Certified By: Rich Fletcher, Thesis Supervisor May 22, 2015 Accepted By: Prof. Albert R. Meyer, Chairman, Masters of Engineering Thesis Committee 1 2 Design of a Battery-Powered Induction Stove by Daniel J Weber Submitted to the Department of Electrical Engineering and Computer Science on May 25, 2015, in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science Abstract Many people in the developing areas of the world struggle to cook with stoves that emit hazardous fumes and contribute to green house gas emissions. Electric stoves would alleviate many of these issues, but significant barriers to adoption, most notably lack of reliable electric power, make current commercial options infeasible. However, a stove with an input power of 24V DC elegantly solves the issue of intermittent power by allowing car batteries to be used instead of a grid connection, while also allowing seamless integration with small scale solar installations and solar-based micro-grids. However, no existing commercial stoves nor academic research have attempted to create an induction stove powered from a low voltage DC source. This paper presents the design of a low voltage current-fed, full-bridge parallel resonant converter stove.
    [Show full text]
  • Wireless Power Transmission
    IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-ISSN: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 3 Ver. II (May – Jun. 2014), PP 01-05 www.iosrjournals.org Wireless Power Transmission 1Sudha Bhutada(Senior Lect.), 2Punit Maheshwari(R&D Eng.) 1EE Dept.SV Polytechnic College Bhopal, India 2VLSI Dept. Navigator Technologies Bhopal, India Abstract: The concept of wireless power transmission method is as old as we are using electricity. N. Tesla the father of wireless power transmission was the first to give an idea of wireless power transmission and he was keenly interested in lightning the world without using wires (WPT).Since then series of experiments were made to make feasible transmission of power where it is not possible and commercially viable by advances, inventions in electronic devices in this field. In this paper we present the concept of wireless power transmission from one place in turn to another. This concept is mainly used for reducing the transmission and distribution losses. This in turn reduces the cost of transmission and distribution and also the cost of electrical energy for the consumers. In this paper we discussed the methods, recent developments in WPT, its merits, demerits and applications. Keywords: Wireless Power Transmission WPT, Radio Frequency RF I. Introduction We know our present system of overhead transmission and distribution has biggest disadvantage is percentage of power loss is around 26 to 28 % during transmission and distribution which is because of resistance of wires of grid. WRI (World resources Institute) says that India's electricity grid has highest T&D losses in the world around 27%.
    [Show full text]
  • Optimal Design of High-Frequency Induction Heating Apparatus for Wafer Cleaning Equipment Using Superheated Steam
    energies Article Optimal Design of High-Frequency Induction Heating Apparatus for Wafer Cleaning Equipment Using Superheated Steam Sang Min Park 1 , Eunsu Jang 2, Joon Sung Park 1 , Jin-Hong Kim 1, Jun-Hyuk Choi 1 and Byoung Kuk Lee 2,* 1 Intelligent Mechatronics Research Center, Korea Electronics Technology Institute (KETI), Bucheon 14502, Korea; [email protected] (S.M.P.); [email protected] (J.S.P.); [email protected] (J.-H.K.); [email protected] (J.-H.C.) 2 Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-31-299-4581 Received: 19 October 2020; Accepted: 22 November 2020; Published: 25 November 2020 Abstract: In this study, wafer cleaning equipment was designed and fabricated using the induction heating (IH) method and a short-time superheated steam (SHS) generation process. To prevent problems arising from the presence of particulate matter in the fluid flow region, pure grade 2 titanium (Ti) R50400 was used in the wafer cleaning equipment for heating objects via induction. The Ti load was designed and manufactured with a specific shape, along with the resonant network, to efficiently generate high-temperature steam by increasing the residence time of the fluid in the heating object. The IH performance of various shapes of heating objects made of Ti was analyzed and the results were compared. In addition, the heat capacity required to generate SHS was mathematically calculated and analyzed. The SHS heating performance was verified by conducting experiments using the designed 2.2 kW wafer cleaning equipment.
    [Show full text]
  • Download [1.94
    The essential Nikola Tesla: peacebuilding endeavor © 2015 Tesla Memory Project, UNESCO Center for Peace. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, without the prior permission of the publisher Published by Tesla Memory Project UNESCO Center for Peace TESLIANUM Energy Innovation Center Editorial board Dragoljub Martinović Mirjana Prljević Srdjan Pavlović Guy Djoken Editor in chief Aleksandar Protić We appreciate the help of Peace and Crisis Management Foundation for their precious help in publishing The essential Nikola Tesla : peacebuilding endeavor CONTENTS INTRODUCTION 17 Robert Curl: Tesla’s unique place in the history of invention 21 Gordana Vunjak- Novaković: Nikola Tesla - a pure genius and ultimate humanitarian 25 Guy Djoken: Nikola Tesla, Advocate for the Human Condition and Martyr for a greedless society 30 Mirjana Prljević: Tesla, the world strategist 34 Dragoljub Martinović: Wonderful Tesla – inspiration and guidepost 38 Jean Echenoz: Character of an erudite 42 Zorica Civrić: Tesla and Shakespeare: Similarities of genius and heroic drama 44 Ranko Rajović, Uroš Petrović: Nikola Tesla as the inspiration to establish a program for development of children’s integral potentials 49 Yves Lopez: Nikola Tesla inspiring UNESCO 55 Natasha Cica: THINKtent Tesla 59 Romilo Knežević: Tesla - Scientist, “Homo Theurgos” and Saint 63 Aleksandra Ninković-Tašić: Michael Pupin and Nikola Tesla: new perspective on the history of science 67 Rave Mehta:
    [Show full text]