Supplemental Table 6

Total Page:16

File Type:pdf, Size:1020Kb

Supplemental Table 6 Parent or Parent or Parent Child Child Lowest Mean Median Patient Patient Patient Parent Child Child Path Patient 1 Patient 1 Patient 2 Patient 2 Patient 2 Patient 3 PathwayName PathwayID Pathway in Pathway in Pathway in Level Pathway Pathway Patient 1 Gene List Patient 2 Gene List Patient 3 Gene List 1 2 3 PathwayID PathwayID Pathway in Length Uniprot List Targetome Uniprot List Targetome Uniprot List Targetome PathwayID PathwayID PathwayID Pathway Score Score PathwayID Unique R-HSA- R-HSA- Acetylation NA NA 1 FALSE NA FALSE FALSE FALSE 2 TRUE 1 1 NA NA NA NA NA NA P18440 NAT1,AAC1 NA 156582 156580 Butyrophilin (BTN) R-HSA- R-HSA- 1 NA NA FALSE NA FALSE FALSE FALSE 12 TRUE 1.41666667 1 Q8WVV5 BTN2A2,BT2.2,BTF2 NA NA NA NA NA NA NA family interactions 8851680 1280218 Carboxyterminal post-translational R-HSA- R-HSA- Q3ZCM7,Q8 2 1 1 FALSE NA FALSE FALSE FALSE 38 TRUE 2.71052632 1 TUBB8,TTLL11,C9orf20 NA Q8IUZ0 LRRC49 NA Q5VU57 AGBL4,CCP6 NA modifications of 8955332 597592 NHH1 tubulin P11168,P14 SLC2A2,GLUT2,SLC2A4, Cellular hexose R-HSA- R-HSA- NA 1 3 FALSE NA FALSE FALSE FALSE 22 TRUE 1.86363636 1 NA NA NA A0PJK1 SLC5A10,SGLT5 NA 672,Q9NY6 GLUT4,SLC2A8,GLUT8,G NA transport 189200 425407 4 LUTX1 Chondroitin sulfate R-HSA- R-HSA- CSGALNACT2,CHGN2,G 1 NA NA FALSE NA FALSE FALSE FALSE 20 TRUE 5 1 Q8N6G5 NA NA NA NA NA NA NA biosynthesis 2022870 1793185 ALNACT2,PRO0082 Cytosolic iron- R-HSA- R-HSA- P18074,P53 ERCC2,XPD,XPDC,NUBP1 sulfur cluster NA NA 2 FALSE NA FALSE FALSE FALSE 13 TRUE 6.15384615 1 NA NA NA NA NA NA NA 2564830 1430728 384 ,NBP,NBP1 assembly Cytosolic R-HSA- R-HSA- R-HSA- SULT1B1,ST1B2,SULT1B sulfonation of NA NA 1 FALSE FALSE FALSE FALSE 24 TRUE 1.875 1 NA NA NA NA NA NA O43704 NA 156584 156580 174362 2 small molecules Estrogen R-HSA- R-HSA- CYP19A1,ARO1,CYAR,CY 1 NA 1 FALSE NA FALSE FALSE FALSE 6 TRUE 1.83333333 1 P11511 NA NA NA NA C9JRZ8 AKR1B15 NA biosynthesis 193144 196071 P19 Gap junction R-HSA- R-HSA- R-HSA- P36383,Q8 1 NA 2 FALSE FALSE FALSE FALSE 19 TRUE 1.78947368 1 Q3ZCM7 TUBB8 NA NA NA NA GJC1,GJA7,GJD3,GJA11 NA assembly 190861 190828 190827 N144 Gap junction R-HSA- R-HSA- R-HSA- P36383,Q8 1 NA 2 FALSE FALSE FALSE FALSE 19 TRUE 1.78947368 1 Q3ZCM7 TUBB8 NA NA NA NA GJC1,GJA7,GJD3,GJA11 NA assembly 190861 190828 190704 N144 Gap junction R-HSA- R-HSA- R-HSA- P36383,Q8 1 NA 2 FALSE FALSE FALSE FALSE 19 TRUE 1.78947368 1 Q3ZCM7 TUBB8 NA NA NA NA GJC1,GJA7,GJD3,GJA11 NA assembly 190861 190828 190872 N144 R-HSA- R-HSA- R-HSA- Glucuronidation 1 NA NA FALSE FALSE FALSE FALSE 24 TRUE 1.41666667 1 P35504 UGT1A5,GNT1,UGT1 NA NA NA NA NA NA NA 156588 156580 173599 R-HSA- R-HSA- HCN channels NA NA 1 FALSE NA FALSE FALSE FALSE 4 TRUE 1 1 NA NA NA NA NA NA Q9Y3Q4 HCN4 NA 1296061 1296071 IL-6-type cytokine R-HSA- R-HSA- receptor ligand 1 NA NA FALSE NA FALSE FALSE FALSE 17 TRUE 6 1 P42702 LIFR NA NA NA NA NA NA NA 6788467 6783589 interactions Interaction With R-HSA- R-HSA- ADAM30,UNQ2509/PRO 1 NA 1 FALSE NA FALSE FALSE FALSE 10 TRUE 1.7 1 Q9UKF2 NA NA NA NA Q9UKJ8 ADAM21 NA The Zona Pellucida 1300644 1187000 5997 Intracellular R-HSA- R-HSA- NA NA 1 FALSE NA FALSE FALSE FALSE 3 TRUE 1.33333333 1 NA NA NA NA NA NA Q9NPG2 NGB NA oxygen transport 8981607 382551 P19013,P78 KRT4,CYK4,KRT85,KRTH O43790,Q8 KRT86,KRTHB6,KRT73,K KRTAP4- R-HSA- R-HSA- R-HSA- 386,Q02487 B5,DSC2,CDHF2,DSC3,KR Keratinization 4 1 5 FALSE TRUE TRUE TRUE 217 TRUE 1.60829493 1 6Y46,Q9945 6IRS3,KB36,KRT6IRS3,K NA Q9BYQ5 6,KAP4.15,KRTAP4- NA NA 6805567 1266738 6809371 ,Q86Y46,Q9 T73,K6IRS3,KB36,KRT6I 6,Q99959 RT12,PKP2 15,KRTAP4.15,KRTAP4.6 9569 RS3,PKP4 Miscellaneous R-HSA- R-HSA- transport and NA NA 1 FALSE NA FALSE FALSE FALSE 24 TRUE 1.375 1 NA NA NA NA NA NA Q7RTP0 NIPA1,SPG6 NA 5223345 382551 binding events Mitochondrial R-HSA- R-HSA- Q5JPH6,Q96 EARS2,KIAA1970,MARS tRNA 2 1 NA FALSE NA FALSE FALSE FALSE 21 TRUE 1.28571429 1 NA Q9NP81 SARS2,SARSM NA NA NA NA 379726 379724 GW9 2 aminoacylation Q15700,Q6 O14490,Q1 DLGAP1,DAP1,GKAP,GRI Neurexins and R-HSA- R-HSA- DLG2,SYT10,NRXN3,KIA 4 NA 3 FALSE NA FALSE FALSE FALSE 57 TRUE 3.66666667 1 XYQ8,Q9HD NA NA NA NA 2879,Q9NS N2A,NMDAR2A,HOMER NA neuroligins 6794361 6794362 A0743,C14orf60 B5,Q9Y4C0 C5 3 Phenylalanine and R-HSA- R-HSA- tyrosine NA NA 1 FALSE NA FALSE FALSE FALSE 11 TRUE 1.45454545 1 NA NA NA NA NA NA Q16773 KYAT1,CCBL1 NA 71182 6788656 catabolism Post-translational modification: R-HSA- R-HSA- R-HSA- LY6G6C,C6orf24,G6C,NG NA NA 1 FALSE TRUE TRUE TRUE 94 TRUE 1.60638298 1 NA NA NA NA NA NA O95867 NA synthesis of GPI- 163125 597592 162710 24,UNQ1947/PRO4430 anchored proteins Post-translational modification: R-HSA- R-HSA- R-HSA- LY6G6C,C6orf24,G6C,NG NA NA 1 FALSE FALSE FALSE TRUE 94 TRUE 1.60638298 1 NA NA NA NA NA NA O95867 NA synthesis of GPI- 163125 597592 162791 24,UNQ1947/PRO4430 anchored proteins Post-translational modification: R-HSA- R-HSA- R-HSA- LY6G6C,C6orf24,G6C,NG NA NA 1 FALSE FALSE FALSE TRUE 94 TRUE 1.60638298 1 NA NA NA NA NA NA O95867 NA synthesis of GPI- 163125 597592 162699 24,UNQ1947/PRO4430 anchored proteins PTK6 Regulates R-HSA- R-HSA- Proteins Involved NA NA 1 FALSE NA FALSE FALSE FALSE 5 TRUE 3.6 1 NA NA NA NA NA NA O75525 KHDRBS3,SALP,SLM2 NA 8849468 8848021 in RNA Processing R-HSA- R-HSA- Purine salvage 1 NA 1 FALSE NA FALSE FALSE FALSE 13 TRUE 1.53846154 1 P23109 AMPD1 NA NA NA NA Q6DHV7 ADAL NA 74217 8956321 R-HSA- R-HSA- SDK interactions NA NA 1 FALSE NA FALSE FALSE FALSE 2 TRUE 1 1 NA NA NA NA NA NA Q58EX2 SDK2,KIAA1514 NA 373756 421270 Sphingolipid de R-HSA- R-HSA- 1 NA NA FALSE NA FALSE FALSE FALSE 44 TRUE 1.34090909 1 P48448 ALDH3B2,ALDH8 NA NA NA NA NA NA NA novo biosynthesis 1660661 428157 Striated Muscle R-HSA- R-HSA- P35609,Q00 ACTN2,MYBPC1,MYBPC NA NA 2 FALSE NA FALSE FALSE FALSE 34 TRUE 1.70588235 1 NA NA NA NA NA NA NA Contraction 390522 397014 872 S Synthesis of R-HSA- R-HSA- pyrophosphates in NA NA 1 FALSE NA FALSE FALSE FALSE 10 TRUE 1.4 1 NA NA NA NA NA NA Q13572 ITPK1 NA 1855167 1483249 the cytosol TET1,2,3 and TDG R-HSA- R-HSA- Q13569,Q6 TDG,TET2,KIAA1546,Nbl NA NA 2 FALSE NA FALSE FALSE FALSE 4 TRUE 2.25 1 NA NA NA NA NA NA NA demethylate DNA 5221030 212165 N021 a00191 tRNA modification R-HSA- R-HSA- R-HSA- Q7Z6V5,Q8I ADAT2,DEADC1,TRMT44 in the nucleus and 2 NA NA FALSE FALSE FALSE FALSE 43 TRUE 1.34883721 1 NA NA NA NA NA NA NA 6782315 72306 6782861 YL2 ,C4orf23,METTL19 cytosol Tryptophan R-HSA- R-HSA- P48775,Q16 NA NA 2 FALSE NA FALSE FALSE FALSE 14 TRUE 1.92857143 1 NA NA NA NA NA NA TDO2,TDO,KYAT1,CCBL1 NA catabolism 71240 6788656 773 Vitamin B1 R-HSA- R-HSA- (thiamin) NA NA 1 FALSE NA FALSE FALSE FALSE 5 TRUE 1 1 NA NA NA NA NA NA Q9BZV2 SLC19A3 NA 196819 196849 metabolism O95259,Q8 Voltage gated KCNH1,EAG,EAG1,KCNH R-HSA- R-HSA- O43525,P22 NCM2,Q8TD Potassium 2 NA 5 FALSE NA FALSE FALSE FALSE 43 TRUE 1.53488372 1 KCNQ3,KCNA4,KCNA4L NA NA NA NA 5,EAG2,KCNG4,KCNG3,K NA 1296072 1296071 459 N1,Q9H3M0 channels CNF1,KCNQ5 ,Q9NR82 R-HSA- R-HSA- Q8NE62,Q8 CHDH,SLC44A1,CD92,CD Choline catabolism 2 NA NA FALSE NA FALSE FALSE FALSE 6 TRUE 1.83333333 1.5 NA NA NA NA NA NA NA 6798163 71291 WWI5 W92,CTL1 LGI-ADAM R-HSA- R-HSA- LGI3,LGIL4,UNQ8190/P 1 NA 1 FALSE NA FALSE FALSE FALSE 14 TRUE 4.28571429 1.5 Q8N145 NA NA NA NA Q9P0K1 ADAM22,MDC2 NA interactions 5682910 1266738 RO23199 Receptor-type R-HSA- R-HSA- O94991,P23 SLITRK5,KIAA0918,LRRC tyrosine-protein 1 NA 2 FALSE NA FALSE FALSE FALSE 20 TRUE 3.15 1.5 P23468 PTPRD NA NA NA NA NA 388844 6794362 468 11,PTPRD phosphatases R-HSA- R-HSA- O14641,Q9 Signaling by Hippo NA NA 2 FALSE NA FALSE FALSE FALSE 20 TRUE 6 1.5 NA NA NA NA NA NA DVL2,AMOTL2,KIAA0989 NA 2028269 162582 Y2J4 ABC transporters R-HSA- R-HSA- in lipid 1 NA NA TRUE NA FALSE TRUE TRUE 18 TRUE 3.27777778 2 Q8IUA7 ABCA9 NA NA NA NA NA NA NA 1369062 382556 homeostasis P55285,Q12 CDH6,CDH17,CDH24,CDH Adherens junctions R-HSA- R-HSA- R-HSA- Q9ULB4,Q9 3 NA 2 FALSE FALSE FALSE FALSE 31 TRUE 3.03225806 2 864,Q86UP 11L,UNQ2834/PRO3400 NA NA NA NA CDH9,CDH7,CDH7L1 NA interactions 418990 421270 420597 ULB5 0 9 Amino acid P49448,Q16 synthesis and R-HSA- R-HSA- R-HSA- GLUD2,GLUDP1,KYAT1,C NA NA 3 FALSE FALSE FALSE FALSE 34 TRUE 2 2 NA NA NA NA NA NA 773,Q9Y3Q NA interconversion 70614 71291 977347 CBL1,NAALAD2 0 (transamination) ASB14,MGRN1,KIAA054 PSME3,PSMD2,TRAP2,T P61289,Q13 A6NK59,O6 4,RNF156,PSMA1,HC2,N RIP12,KIAA0045,ULF,HU Antigen 200,Q14669 0291,P2578 U,PROS30,PSC2,UBE2D1 WE1,KIAA0312,KIAA157 processing: ,Q7Z6Z7,Q8 R-HSA- R-HSA- 6,P51668,Q ,SFT,UBC5A,UBCH5,UBC 8,UREB1,HSPC272,UBR1 Ubiquitination & 7 1 9 FALSE NA FALSE FALSE FALSE 309 TRUE 17.4854369 2 PSMA1 Q9UJX4 ANAPC5,APC5 NA IWV7,Q8TB PSMD2 983168 983169 5GLZ8,Q6U H5A,HERC4,KIAA1593,LR ,LNX1,LNX,PDZRN2,UNQ Proteasome B1,Q96PU5, WE0,Q9Y29 SAM1,TAL,UNQ6496/PR 574/PRO1136,NEDD4L,K degradation Q9H765,Q9 7 O21356,BTRC,BTRCP,FB IAA0439,NEDL3,ASB8,PP UH77 W1A,FBXW1A 14212,KLHL3,KIAA1129 BBSome-mediated R-HSA- R-HSA- cargo-targeting to NA NA 1 FALSE NA FALSE FALSE FALSE 23 TRUE 4.08695652 2 NA NA NA NA NA NA P50991 CCT4,CCTD,SRB NA 5620922 5620920 cilium Cation-coupled R-HSA- R-HSA- Chloride NA NA 1 TRUE NA FALSE TRUE TRUE 7 TRUE 2 2 NA NA NA NA NA NA Q13621 SLC12A1,NKCC2 NA 426117 425393 cotransporters Cell-extracellular R-HSA- R-HSA- R-HSA- 1 NA NA FALSE FALSE FALSE FALSE 16 TRUE 4.375 2 Q14315 FLNC,ABPL,FLN2 NA NA NA NA NA NA NA matrix interactions 446353 446728 446388 Cell-extracellular R-HSA- R-HSA- R-HSA- 1 NA NA FALSE FALSE FALSE FALSE 16 TRUE 4.375 2 Q14315 FLNC,ABPL,FLN2 NA NA NA NA NA NA NA matrix interactions 446353 446728 446343 Citric acid cycle R-HSA- R-HSA- 1 NA NA FALSE NA FALSE
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Spatial Distribution of Leading Pacemaker Sites in the Normal, Intact Rat Sinoa
    Supplementary Material Supplementary Figure 1: Spatial distribution of leading pacemaker sites in the normal, intact rat sinoatrial 5 nodes (SAN) plotted along a normalized y-axis between the superior vena cava (SVC) and inferior vena 6 cava (IVC) and a scaled x-axis in millimeters (n = 8). Colors correspond to treatment condition (black: 7 baseline, blue: 100 µM Acetylcholine (ACh), red: 500 nM Isoproterenol (ISO)). 1 Supplementary Figure 2: Spatial distribution of leading pacemaker sites before and after surgical 3 separation of the rat SAN (n = 5). Top: Intact SAN preparations with leading pacemaker sites plotted during 4 baseline conditions. Bottom: Surgically cut SAN preparations with leading pacemaker sites plotted during 5 baseline conditions (black) and exposure to pharmacological stimulation (blue: 100 µM ACh, red: 500 nM 6 ISO). 2 a &DUGLDFIoQChDQQHOV .FQM FOXVWHU &DFQDG &DFQDK *MD &DFQJ .FQLS .FQG .FQK .FQM &DFQDF &DFQE .FQM í $WSD .FQD .FQM í .FQN &DVT 5\U .FQM &DFQJ &DFQDG ,WSU 6FQD &DFQDG .FQQ &DFQDJ &DFQDG .FQD .FQT 6FQD 3OQ 6FQD +FQ *MD ,WSU 6FQE +FQ *MG .FQN .FQQ .FQN .FQD .FQE .FQQ +FQ &DFQDD &DFQE &DOP .FQM .FQD .FQN .FQG .FQN &DOP 6FQD .FQD 6FQE 6FQD 6FQD ,WSU +FQ 6FQD 5\U 6FQD 6FQE 6FQD .FQQ .FQH 6FQD &DFQE 6FQE .FQM FOXVWHU V6$1 L6$1 5$ /$ 3 b &DUGLDFReFHSWRUV $GUDF FOXVWHU $GUDD &DY &KUQE &KUP &KJD 0\O 3GHG &KUQD $GUE $GUDG &KUQE 5JV í 9LS $GUDE 7SP í 5JV 7QQF 3GHE 0\K $GUE *QDL $QN $GUDD $QN $QN &KUP $GUDE $NDS $WSE 5DPS &KUP 0\O &KUQD 6UF &KUQH $GUE &KUQD FOXVWHU V6$1 L6$1 5$ /$ 4 c 1HXURQDOPURWHLQV
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]
  • Altered Physiological Functions and Ion Currents in Atrial Fibroblasts From
    Physiological Reports ISSN 2051-817X ORIGINAL RESEARCH Altered physiological functions and ion currents in atrial fibroblasts from patients with chronic atrial fibrillation Claire Poulet1, Stephan Kunzel€ 1, Edgar Buttner€ 1, Diana Lindner2, Dirk Westermann2 & Ursula Ravens1 1 Department of Pharmacology and Toxicology, Medical Faculty Carl-Gustav-Carus, TU Dresden, Dresden, Germany 2 Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg, Germany Keywords Abstract Atrial fibrillation, electrophysiology, fibroblasts. The contribution of human atrial fibroblasts to cardiac physiology and patho- physiology is poorly understood. Fibroblasts may contribute to arrhythmogen- Correspondence esis through fibrosis, or by directly altering electrical activity in Claire Poulet, Imperial College London, Imperial cardiomyocytes. The objective of our study was to uncover phenotypic differ- Centre for Translational and Experimental ences between cells from patients in sinus rhythm (SR) and chronic atrial fib- Medicine, Hammersmith Campus, Du Cane rillation (AF), with special emphasis on electrophysiological properties. We Road, London W12 0NN, UK isolated fibroblasts from human right atrial tissue for patch-clamp experi- Tel: +44 207 594 2738 Fax: +44 207 594 3653 ments, proliferation, migration, and differentiation assays, and gene expression E-mail: [email protected] profiling. In culture, proliferation and migration of AF fibroblasts were strongly impaired but differentiation into myofibroblasts was increased. This Present Addresses was associated with a higher number of AF fibroblasts expressing functional Claire Poulet, Imperial College London, Nav1.5 channels. Strikingly Na+ currents were considerably larger in AF cells. National Heart and Lung Institute, London, UK Blocking Na+ channels in culture with tetrodotoxin did not affect prolifera- tion, migration, or differentiation in neither SR nor AF cells.
    [Show full text]
  • 1 1 2 3 Cell Type-Specific Transcriptomics of Hypothalamic
    1 2 3 4 Cell type-specific transcriptomics of hypothalamic energy-sensing neuron responses to 5 weight-loss 6 7 Fredrick E. Henry1,†, Ken Sugino1,†, Adam Tozer2, Tiago Branco2, Scott M. Sternson1,* 8 9 1Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 10 20147, USA. 11 2Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, 12 Cambridge CB2 0QH, UK 13 14 †Co-first author 15 *Correspondence to: [email protected] 16 Phone: 571-209-4103 17 18 Authors have no competing interests 19 1 20 Abstract 21 Molecular and cellular processes in neurons are critical for sensing and responding to energy 22 deficit states, such as during weight-loss. AGRP neurons are a key hypothalamic population 23 that is activated during energy deficit and increases appetite and weight-gain. Cell type-specific 24 transcriptomics can be used to identify pathways that counteract weight-loss, and here we 25 report high-quality gene expression profiles of AGRP neurons from well-fed and food-deprived 26 young adult mice. For comparison, we also analyzed POMC neurons, an intermingled 27 population that suppresses appetite and body weight. We find that AGRP neurons are 28 considerably more sensitive to energy deficit than POMC neurons. Furthermore, we identify cell 29 type-specific pathways involving endoplasmic reticulum-stress, circadian signaling, ion 30 channels, neuropeptides, and receptors. Combined with methods to validate and manipulate 31 these pathways, this resource greatly expands molecular insight into neuronal regulation of 32 body weight, and may be useful for devising therapeutic strategies for obesity and eating 33 disorders.
    [Show full text]
  • An Investigation of the Properties and Functions of Connexins in the Mammalian Inner Ear
    An Investigation of the Properties and Functions of Connexins in the Mammalian Inner Ear John Joseph Kelly Ear Institute University College London A thesis submitted for the degree of Doctor of Philosophy September 2011 Declaration I, John Kelly, confirm that the work presented in this thesis is my own. Where information or assistance has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Acknowledgements First and foremost, I would like to thank my supervisors: Dr. Dan Jagger for your continued support, advice and patience throughout my Ph.D., and Prof. Andy Forge for all your help and guidance along the way. It’s been a privilege to have you both as my mentors. I’d also like to thank other members of the group: Regina, for your expertise and friendship and for helping me integrate into the lab with ease; Ruth, for your help and advice over the years; Graham for your expertise and recommendations of areas to explore in the UK (one day….), and Nicole, for your company both inside and outside of the lab, and for the fond memories of our road trip around southern California with Cassy. Lisa, I’ve had the pleasure of working with you in two different labs. Thank you for all your help and advice and for your infectious positivity! I would like to thank Dr. Sally Dawson for introducing me to the world of molecular biology and to both Sally and Dr. Jonathan Gale for the advice you have both given me. Emily, you’ve been a fantastic lab, desk and tea-break buddy.
    [Show full text]
  • SF3B1-Mutated Chronic Lymphocytic Leukemia Shows Evidence Of
    SF3B1-mutated chronic lymphocytic leukemia shows evidence of NOTCH1 pathway activation including CD20 downregulation by Federico Pozzo, Tamara Bittolo, Erika Tissino, Filippo Vit, Elena Vendramini, Luca Laurenti, Giovanni D'Arena, Jacopo Olivieri, Gabriele Pozzato, Francesco Zaja, Annalisa Chiarenza, Francesco Di Raimondo, Antonella Zucchetto, Riccardo Bomben, Francesca Maria Rossi, Giovanni Del Poeta, Michele Dal Bo, and Valter Gattei Haematologica 2020 [Epub ahead of print] Citation: Federico Pozzo, Tamara Bittolo, Erika Tissino, Filippo Vit, Elena Vendramini, Luca Laurenti, Giovanni D'Arena, Jacopo Olivieri, Gabriele Pozzato, Francesco Zaja, Annalisa Chiarenza, Francesco Di Raimondo, Antonella Zucchetto, Riccardo Bomben, Francesca Maria Rossi, Giovanni Del Poeta, Michele Dal Bo, and Valter Gattei SF3B1-mutated chronic lymphocytic leukemia shows evidence of NOTCH1 pathway activation including CD20 downregulation. Haematologica. 2020; 105:xxx doi:10.3324/haematol.2020.261891 Publisher's Disclaimer. E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will
    [Show full text]
  • The Clinical Significance of Endothelin Receptor Type B in Hepatocellular
    Experimental and Molecular Pathology 107 (2019) 141–157 Contents lists available at ScienceDirect Experimental and Molecular Pathology journal homepage: www.elsevier.com/locate/yexmp The clinical significance of endothelin receptor type B in hepatocellular T carcinoma and its potential molecular mechanism ⁎ Lu Zhanga,1, Bin Luob,1, Yi-wu Danga, Rong-quan Heb, Gang Chena, Zhi-gang Pengb, , ⁎ Zhen-bo Fenga, a Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region530021,PR China b Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China ARTICLE INFO ABSTRACT Keywords: Objective: To explore the clinical significance and potential molecular mechanism of endothelin receptor typeB Endothelin receptor type B (EDNRB) in hepatocellular carcinoma (HCC). Hepatocellular carcinoma Methods: Immunohistochemistry was used to detect EDNRB protein expression level in 67 HCC paraffin em- Immunohistochemistry bedded tissues and adjacent tissues. Correlations between EDNRB expression level and clinicopathologic para- meters were analyzed in our study. The expression level and clinical significance of EDNRB in HCC were also evaluated from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. The cBioPortal for Cancer Genomics was employed to analyze the EDNRB related genes, and Gene Ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and Protein-Protein Interaction (PPI) network were conducted for those EDNRB related genes. Results: Lower expression level of EDNRB in HCC was verified by immunohistochemistry than adjacent tissues (P < 0.0001). The expression level of EDNRB in HCC tissues was lower than normal control liver tissues based on TCGA and GEO data (standard mean difference [SMD] = −1.48, 95% [confidence interval] CI: 2 −1.63−(−1.33), P heterogeneity = 0.116, I = 32.4%).
    [Show full text]
  • Autocrine IFN Signaling Inducing Profibrotic Fibroblast Responses By
    Downloaded from http://www.jimmunol.org/ by guest on September 23, 2021 Inducing is online at: average * The Journal of Immunology , 11 of which you can access for free at: 2013; 191:2956-2966; Prepublished online 16 from submission to initial decision 4 weeks from acceptance to publication August 2013; doi: 10.4049/jimmunol.1300376 http://www.jimmunol.org/content/191/6/2956 A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Autocrine IFN Signaling Feng Fang, Kohtaro Ooka, Xiaoyong Sun, Ruchi Shah, Swati Bhattacharyya, Jun Wei and John Varga J Immunol cites 49 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130037 6.DC1 This article http://www.jimmunol.org/content/191/6/2956.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 23, 2021. The Journal of Immunology A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Inducing Autocrine IFN Signaling Feng Fang,* Kohtaro Ooka,* Xiaoyong Sun,† Ruchi Shah,* Swati Bhattacharyya,* Jun Wei,* and John Varga* Activation of TLR3 by exogenous microbial ligands or endogenous injury-associated ligands leads to production of type I IFN.
    [Show full text]
  • A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression
    Supplementary Materials A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression Table S1. Statistically significant DEGs (Adj. p-value < 0.01) derived from meta-analysis for samples irradiated with high doses of HZE particles, collected 6-24 h post-IR not common with any other meta- analysis group. This meta-analysis group consists of 3 DEG lists obtained from DGEA, using a total of 11 control and 11 irradiated samples [Data Series: E-MTAB-5761 and E-MTAB-5754]. Ensembl ID Gene Symbol Gene Description Up-Regulated Genes ↑ (2425) ENSG00000000938 FGR FGR proto-oncogene, Src family tyrosine kinase ENSG00000001036 FUCA2 alpha-L-fucosidase 2 ENSG00000001084 GCLC glutamate-cysteine ligase catalytic subunit ENSG00000001631 KRIT1 KRIT1 ankyrin repeat containing ENSG00000002079 MYH16 myosin heavy chain 16 pseudogene ENSG00000002587 HS3ST1 heparan sulfate-glucosamine 3-sulfotransferase 1 ENSG00000003056 M6PR mannose-6-phosphate receptor, cation dependent ENSG00000004059 ARF5 ADP ribosylation factor 5 ENSG00000004777 ARHGAP33 Rho GTPase activating protein 33 ENSG00000004799 PDK4 pyruvate dehydrogenase kinase 4 ENSG00000004848 ARX aristaless related homeobox ENSG00000005022 SLC25A5 solute carrier family 25 member 5 ENSG00000005108 THSD7A thrombospondin type 1 domain containing 7A ENSG00000005194 CIAPIN1 cytokine induced apoptosis inhibitor 1 ENSG00000005381 MPO myeloperoxidase ENSG00000005486 RHBDD2 rhomboid domain containing 2 ENSG00000005884 ITGA3 integrin subunit alpha 3 ENSG00000006016 CRLF1 cytokine receptor like
    [Show full text]
  • Molecular Basis of Abnormal Conduction in Mice Over-Expressing Endothelin-1
    MOLECULAR BASIS OF ABNORMAL CONDUCTION IN MICE OVER-EXPRESSING ENDOTHELIN-1 by Erin Elizabeth Mueller A thesis submitted in conformity with the requirements for the degree of PhD Graduate Department of Laboratory Medicine and Pathobiology Copyright by Erin Elizabeth Mueller (2011) MOLECULAR BASIS OF ABNORMAL CONDUCTION IN MICE OVER-EXPRESSING ENDOTHELIN-1 Erin Elizabeth Mueller Doctor of Philosophy, 2011 Department of Laboratory Medicine & Pathobiology, University of Toronto ABSTRACT Binary transgenic (BT) mice with doxycycline (DOX)-suppressible cardiac-specific over- expression of endothelin-1 (ET-1) exhibit progressive heart failure, QRS prolongation, and death following DOX withdrawal. However, the molecular basis and reversibility of the electrophysiological abnormalities in this model were not known. Here we assess the mechanisms underlying ET-1-mediated electrical remodelling, and its role in heart failure. Prior attempts to prevent this model of ET-1 induced cardiomyopathy with ET receptor antagonism were not beneficial. We now propose to evaluate the effectiveness of blocking the synthesis of ET-1 with CGS 26303, a dual inhibitor of endothelin converting enzyme (ECE) and neutral endopeptidase. BT vs. littermate control mice were withdrawn from DOX and serially studied with ultrasound biomicroscopy, octapolar catheters, multi-electrode epicardial mapping, histopathology, Western blot, immunohistochemistry and qRT-PCR. Prolonged ventricular activation and depressed rate of ventricular activation were detected as early as 4 wks after transgene activation, when structure and function of the heart remained unaffected. By 8 wks of ET-1 over-expression, biventricular systolic and diastolic dysfunction, myocardial fibrosis, cardiomyocyte hypertrophy, prolonged ventricular activation and repolarization, depressed ii rate of ventricular activation, and abnormal atrioventricular nodal function were observed.
    [Show full text]