Native Bunchgrass Response to Prescribed Fire in Ungrazed Mountain Big Sagebrush Ecosystems

Total Page:16

File Type:pdf, Size:1020Kb

Native Bunchgrass Response to Prescribed Fire in Ungrazed Mountain Big Sagebrush Ecosystems Fire Ecology Volume 6, Issue 3, 2010 Ellsworth and Kauffman: Native Bunchgrass Response to Prescribed Fire doi: 10.4996/fireecology.0603086 Page 86 RESEARCH ARTICLE NATIVE BUNCHGRASS RESPONSE TO PRESCRIBED FIRE IN UNGRAZED MOUNTAIN BIG SAGEBRUSH ECOSYSTEMS Lisa M. Ellsworth1* and J. Boone Kauffman2 1Natural Resources and Environmental Management, University of Hawaii at Manoa, 1910 East West Road, Honolulu, Hawaii 96822, USA 2Northern Research Station, USDA Forest Service, 271 Mast Road, Durham, New Hampshire 03824, USA *Corresponding author: Tel.: 001-808-956-6875; e-mail: [email protected] ABSTRACT Fire was historically a dominant ecological process throughout mountain big sagebrush (Artemisia tridentata Nutt. ssp. vaseyana [Rydb.] Beetle) ecosystems of western North America, and the native biota have developed many adaptations to persist in a regime typified by frequent fires. Following spring and fall prescribed fires conducted in sites of different ecological conditions at the Lava Beds National Monument, California, USA, we examined the reproductive, density, and cover responses of four native bunchgrasses: bluebunch wheatgrass (Pseudoroegneria spicata [Pursh] A. Löve), Thurber’s needlegrass (Achnatherum thurberianum [Piper] Barkworth), squirreltail (Elymus elymoides [Raf.] Swezey), and Sandberg bluegrass (Poa secunda J. Presl). High rates of survival and fire- enhanced flowering were measured following fires. Thurber’s needlegrass density de- creased following spring burns in sites dominated by cheatgrass (Bromus tectorum L.) (from 3.3 plants m-2 to 0.8 plants m-2; P < 0.05). Density of bluebunch wheatgrass de- creased following spring fires (from 3.7 plants m-2 to 1.9 plants m-2; P = 0.02) and cover was reduced in both spring and fall burn treatments (P = 0.04) in native dominated sites. Fire-enhanced flowering (increases in reproductive efforts) occurred in bluebunch wheat- grass in cheatgrass dominated sites (244 % increase in reproductive culms following fire), native dominated sites (350 % increase), and woody encroachment sites (500 % increase) sites following fall fires. These results show that these native bunchgrasses positively re- spond to prescribed fire through increases in reproductive efforts and high rates of surviv- al following fires. This suggests that fire can be an important tool for the restoration and conservation of these fire adapted bunchgrasses. Keywords: Artemisia tridentata, Bromus tectorum, bunchgrass, cheatgrass, fire return interval, mountain big sagebrush, prescribed fire,Pseudoroegneria spicata, rangeland restoration Citation: Ellsworth, L.M., and J.B. Kauffman. 2010. Native bunchgrass response to prescribed fire in ungrazed mountain big sagebrush ecosystems. Fire Ecology 6(3): 86-96. doi: 10.4996/ fireecology.0603086 Fire Ecology Volume 6, Issue 3, 2010 Ellsworth and Kauffman: Native Bunchgrass Response to Prescribed Fire doi: 10.4996/fireecology.0603086 Page 87 INTRODUCTION Plant communities in the Great Basin de- veloped in response to a natural fire regime, Dramatic changes in vegetation structure and the biota evolved adaptations to persist and composition have occurred in the Great within its natural range of fire return (Kauff- Basin of North America due to human activi- man et al. 1997, Pendergrass et al. 1999, ties including fire suppression, livestock graz- Wroblesky and Kauffman 2002). Individual ing, increased ignitions by Native Americans, survival as well as increased reproductive ef- and the introduction of non-native plant and fort through fire-enhanced flowering may fa- animal species. Prior to Euro-American settle- cilitate recovery of these plant communities ment, stand replacing fires were frequent, oc- following fire (Kauffman 1990). Increased curring at intervals of less than 30 years in flowering has been observed following fire in mountain big sagebrush (Artemisia tridentata grasses of high deserts east of the Oregon Cas- Nutt. ssp. vaseyana [Rydb.] Beetle) ecosys- cades (Sapsis 1990). Uresk et al. (1976) re- tems (Young and Evans 1981, Miller and Rose ported increased vegetative growth in blue- 1999, Miller et al. 2000). The Great Basin has bunch wheatgrass (Pseudoroegneria spicata experienced two general shifts in structure re- [Pursh] A. Löve) following wildfire, but no lated to changes in fire regimes. Low-eleva- difference in number of reproductive culms. tion areas subject to frequent human distur- In this study, we examined the effects of bances became susceptible to increased fire prescribed fire on ungrazed mountain big sage- frequency and invasion and dominance by ex- brush ecosystems in three different ecological otic grasses (D’Antonio and Vitousek 1996, conditions (cheatgrass [Bromus tectorum L.] Brooks and Pyke 2001). During the 1900s, dominated, native dominated, and juniper fire frequency decreased in wetter or higher el- dominated) at Lava Beds National Monument, evation areas due to fire exclusion and live- California, USA. We sought to answer the fol- stock grazing (Miller and Tausch 2001), result- lowing research questions: 1) Is there a change ing in expansion of western juniper (Juniperus in reproductive effort, cover, or density of na- occidentalis Hook.) and a reduction of native tive bunchgrass species following prescribed bunchgrasses and forbs (Miller and Rose fire in ungrazed mountain big sagebrush plant 1999). Prior to Euro-American settlement, ex- communities? 2) Is there a differential effect pansion of western juniper was believed to of prescribed fire on native bunchgrass species have been limited by fire, drought, and compe- due to the season of burn? 3) Is the response tition with grasses (Kilgore 1981). The intro- of these species to fire different in sites with a duction of domestic grazing animals in these different current plant composition (native, areas decreased the amount of fine fuels neces- cheatgrass, juniper)? We hypothesized that: sary for fire spread (Kauffman and Sapsis 1) reproductive effort would increase in bunch- 1989), and western juniper increased in range grass species in the year following prescribed under the longer fire-return interval (Miller et fire, and that bunchgrass densities would not al. 1994). The current rate and extent of west- change significantly following fire, but cover ern juniper encroachment onto sites formerly would be decreased in the first post-fire year; occupied by bunchgrasses and sagebrush has 2) plants burned in the fall would have fewer exceeded rates of expansion from the preced- reductions in cover and density than those ing 5000 years (Miller and Wigand 1994). burned in the spring due to lower intensity Restoration and maintenance of native plant burns that occurred after the active growing communities in mountain big sagebrush sys- season had passed; and 3) bunchgrasses in tems may require a reintroduction of fires that sites dominated by native plants with an intact have shaped its development. fire return interval would demonstrate a greater Fire Ecology Volume 6, Issue 3, 2010 Ellsworth and Kauffman: Native Bunchgrass Response to Prescribed Fire doi: 10.4996/fireecology.0603086 Page 88 reproductive effort and no reduction in cover 20ºC in July (Erhard 1979). Most naturally and density as compared to bunchgrasses in ignited fires occur from July to September, sites where the plant communities have been when dry thunderstorms often coincide with altered by fire suppression and invasion of ex- high temperatures and low fuel moisture con- otic plants. tents. Soils are of volcanic origin, and shallow with basaltic outcrops (Erhard 1979). Lava METHODS Beds National Monument was chosen for this study due to an existing plant community gra- Study Area dient from cheatgrass dominated in the lowest elevation site, native dominated at mid-eleva- The study was conducted at Lava Beds Na- tion where access is difficult, and juniper dom- tional Monument, 77 km southeast of Klamath inated at the highest elevation near the monu- Falls, Oregon, USA (Figure 1). This area ment headquarters, where fire has been sup- ranges in elevation from 1228 m along the pressed. We chose three sites that are classi- shore of Tule Lake to 1725 m at its highest fied as mountain big sagebrush-bluebunch point (Erhard 1979). The climate is cool and wheatgrass-Thurber’s needlegrass (Achnather- semi-arid; the average annual precipitation is um thurberianum [Piper] Barkworth) habitat 39 cm (Miller et al. 2003), and the average type (Erhard 1979), but with variation in plant temperature ranges from −1 ºC in January to composition, land use history, soils, and mi- crotopography (Figure 2). Historically, fire re- turn intervals were likely about 50 yr (±20 yr) (Miller et al. 2003), and were of moderate to high severity, limiting encroachment of west- ern juniper. At the lowest elevation site (Gillems Camp; elevation: 1234 m to 1244 m), the plant communities were dominated by a continuous cover of cheatgrass, with rubber rabbitbrush (Ericameria nauseosa [Pall. ex Pursh] G.L. Nesom & Baird), Thurber’s needlegrass, and squirreltail (Elymus elymoides [Raf.] Swezey) also common. Because of the close proximity to water, these areas were likely heavily grazed by domestic livestock prior to monument es- tablishment. Soils are classified in the Bake- oven family (Luckow and Ahuja 2001), which are well-drained very cobbly fine sandy loams. The Fleener Chimneys site (elevation: 1341 m to 1362 m) is presumed to have been grazed less intensively than the Gillems Camp site due to its distance from water and difficul-
Recommended publications
  • Apparent Competition with Bromus Tectorum Through Pyrenophora Semeniperda Reduces Establishment of Native Grasses
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2011-03-16 Apparent Competition with Bromus tectorum Through Pyrenophora semeniperda Reduces Establishment of Native Grasses Katherine Temus Merrill Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Animal Sciences Commons BYU ScholarsArchive Citation Merrill, Katherine Temus, "Apparent Competition with Bromus tectorum Through Pyrenophora semeniperda Reduces Establishment of Native Grasses" (2011). Theses and Dissertations. 2956. https://scholarsarchive.byu.edu/etd/2956 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Apparent competition with Bromus tectorum through Pyrenophora semeniperda reduces establishment of native grasses Katherine T. Merrill A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Phil S. Allen, Chair Susan E. Meyer Samuel B. St. Clair Department of Plant and Wildlife Sciences Brigham Young University April 2011 Copyright © 2010 Katherine T. Merrill All Rights Reserved ABSTRACT Apparent competition with Bromus tectorum through Pyrenophora semeniperda reduces establishment of native grasses Katherine T. Merrill Department of Plant and Wildlife Sciences, BYU Master of Science Contributing to the success of Bromus tectorum in the Intermountain West may be a mechanism called apparent competition, which occurs when one species increases the pressure of a consumer on a second species. This indirect interaction has been documented only a few times in invasive plant systems, and never in a fungal pathosystem.
    [Show full text]
  • Linking Physiological Traits and Species Abundance to Invasion Resistance
    Linking physiological traits and species abundance to invasion resistance Jeremy James Framework • Plant community composition influences ecosystem properties • Much emphasis on effects of functional group diversity on ecosystem properties • Invasive plant management can be improved by managing plant communities based on functional traits as opposed to functional groups Outline • An example of how functional traits influence ecosystem properties (N capture and invasion) – Traits related to N capture – Trait effects on ecosystems are moderated by species abundance • What traits might be important to consider when revegetating areas prone to weed invasion? – At the seedling stage traits affecting initial growth rate important • Conclusions and future directions Functional group diversity, nitrogen capture and invasion resistance Study site Group Code Common Name Scientific Name Annual BRTE cheatgrass Bromus tectorum L. Annual TACA medusahead Taeniatherum caput-medusae (L.) Nevski Bunchgrass PSSP bluebunch wheatgrass Pseudoroegneria spicata (Pursh) A. Löve Bunchgrass ELEL bottlebrush squirreltail Elymus elymoides (Raf.) Swezey Bunchgrass POSE Sandberg’s bluegrass Poa secunda J. Presl Forb LOTR nineleaf biscuitroot Lomatium triternatum (Pursh) Coult. & Rose Forb CRIN grey hawksbeard Crepis intermedia Gray Experimental design • 15N was injected into soils around 7 study species • Injections were made: – 3 times during the growing season (April, May June) – At 2 soil depth (2-7 cm, 17-22 cm) + - – Using 2 forms of N (NH4 , NO3 ) • Removal plots
    [Show full text]
  • Predicting Foundation Bunchgrass Species Abundances: Model-Assisted Decision-Making in Protected-Area Sagebrush Steppe 1, 2 3 3 4 THOMAS J
    #825 Predicting foundation bunchgrass species abundances: model-assisted decision-making in protected-area sagebrush steppe 1, 2 3 3 4 THOMAS J. RODHOUSE, KATHRYN M. IRVINE, ROGER L. SHELEY, BRENDA S. SMITH, SHIRLEY HOH, 5 5 DANIEL M. ESPOSITO, AND RICARDO MATA-GONZALEZ 1Upper Columbia Basin Network, National Park Service, 63095 Deschutes Market Road, Bend, Oregon 97701 USA 2Northern Rocky Mountain Science Center, United States Geological Survey, 2327 University Way, Suite 2, Bozeman, Montana 59715 USA 3Agricultural Research Service, United States Department of Agriculture, 67826-A, Highway 205, Burns, Oregon 97720 USA 4John Day Fossil Beds National Monument, National Park Service, 32651 Highway 19, Kimberly, Oregon 97848 USA 5Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon 97331 USA Citation: Rodhouse, T. J., K. M. Irvine, R. L. Sheley, B. S. Smith, S. Hoh, D. M. Esposito, and R. Mata-Gonzalez. 2014. Predicting foundation bunchgrass species abundances: model-assisted decision-making in protected-area sagebrush steppe. Ecosphere 5(9):108. http://dx.doi.org/10.1890/ES14-00169.1 Abstract. Foundation species are structurally dominant members of ecological communities that can stabilize ecological processes and influence resilience to disturbance and resistance to invasion. Being common, they are often overlooked for conservation but are increasingly threatened from land use change, biological invasions, and over-exploitation. The pattern of foundation species abundances over space and time may be used to guide decision-making, particularly in protected areas for which they are iconic. We used ordinal logistic regression to identify the important environmental influences on the abundance patterns of bluebunch wheatgrass (Pseudoroegneria spicata), Thurber’s needlegrass (Achnatherum thurber- ianum), and Sandberg bluegrass (Poa secunda) in protected-area sagebrush steppe.
    [Show full text]
  • INDIAN RICEGRASS Erosion Control/Reclamation: One of Indian Ricegrass' Greatest Values Is for Stabilizing Sites Susceptible to Achnatherum Hymenoides Wind Erosion
    Plant Guide INDIAN RICEGRASS Erosion control/reclamation: One of Indian ricegrass' greatest values is for stabilizing sites susceptible to Achnatherum hymenoides wind erosion. It is well adapted to stabilization of (Roemer & J.A. Schultes) disturbed sandy soils in mixes with other species. It is naturally an early invader onto disturbed sandy Barkworth sites (after and in concert with needle and thread Plant Symbol = ACHY grass). It is also one of the first to establish on cut and fill slopes. It does not compete well with Contributed By: USDA NRCS Idaho State Office aggressive introduced grasses during the establishment period, but is very compatible with slower developing natives, such as Snake River wheatgrass (Elymus wawawaiensis), bluebunch wheatgrass (Pseudoroegneria spicata), thickspike wheatgrass (Elymus lanceolata ssp. lanceolata), streambank wheatgrass (Elymus lanceolata ssp. psammophila), western wheatgrass (Pascopyrum smithii), and needlegrass species (Stipa spp. and Ptilagrostis spp.). Drought tolerance combined with fibrous root system and fair to good seedling vigor, make Indian ricegrass desirable for reclamation in areas receiving 8 to 14 inches annual precipitation. Wildlife: Forage value is mentioned in the grazing/rangeland/hayland section above. Due to the abundance of plump, nutritious seed produced by Indian ricegrass, it is considered an excellent food source for birds, such as morning doves, pheasants, and songbirds. Rodents collect the seed for winter food supplies. It is considered good cover habitat for small
    [Show full text]
  • A Comparison of Cumulative-Germination Response of Cheatgrass (Bromus Tectorum L.) and Five Perennial Bunchgrass Species to Simulated Field-Temperature Regimes
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska 2010 A comparison of cumulative-germination response of cheatgrass (Bromus tectorum L.) and five perennial bunchgrass species to simulated field-temperature regimes Stuart P. Hardegree USDA-Agricultural Research Service, [email protected] Corey A. Moffet USDA-Agricultural Research Service Bruce A. Roundy Brigham Young University Thomas A. Jones USDA-Agricultural Research Service Stephen J. Novak Boise State University See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub Part of the Agricultural Science Commons Hardegree, Stuart P.; Moffet, Corey A.; Roundy, Bruce A.; Jones, Thomas A.; Novak, Stephen J.; Clark, Patrick E.; Pierson, Frederick B.; and Flerchinger, Gerald N., "A comparison of cumulative-germination response of cheatgrass (Bromus tectorum L.) and five perennial bunchgrass species to simulated field- temperature regimes" (2010). Publications from USDA-ARS / UNL Faculty. 855. https://digitalcommons.unl.edu/usdaarsfacpub/855 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University
    [Show full text]
  • Abundances of Coplanted Native Bunchgrasses and Crested Wheatgrass After 13 Years, Author(S): Aleta M
    #843 Abundances of Coplanted Native Bunchgrasses and Crested Wheatgrass after 13 Years, Author(s): Aleta M. Nafus, Tony J. Svejcar, David C. Ganskopp and Kirk W. Davies Source: Rangeland Ecology & Management, 68(2):211-214. Published By: Society for Range Management URL: http://www.bioone.org/doi/full/10.1016/j.rama.2015.01.011 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. #843 Rangeland Ecology & Management 68 (2015) 211–214 Contents lists available at ScienceDirect Rangeland Ecology & Management journal homepage: http://www.elsevier.com/locate/rama Abundances of Coplanted Native Bunchgrasses and Crested Wheatgrass after 13 Years☆,☆☆ Aleta M. Nafus a,⁎, Tony J. Svejcar b,DavidC.Ganskoppc,KirkW.Daviesd a Graduate Student, Oregon State University, Corvallis, OR 97330, USA b Research Leader, U.S. Department of Agriculture, Agricultural Research Service, Burns, OR 97720, USA c Emeritus Rangeland Scientist, U.S.
    [Show full text]
  • Literature Cited Robert W. Kiger, Editor This Is a Consolidated List Of
    RWKiger 26 Jul 18 Literature Cited Robert W. Kiger, Editor This is a consolidated list of all works cited in volumes 24 and 25. In citations of articles, the titles of serials are rendered in the forms recommended in G. D. R. Bridson and E. R. Smith (1991). When those forms are abbreviated, as most are, cross references to the corresponding full serial titles are interpolated here alphabetically by abbreviated form. Two or more works published in the same year by the same author or group of coauthors will be distinguished uniquely and consistently throughout all volumes of Flora of North America by lower-case letters (b, c, d, ...) suffixed to the date for the second and subsequent works in the set. The suffixes are assigned in order of editorial encounter and do not reflect chronological sequence of publication. The first work by any particular author or group from any given year carries the implicit date suffix "a"; thus, the sequence of explicit suffixes begins with "b". Works missing from any suffixed sequence here are ones cited elsewhere in the Flora that are not pertinent in these volumes. Aares, E., M. Nurminiemi, and C. Brochmann. 2000. Incongruent phylogeographies in spite of similar morphology, ecology, and distribution: Phippsia algida and P. concinna (Poaceae) in the North Atlantic region. Pl. Syst. Evol. 220: 241–261. Abh. Senckenberg. Naturf. Ges. = Abhandlungen herausgegeben von der Senckenbergischen naturforschenden Gesellschaft. Acta Biol. Cracov., Ser. Bot. = Acta Biologica Cracoviensia. Series Botanica. Acta Horti Bot. Prag. = Acta Horti Botanici Pragensis. Acta Phytotax. Geobot. = Acta Phytotaxonomica et Geobotanica. [Shokubutsu Bunrui Chiri.] Acta Phytotax.
    [Show full text]
  • A Study of Morphological Variation Within Pseudoroegneria Spicata
    AN ABSTRACT OF THE THESIS OF Jack Revnold Carison for the degree of Master of Science in Crop Science presented on March 2O 1986 TITLE: . !st St f p soicata (Pursh) A. L&ve (Poaceae: TriticeaeJ Abstract Approved: Signature redacted for privacy. Robert J. Metzger Chromosome counts were determined for 152 accessions of Pseudo- roegneria spicata (Pursh) A. L6ve and, combined with existing count data, used to plot the distribution of diploid and tetraploid popula- tions. Morphological variation of 55 characters was examined in five groups totaling 205 operational taxonomic units (OTU's), using cluster, principal factor, and discriminant analyses. The five groups included diploid and autotetraploid spicata, an allotetraploid pre- viously included in spicata, a control group including four Old World Pseudoroegneria species, and a small control sample of Elymus lanceolatus (Scrib. and Smith) Gould. The analyses were not able to separate diploid from autoploid spicata nor identify any clear sub- groupings within the dip].ojds. However, the alloploid was separated from spicata and aligned with Elymus lanceolatus based on glume and spike characters. This study recommends the alloploid be included in lanceolatus as a new subspecies, Elymus lanceolatus ssp. wawawai. The chromosome count data indicate it is distributed in the canyons and tributaries of the lower Salmon and Snake Rivers of northern Idaho, northeastern Oregon, and southeastern Washington. The new subspecies keys to Elymus lanceolatus based on glume characters and is separated from subspecies .ianceolatus and albicans by its cespitose growth habit. A S11LPY OF MORPHOLOGICAL VARIATION WITHIN PSELVOROEGNERIA SPICATA (PURSH) A. LOVE (POACEAE: TRITWEAE) By Jack Reynold Carison A THESIS Submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science Completed March 20, 1986 Commencement June, 1986 APPROVED: 1' Signature redacted for privacy.
    [Show full text]
  • Chapter 2. Ecosystem Profile
    CHAPTER 2. ECOSYSTEM PROFILE 2.1 Introduction Kittitas County is situated in central Washington on the eastern slopes of the Cascade Mountains, between the Cascade Crest and the Columbia River in the Columbia River basin. The county is contained within three major basins: Upper Yakima (Water Resource Inventory Area [WRIA] 39), Alkali – Squilchuck (WRIA 40), and Naches basin (WRIA 38). Of the 2,297 square miles that constitutes Kittitas County, the majority, 78 percent, lies within the Upper Yakima basin (WRIA 39), which drains into the Yakima River. The Alkali – Squilchuck basin (WRIA 40) comprises 17 percent of the county in the eastern portion and drains into the Columbia River. The remaining 5 percent of the county is contained in the Naches basin (WRIA 38) on its southwestern edge and drains into the Little Naches River, which becomes the Naches River joining the Yakima River in Yakima County. Figure 2-1 shows the locations of the WRIAs in Kittitas County. Four different ecoregions are found within Kittitas County: North Cascades, Cascades, Eastern Cascades Slopes and Foothills, and Columbia Plateau (Figure 2-2). The North Cascades ecoregion, found in the northwestern portion of the county, is characterized by glaciated valleys and narrow-crested ridges punctuated by rugged, high relief peaks approaching 8,000 feet above mean sea level (AMSL). It is forested with fir, hemlock, and, in the drier eastern margins, pine. The Cascades ecoregion, located in southwestern Kittitas County, is similar to the North Cascades, but in contrast has more gently undulating terrain, the climate is more temperate, and there is less occurrence of ponderosa pine.
    [Show full text]
  • Genetic Variation in Adaptive Traits and Seed Transfer Zones for Pseudoroegneria Spicata (Bluebunch Wheatgrass) in the Northwestern United States John Bradley St
    Evolutionary Applications Evolutionary Applications ISSN 1752-4571 ORIGINAL ARTICLE Genetic variation in adaptive traits and seed transfer zones for Pseudoroegneria spicata (bluebunch wheatgrass) in the northwestern United States John Bradley St. Clair,1 Francis F. Kilkenny,1 Richard C. Johnson,2 Nancy L. Shaw3 and George Weaver4 1 United States Department of Agriculture Forest Service, Pacific Northwest Research Station, Corvallis, OR, USA 2 United States Department of Agriculture Agricultural Research Service, Plant Germplasm Research and Testing, Pullman, WA, USA 3 United States Department of Agriculture Forest Service, Rocky Mountain Research Station, Boise, ID, USA 4 Department of Statistics, Oregon State University, Corvallis, OR, USA Keywords Abstract climate change, genecology, plant adaptation, Pseudoroegneria spicata, seed transfer, seed A genecological approach was used to explore genetic variation in adaptive zones traits in Pseudoroegneria spicata, a key restoration grass, in the intermountain western United States. Common garden experiments were established at three Correspondence contrasting sites with seedlings from two maternal parents from each of 114 John Bradley St. Clair, USDA Forest Service, populations along with five commercial releases commonly used in restoration. Pacific Northwest Research Station, 3200 SW Traits associated with size, flowering phenology, and leaf width varied consid- Jefferson Way, Corvallis, OR 97331, USA. Tel.: 541 750 7294; erably among populations and were moderately correlated with the climates of fax: 541 750 7329; the seed sources. Pseudoroegneria spicata populations from warm, arid source e-mail: [email protected] environments were smaller with earlier phenology and had relatively narrow leaves than those from mild climates with cool summers, warm winters, low Received: 21 November 2012 seasonal temperature differentials, high precipitation, and low aridity.
    [Show full text]
  • Improving Restoration of Exotic Annual Grass-Invaded Rangelands Through Activated Carbon Seed Enhancement Technologies Author(S): Matthew D
    #795 Improving Restoration of Exotic Annual Grass-Invaded Rangelands Through Activated Carbon Seed Enhancement Technologies Author(s): Matthew D. Madsen , Kirk W. Davies , Daniel L. Mummey , and Tony J. Svejcar Source: Rangeland Ecology & Management, 67(1):61-67. 2014. Published By: Society for Range Management DOI: http://dx.doi.org/10.2111/REM-D-13-00050.1 URL: http://www.bioone.org/doi/full/10.2111/REM-D-13-00050.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Rangeland Ecol Manage 67:61–67 | January 2014 | DOI: 10.2111/REM-D-13-00050.1 #795 Improving Restoration of Exotic Annual Grass-Invaded Rangelands Through Activated Carbon Seed Enhancement Technologies Matthew D. Madsen,1 Kirk W. Davies,2 Daniel L. Mummey,3 and Tony J. Svejcar4 Authors are 1Ecologist, 2Rangeland Scientist, and 4Research Leader, US Department of Agriculture, Agricultural Research Service, Burns, OR 97720, USA; and 3Restoration Ecologist, MPG Ranch, Missoula, MT 59870, USA.
    [Show full text]
  • Flora of North America North of Mexico
    Flora of North America North of Mexico Edited by FLORA OF NORTH AMERICA EDITORIAL COMMITTEE VOLUME 24 MagnoUophyta: Commelinidae (in part): Foaceae, part 1 Edited by Mary E. Barkworth, Kathleen M. Capéis, Sandy Long, Laurel K. Anderton, and Michael B. Piep Illustrated by Cindy Talbot Roché, Linda Ann Vorobik, Sandy Long, Annaliese Miller, Bee F Gunn, and Christine Roberts NEW YORK OXFORD • OXFORD UNIVERSITY PRESS » 2007 Oxford Univei;sLty Press, Inc., publishes works that further Oxford University's objective of excellence in research, scholarship, and education. Oxford New York /Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto Copyright ©2007 by Utah State University Tlie account of Avena is reproduced by permission of Bernard R. Baum for the Department of Agriculture and Agri-Food, Government of Canada, ©Minister of Public Works and Government Services, Canada, 2007. The accounts of Arctophila, Dtipontui, Scbizacbne, Vahlodea, xArctodiipontia, and xDiipoa are reproduced by permission of Jacques Cayouette and Stephen J. Darbyshire for the Department of Agriculture and Agri-Food, Government of Canada, ©Minister of Public Works and Government Services, Canada, 2007. The accounts of Eremopoa, Leitcopoa, Schedoiioms, and xPucciphippsia are reproduced by permission of Stephen J. Darbyshire for the Department of Agriculture and Agri-Food, Government of Canada, ©Minister of Public Works and Government Services, Canada, 2007. Published by Oxford University Press, Inc. 198 Madison Avenue, New York, New York 10016 www.oup.com Oxford is a registered trademark of Oxford University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Utah State University.
    [Show full text]