Development and Function of the Cardiac Conduction System in Health and Disease

Total Page:16

File Type:pdf, Size:1020Kb

Development and Function of the Cardiac Conduction System in Health and Disease Journal of Cardiovascular Development and Disease Review Development and Function of the Cardiac Conduction System in Health and Disease David S. Park and Glenn I. Fishman * Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY 10016, USA; [email protected] * Correspondence: glenn.fi[email protected]; Tel.: +01-212-263-3967 Academic Editor: Robert E. Poelmann Received: 26 March 2017; Accepted: 1 June 2017; Published: 7 June 2017 Abstract: The generation and propagation of the cardiac impulse is the central function of the cardiac conduction system (CCS). Impulse initiation occurs in nodal tissues that have high levels of automaticity, but slow conduction properties. Rapid impulse propagation is a feature of the ventricular conduction system, which is essential for synchronized contraction of the ventricular chambers. When functioning properly, the CCS produces ~2.4 billion heartbeats during a human lifetime and orchestrates the flow of cardiac impulses, designed to maximize cardiac output. Abnormal impulse initiation or propagation can result in brady- and tachy-arrhythmias, producing an array of symptoms, including syncope, heart failure or sudden cardiac death. Underlying the functional diversity of the CCS are gene regulatory networks that direct cell fate towards a nodal or a fast conduction gene program. In this review, we will discuss our current understanding of the transcriptional networks that dictate the components of the CCS, the growth factor-dependent signaling pathways that orchestrate some of these transcriptional hierarchies and the effect of aberrant transcription factor expression on mammalian conduction disease. Keywords: cardiac conduction system development; ventricular conduction system; gene regulatory networks 1. Introduction The CCS is functionally divided into the impulse generating, but slowly conducting nodal cells and the rapidly-conducting ventricular conduction system (VCS); as visualized using various conduction system reporter mice (Figure1). The dominant pacemaker is the sinus node (SN) located at the junction between the superior vena cava and the right atrium (RA). Upon exiting the SN, impulses travel rapidly through the atrial myocardium, ensuring synchronous contraction of the atrial chambers. The cardiac impulse then slows in the atrioventricular node (AVN), which is the last point of communication between the atria and ventricles, providing adequate time for ventricular filling. The impulse accelerates again as it enters the penetrating His bundle, which traverses the central fibrous body crossing the annulus fibrosus that electrically isolates atria from ventricles, and then, rapidly disseminates throughout the ventricular myocardium using the VCS, also referred to as the His-Purkinje system (HPS). The VCS includes the His bundle, left and right bundle branches and distal Purkinje fiber network. The HPS allows for: (1) apex-to-basal ventricular contraction; (2) left and right ventricular synchrony; and (3) intraventricular synchrony. This coordinated electrical activity is highly conserved in all mammalian species and is essential to maintain optimal stroke volume. J. Cardiovasc. Dev. Dis. 2017, 4, 7; doi:10.3390/jcdd4020007 www.mdpi.com/journal/jcdd J.J. Cardiovasc. Cardiovasc. Dev. Dev. Dis. Dis. 20172017, ,44, ,7 7 22 of of 16 16 FigureFigure 1 1.. CardiacCardiac conduction conduction system system (CCS) (CCS) reporter reporter mice. mice. ( (AA)) Contactin2 Contactin2-eGFP-eGFP demonstrating demonstrating CCS CCS componentscomponents ( (ReproducedReproduced with permissionpermission fromfrom [ 1[1]);]); ( B(B)) cardiac cardiac conduction conduction system system reporter-LacZ reporter-LacZ in in an anembryonic embryonic day d 17.5ay 17.5 heart heart (Reproduced (Reproduced with with permission permission from from [2]); ( C[2,]D);) ( co-expressionC,D) co-expression of Etv1-nuclear of Etv1- nuclearLacZ (C LacZ) in a ( Contactin2-EGFP;C) in a Contactin2- (EGFPD) background; (D) background delineating delineating the left the ventricular left ventricular conduction conduction system. system.AV, atrioventricular. AV, atrioventricular. TheThe formation formation of of the the CCS CCS occurs occurs simultaneously simultaneously with with cardiac cardiac development development [ [33]] (Figure (Figure 22).). Heart formationformation begins begins as as a alinear linear tube tube that that maintains maintains circulation circulation via peristaltic via peristaltic contraction. contraction. At this At stage, this thestage, linear the heart linear tube heart is tubecomposed is composed of primary of primary heart field heart myocardium field myocardium and conducts and conducts impulses impulses slowly. Electrocardiographicslowly. Electrocardiographic (ECG) recordings (ECG) recordings at this at stage this stage in developing in developing chicks chicks show show a asinusoidal sinusoidal wwaveform.aveform. At At the the onset onset of of looping looping morphogenesis, morphogenesis, the the ECG ECG morphology morphology changes changes to to show show distinct distinct P P wavewavess ( (representsrepresents atrial atrial activation activation on on ECG ECG)) and and QRS QRS wave wavess ( (representsrepresents HPS HPS-dependent-dependent ventricular ventricular activationactivation on on ECG ECG)) that that are are separated separated by a by PQ a or PQ PR or interval PR interval (represents (represents cumulative cumulative measure measure of atrial, of AVNatrial, and AVN HPS and-dependent HPS-dependent ventricular ventricular activation activation time on time ECG on). ECG).At the At same the sametime, time,the atrial the atrialand ventricularand ventricular electrocardiogram electrocardiogram signals signals acquire acquire high high frequency frequency waveforms, waveforms, indicative indicative of of rapid rapid conduction.conduction. Rapid Rapid conduction conduction is is a a h hallmarkallmark feature feature of of cardiac cardiac chamber chamber formation, formation, where where pectinated pectinated myocardiummyocardium of of the the atria atria and and trabeculated trabeculated myocardium myocardium in in the the ventricles ventricles adopt adopt a a fast fast conduction conduction phenotype.phenotype. SubendocardialSubendocardial trabeculated trabeculated cardiomyocytes cardiomyocytes in the ventriclesin the ventricles undergo furtherundergo specification further specificatito form theon highly to form specialized the highly VCS, specialized whereas in theVCS atria,, whereas the pectinated in the atrialatria, myocardiumthe pectinated maintains atrial myocardiumthe fast conduction maintains phenotype the withoutfast conduction further specification. phenotype Thewithout atrioventricular further (AV)specification. junction formsThe atrioventriculara constriction called (AV) thejunction AV canal forms (AVC) a constriction that maintains called thethe slowAV canal conduction (AVC) that phenotype maintains ofthe the linearslow conductionheart tube, servingphenotype as the of nascentthe linear AVN. heart Eventually, tube, serving epicardial as the cellsnascent ingress AVN. into Eventually, the ventricular epicardial aspect cellsof AV ingress junctional into myocardiumthe ventricular giving aspect rise of to AV the junctional annulus fibrosus, myocardium except giving in the dorsalrise to aspect, the annulus where fibrosus,the AVN maintainsexcept in electricalthe dorsal continuity aspect, withwhere the t penetratinghe AVN maintains His bundle. electrical The remaining continuity AV junctionalwith the penetratingmyocardium His remains bundle. into The adulthood remaining as theAV AVjunctional ring bundles myocardium [4]. remains into adulthood as the AV ring bundles [4]. J. Cardiovasc. Dev. Dis. 2017, 4, 7 3 of 16 J. Cardiovasc. Dev. Dis. 2017, 4, 7 3 of 16 FigureFigure 2. 2. SchematicSchematic of of chicken chicken heart heart development development and and corresponding corresponding electrocardiograms electrocardiograms at at somite somite stagesstages shown. shown. (A (A) )Somite Somite S Stagetage 11 11 (11 (11-S);-S); (B (B) 18) 18-S;-S; (C (C) 20) 20-S;-S; and and (D (D) 33) 33-S-S (Reproduced (Reproduced with with permission permission fromfrom [3 [3])]).. TheThe gene gene regulatory regulatory networks networks that that govern govern CCS CCSdevelopment development are tightly are tightly orchestrated orchestrated in a tissue in- a specifictissue-specific and time and-dependent time-dependent manner, manner, producing producing distinct distinct nodal and nodal fast and conduction fast conduction phenotypes. phenotypes. The nodesThe nodes display display high highlevels levels of automaticity of automaticity driven driven by bya dual a dual clock clock mechanism: mechanism: the the voltage voltage clock clock (hyperpolarization(hyperpolarization-activated-activated cyclic cyclic nucleotide nucleotide-gated-gated cation cation channel channel (Hcn4 (Hcn4)))) [5 [5] ]and and the the calcium calcium cloc clockk (ryanodine(ryanodine receptor receptor (Ryr2 (Ryr2),), the the sodium sodium-calcium-calcium exchanger exchanger (Ncx (Ncx) )and and the the voltage voltage-dependent-dependent calcium calcium channel,channel, TT type, type, alpha alpha 1G 1G subunit subunit (Cacna1g (Cacna1g)) [))6] [. 6The]. The slow slow conduction conduction properties properties of nodal of nodal tissue tissue are determinedare determined by the by near the absence near absence of the cardiac of the cardiacsodium sodiumchannel pore channel forming pore subunit forming
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Spatial Distribution of Leading Pacemaker Sites in the Normal, Intact Rat Sinoa
    Supplementary Material Supplementary Figure 1: Spatial distribution of leading pacemaker sites in the normal, intact rat sinoatrial 5 nodes (SAN) plotted along a normalized y-axis between the superior vena cava (SVC) and inferior vena 6 cava (IVC) and a scaled x-axis in millimeters (n = 8). Colors correspond to treatment condition (black: 7 baseline, blue: 100 µM Acetylcholine (ACh), red: 500 nM Isoproterenol (ISO)). 1 Supplementary Figure 2: Spatial distribution of leading pacemaker sites before and after surgical 3 separation of the rat SAN (n = 5). Top: Intact SAN preparations with leading pacemaker sites plotted during 4 baseline conditions. Bottom: Surgically cut SAN preparations with leading pacemaker sites plotted during 5 baseline conditions (black) and exposure to pharmacological stimulation (blue: 100 µM ACh, red: 500 nM 6 ISO). 2 a &DUGLDFIoQChDQQHOV .FQM FOXVWHU &DFQDG &DFQDK *MD &DFQJ .FQLS .FQG .FQK .FQM &DFQDF &DFQE .FQM í $WSD .FQD .FQM í .FQN &DVT 5\U .FQM &DFQJ &DFQDG ,WSU 6FQD &DFQDG .FQQ &DFQDJ &DFQDG .FQD .FQT 6FQD 3OQ 6FQD +FQ *MD ,WSU 6FQE +FQ *MG .FQN .FQQ .FQN .FQD .FQE .FQQ +FQ &DFQDD &DFQE &DOP .FQM .FQD .FQN .FQG .FQN &DOP 6FQD .FQD 6FQE 6FQD 6FQD ,WSU +FQ 6FQD 5\U 6FQD 6FQE 6FQD .FQQ .FQH 6FQD &DFQE 6FQE .FQM FOXVWHU V6$1 L6$1 5$ /$ 3 b &DUGLDFReFHSWRUV $GUDF FOXVWHU $GUDD &DY &KUQE &KUP &KJD 0\O 3GHG &KUQD $GUE $GUDG &KUQE 5JV í 9LS $GUDE 7SP í 5JV 7QQF 3GHE 0\K $GUE *QDL $QN $GUDD $QN $QN &KUP $GUDE $NDS $WSE 5DPS &KUP 0\O &KUQD 6UF &KUQH $GUE &KUQD FOXVWHU V6$1 L6$1 5$ /$ 4 c 1HXURQDOPURWHLQV
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]
  • Altered Physiological Functions and Ion Currents in Atrial Fibroblasts From
    Physiological Reports ISSN 2051-817X ORIGINAL RESEARCH Altered physiological functions and ion currents in atrial fibroblasts from patients with chronic atrial fibrillation Claire Poulet1, Stephan Kunzel€ 1, Edgar Buttner€ 1, Diana Lindner2, Dirk Westermann2 & Ursula Ravens1 1 Department of Pharmacology and Toxicology, Medical Faculty Carl-Gustav-Carus, TU Dresden, Dresden, Germany 2 Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg, Germany Keywords Abstract Atrial fibrillation, electrophysiology, fibroblasts. The contribution of human atrial fibroblasts to cardiac physiology and patho- physiology is poorly understood. Fibroblasts may contribute to arrhythmogen- Correspondence esis through fibrosis, or by directly altering electrical activity in Claire Poulet, Imperial College London, Imperial cardiomyocytes. The objective of our study was to uncover phenotypic differ- Centre for Translational and Experimental ences between cells from patients in sinus rhythm (SR) and chronic atrial fib- Medicine, Hammersmith Campus, Du Cane rillation (AF), with special emphasis on electrophysiological properties. We Road, London W12 0NN, UK isolated fibroblasts from human right atrial tissue for patch-clamp experi- Tel: +44 207 594 2738 Fax: +44 207 594 3653 ments, proliferation, migration, and differentiation assays, and gene expression E-mail: [email protected] profiling. In culture, proliferation and migration of AF fibroblasts were strongly impaired but differentiation into myofibroblasts was increased. This Present Addresses was associated with a higher number of AF fibroblasts expressing functional Claire Poulet, Imperial College London, Nav1.5 channels. Strikingly Na+ currents were considerably larger in AF cells. National Heart and Lung Institute, London, UK Blocking Na+ channels in culture with tetrodotoxin did not affect prolifera- tion, migration, or differentiation in neither SR nor AF cells.
    [Show full text]
  • 1 1 2 3 Cell Type-Specific Transcriptomics of Hypothalamic
    1 2 3 4 Cell type-specific transcriptomics of hypothalamic energy-sensing neuron responses to 5 weight-loss 6 7 Fredrick E. Henry1,†, Ken Sugino1,†, Adam Tozer2, Tiago Branco2, Scott M. Sternson1,* 8 9 1Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 10 20147, USA. 11 2Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, 12 Cambridge CB2 0QH, UK 13 14 †Co-first author 15 *Correspondence to: [email protected] 16 Phone: 571-209-4103 17 18 Authors have no competing interests 19 1 20 Abstract 21 Molecular and cellular processes in neurons are critical for sensing and responding to energy 22 deficit states, such as during weight-loss. AGRP neurons are a key hypothalamic population 23 that is activated during energy deficit and increases appetite and weight-gain. Cell type-specific 24 transcriptomics can be used to identify pathways that counteract weight-loss, and here we 25 report high-quality gene expression profiles of AGRP neurons from well-fed and food-deprived 26 young adult mice. For comparison, we also analyzed POMC neurons, an intermingled 27 population that suppresses appetite and body weight. We find that AGRP neurons are 28 considerably more sensitive to energy deficit than POMC neurons. Furthermore, we identify cell 29 type-specific pathways involving endoplasmic reticulum-stress, circadian signaling, ion 30 channels, neuropeptides, and receptors. Combined with methods to validate and manipulate 31 these pathways, this resource greatly expands molecular insight into neuronal regulation of 32 body weight, and may be useful for devising therapeutic strategies for obesity and eating 33 disorders.
    [Show full text]
  • Supplemental Table 6
    Parent or Parent or Parent Child Child Lowest Mean Median Patient Patient Patient Parent Child Child Path Patient 1 Patient 1 Patient 2 Patient 2 Patient 2 Patient 3 PathwayName PathwayID Pathway in Pathway in Pathway in Level Pathway Pathway Patient 1 Gene List Patient 2 Gene List Patient 3 Gene List 1 2 3 PathwayID PathwayID Pathway in Length Uniprot List Targetome Uniprot List Targetome Uniprot List Targetome PathwayID PathwayID PathwayID Pathway Score Score PathwayID Unique R-HSA- R-HSA- Acetylation NA NA 1 FALSE NA FALSE FALSE FALSE 2 TRUE 1 1 NA NA NA NA NA NA P18440 NAT1,AAC1 NA 156582 156580 Butyrophilin (BTN) R-HSA- R-HSA- 1 NA NA FALSE NA FALSE FALSE FALSE 12 TRUE 1.41666667 1 Q8WVV5 BTN2A2,BT2.2,BTF2 NA NA NA NA NA NA NA family interactions 8851680 1280218 Carboxyterminal post-translational R-HSA- R-HSA- Q3ZCM7,Q8 2 1 1 FALSE NA FALSE FALSE FALSE 38 TRUE 2.71052632 1 TUBB8,TTLL11,C9orf20 NA Q8IUZ0 LRRC49 NA Q5VU57 AGBL4,CCP6 NA modifications of 8955332 597592 NHH1 tubulin P11168,P14 SLC2A2,GLUT2,SLC2A4, Cellular hexose R-HSA- R-HSA- NA 1 3 FALSE NA FALSE FALSE FALSE 22 TRUE 1.86363636 1 NA NA NA A0PJK1 SLC5A10,SGLT5 NA 672,Q9NY6 GLUT4,SLC2A8,GLUT8,G NA transport 189200 425407 4 LUTX1 Chondroitin sulfate R-HSA- R-HSA- CSGALNACT2,CHGN2,G 1 NA NA FALSE NA FALSE FALSE FALSE 20 TRUE 5 1 Q8N6G5 NA NA NA NA NA NA NA biosynthesis 2022870 1793185 ALNACT2,PRO0082 Cytosolic iron- R-HSA- R-HSA- P18074,P53 ERCC2,XPD,XPDC,NUBP1 sulfur cluster NA NA 2 FALSE NA FALSE FALSE FALSE 13 TRUE 6.15384615 1 NA NA NA NA NA NA NA 2564830 1430728 384
    [Show full text]
  • An Investigation of the Properties and Functions of Connexins in the Mammalian Inner Ear
    An Investigation of the Properties and Functions of Connexins in the Mammalian Inner Ear John Joseph Kelly Ear Institute University College London A thesis submitted for the degree of Doctor of Philosophy September 2011 Declaration I, John Kelly, confirm that the work presented in this thesis is my own. Where information or assistance has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Acknowledgements First and foremost, I would like to thank my supervisors: Dr. Dan Jagger for your continued support, advice and patience throughout my Ph.D., and Prof. Andy Forge for all your help and guidance along the way. It’s been a privilege to have you both as my mentors. I’d also like to thank other members of the group: Regina, for your expertise and friendship and for helping me integrate into the lab with ease; Ruth, for your help and advice over the years; Graham for your expertise and recommendations of areas to explore in the UK (one day….), and Nicole, for your company both inside and outside of the lab, and for the fond memories of our road trip around southern California with Cassy. Lisa, I’ve had the pleasure of working with you in two different labs. Thank you for all your help and advice and for your infectious positivity! I would like to thank Dr. Sally Dawson for introducing me to the world of molecular biology and to both Sally and Dr. Jonathan Gale for the advice you have both given me. Emily, you’ve been a fantastic lab, desk and tea-break buddy.
    [Show full text]
  • SF3B1-Mutated Chronic Lymphocytic Leukemia Shows Evidence Of
    SF3B1-mutated chronic lymphocytic leukemia shows evidence of NOTCH1 pathway activation including CD20 downregulation by Federico Pozzo, Tamara Bittolo, Erika Tissino, Filippo Vit, Elena Vendramini, Luca Laurenti, Giovanni D'Arena, Jacopo Olivieri, Gabriele Pozzato, Francesco Zaja, Annalisa Chiarenza, Francesco Di Raimondo, Antonella Zucchetto, Riccardo Bomben, Francesca Maria Rossi, Giovanni Del Poeta, Michele Dal Bo, and Valter Gattei Haematologica 2020 [Epub ahead of print] Citation: Federico Pozzo, Tamara Bittolo, Erika Tissino, Filippo Vit, Elena Vendramini, Luca Laurenti, Giovanni D'Arena, Jacopo Olivieri, Gabriele Pozzato, Francesco Zaja, Annalisa Chiarenza, Francesco Di Raimondo, Antonella Zucchetto, Riccardo Bomben, Francesca Maria Rossi, Giovanni Del Poeta, Michele Dal Bo, and Valter Gattei SF3B1-mutated chronic lymphocytic leukemia shows evidence of NOTCH1 pathway activation including CD20 downregulation. Haematologica. 2020; 105:xxx doi:10.3324/haematol.2020.261891 Publisher's Disclaimer. E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will
    [Show full text]
  • The Clinical Significance of Endothelin Receptor Type B in Hepatocellular
    Experimental and Molecular Pathology 107 (2019) 141–157 Contents lists available at ScienceDirect Experimental and Molecular Pathology journal homepage: www.elsevier.com/locate/yexmp The clinical significance of endothelin receptor type B in hepatocellular T carcinoma and its potential molecular mechanism ⁎ Lu Zhanga,1, Bin Luob,1, Yi-wu Danga, Rong-quan Heb, Gang Chena, Zhi-gang Pengb, , ⁎ Zhen-bo Fenga, a Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region530021,PR China b Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China ARTICLE INFO ABSTRACT Keywords: Objective: To explore the clinical significance and potential molecular mechanism of endothelin receptor typeB Endothelin receptor type B (EDNRB) in hepatocellular carcinoma (HCC). Hepatocellular carcinoma Methods: Immunohistochemistry was used to detect EDNRB protein expression level in 67 HCC paraffin em- Immunohistochemistry bedded tissues and adjacent tissues. Correlations between EDNRB expression level and clinicopathologic para- meters were analyzed in our study. The expression level and clinical significance of EDNRB in HCC were also evaluated from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. The cBioPortal for Cancer Genomics was employed to analyze the EDNRB related genes, and Gene Ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and Protein-Protein Interaction (PPI) network were conducted for those EDNRB related genes. Results: Lower expression level of EDNRB in HCC was verified by immunohistochemistry than adjacent tissues (P < 0.0001). The expression level of EDNRB in HCC tissues was lower than normal control liver tissues based on TCGA and GEO data (standard mean difference [SMD] = −1.48, 95% [confidence interval] CI: 2 −1.63−(−1.33), P heterogeneity = 0.116, I = 32.4%).
    [Show full text]
  • Autocrine IFN Signaling Inducing Profibrotic Fibroblast Responses By
    Downloaded from http://www.jimmunol.org/ by guest on September 23, 2021 Inducing is online at: average * The Journal of Immunology , 11 of which you can access for free at: 2013; 191:2956-2966; Prepublished online 16 from submission to initial decision 4 weeks from acceptance to publication August 2013; doi: 10.4049/jimmunol.1300376 http://www.jimmunol.org/content/191/6/2956 A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Autocrine IFN Signaling Feng Fang, Kohtaro Ooka, Xiaoyong Sun, Ruchi Shah, Swati Bhattacharyya, Jun Wei and John Varga J Immunol cites 49 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130037 6.DC1 This article http://www.jimmunol.org/content/191/6/2956.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 23, 2021. The Journal of Immunology A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Inducing Autocrine IFN Signaling Feng Fang,* Kohtaro Ooka,* Xiaoyong Sun,† Ruchi Shah,* Swati Bhattacharyya,* Jun Wei,* and John Varga* Activation of TLR3 by exogenous microbial ligands or endogenous injury-associated ligands leads to production of type I IFN.
    [Show full text]
  • A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression
    Supplementary Materials A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression Table S1. Statistically significant DEGs (Adj. p-value < 0.01) derived from meta-analysis for samples irradiated with high doses of HZE particles, collected 6-24 h post-IR not common with any other meta- analysis group. This meta-analysis group consists of 3 DEG lists obtained from DGEA, using a total of 11 control and 11 irradiated samples [Data Series: E-MTAB-5761 and E-MTAB-5754]. Ensembl ID Gene Symbol Gene Description Up-Regulated Genes ↑ (2425) ENSG00000000938 FGR FGR proto-oncogene, Src family tyrosine kinase ENSG00000001036 FUCA2 alpha-L-fucosidase 2 ENSG00000001084 GCLC glutamate-cysteine ligase catalytic subunit ENSG00000001631 KRIT1 KRIT1 ankyrin repeat containing ENSG00000002079 MYH16 myosin heavy chain 16 pseudogene ENSG00000002587 HS3ST1 heparan sulfate-glucosamine 3-sulfotransferase 1 ENSG00000003056 M6PR mannose-6-phosphate receptor, cation dependent ENSG00000004059 ARF5 ADP ribosylation factor 5 ENSG00000004777 ARHGAP33 Rho GTPase activating protein 33 ENSG00000004799 PDK4 pyruvate dehydrogenase kinase 4 ENSG00000004848 ARX aristaless related homeobox ENSG00000005022 SLC25A5 solute carrier family 25 member 5 ENSG00000005108 THSD7A thrombospondin type 1 domain containing 7A ENSG00000005194 CIAPIN1 cytokine induced apoptosis inhibitor 1 ENSG00000005381 MPO myeloperoxidase ENSG00000005486 RHBDD2 rhomboid domain containing 2 ENSG00000005884 ITGA3 integrin subunit alpha 3 ENSG00000006016 CRLF1 cytokine receptor like
    [Show full text]