What Happens When I Flush?

Total Page:16

File Type:pdf, Size:1020Kb

What Happens When I Flush? What happens when I flush? Wastewater: from your home to treatment and beyond Where does your wastewater go? The Annacis Island Wastewater Treatment Plant handles the wastewater from over 1 million residents across 14 municipalities in the region. Every year we send enough wastewater to our five treatment plants to fill BC Place 177 times. That’s a lot of flushes! * Sustainable wastewater management We can all play a role in protecting our health and the environment by being careful about what we put in our wastewater. Metro Vancouver is working to: • Reduce pollutants going down the drain by educating residents, business and industry • Maintain and make the best use of existing wastewater infrastructure ** • Expand and upgrade existing wastewater treatment facilities to meet the needs of a growing region • Find cost-effective ways to keep local waterways healthy What you can do: • Keep paint, pesticides, medicine and chemicals out of the drain (especially products marked as poisonous, flammable, corrosive or explosive). Look for products that are low in phosphates. • Use smaller amounts of soap, laundry detergent, dishwashing soap and other cleansers. Because our region has soft water, we can use half the amount the package recommends (or less) and still get good results. • Only put toilet paper and human waste down the toilet. Wipes and other products can clog our sewers. • Wipe cooking oils and grease with a paper towel and put them in your organics bin for collection. • Avoid using garburators – composting is a better alternative and puts less strain on our wastewater treatment system. To find out more go to: www.metrovancouver.org (search: wastewater treatment) Tsawwassen KEY Metro Vancouver First Nation Wastewater 4330 Kingsway Burnaby, BC V5H 4G8 * Upgrading to secondary treatment plant by 2020 treatment plants: Metro Vancouver ** Upgrading to secondary treatment plant by 2030 Primary Phone: 604-432-6200 Secondary is a federation of 22 municipalities, one electoral area and one Treaty First Nation. Wastewater pipes Its services include providing drinking water, liquid and solid waste management, White area is land that is growth management planning, affordable rental housing and regional parks. not provided with Metro Vancouver’s wastewater collection and treatment services What is wastewater? Wastewater comes from: • Flushing toilets, doing laundry, washing dishes, and anything else that sends “used” water into a drain Primary treatment is largely a mechanical process that removes materials that settle or float. It removes Secondary treatment is a biological process that removes 90% or more of the Rethinking wastewater • Commercial and industrial 50 to 60 per cent of total suspended solids (TSS) and 30 to 50 per cent of the biochemical oxygen demand (BOD). materials in wastewater. This includes suspended solids and dissolved materials Through innovation, we can operations (biochemical oxygen demand). develop new ways to use wastewater. Metro Vancouver is recovering resources from What’s in it: Screening Pumping Grit removal Removing solids Trickling filters Solids contact tanks Secondary clarifiers wastewater by: • Soap, food scraps, human Wastewater is screened Wastewater is pumped Pumped air keeps In the sedimentation As wastewater trickles Smaller particles join to Solid material (sludge) • Enabling municipalities to waste, oils and other chemicals to remove wood, stones, to a higher elevation organic materials tanks, the heavier through this tank, bacteria form larger particles settles and is removed capture heat from sewer plastics and other large so gravity can move it suspended while forcing ‘sludge’ settles to the – which consume organic (flocculation process), which to the digester. pipes and use it to heat In our region: debris. through the treatment grit – sand and bottom and lighter material – cling to the then settle more easily. nearby buildings. process. gravel – to settle and ‘scum’ floats to the top. plastic filter material. • Turning gas from treatment be removed. • Over 1 billion litres of processes into electricity and wastewater are produced heat for use in treatment every day plants (co-generation). • 80% comes from our homes Some gas may be used in The most Storm sewers carry Combined sewers • Every person produces an homes and businesses. common pipes, rain and other water carry both average of 500 litres of PRIMARY TREATMENT SCUM SECONDARY TREATMENT ODOUR CONTROL LIDS • Using biosolids as an sanitary sewers, directly to local wastewater and wastewater per day BEGINS REMOVED TO BEGINS DIGESTER ingredient in landscaping carry wastewater streams and stormwater (typically from residences waterways. found in the oldest soils, to reclaim mines and and businesses. parts of the region). DEBRIS gravel pits, and other uses. REMOVED TO LANDFILL TRUNK SEWER During heavy rain, combined sewers can overflow directly into waterways. Chlorine is added to Municipalities are working to separate stormwater pipes from sanitary sewers. kill bacteria in effluent. SLUDGE SLUDGE REMOVED TO GRIT REMOVED REMOVED TO It is removed before DIGESTER Wastewater: Why we treat wastewater TO LANDFILL DIGESTER effluent is released into Bacteria recycled to continue waterways. treatment process the underground story The goal of wastewater treatment is to protect and maintain healthy waterways. Wastewater flows into a If pollutants in wastewater are not removed, they flow directly into our rivers and oceans. This can threaten fisheries, wildlife habitat, recreation, quality of life, and public health. SOLIDS SOLIDS sewer pipe that connects to REMOVED: REMOVED: larger pipes under your streets, Healthy waterways need healthy oxygen levels 50% – 60% 90% which then connect to Organic materials in wastewater use oxygen to break down, using up oxygen needed treatment plants. REDUCED REDUCED by fish and other aquatic life. Biochemical oxygen demand (BOD) is a measure of the OXYGEN OXYGEN There are more than oxygen consumed by wastewater. DEMAND: DEMAND: Digester 15,000 km of sewer pipes 30% – 50% 95% in Metro Vancouver Suspended solids (TSS) in water block light and interfere with the growth of aquatic life. Digesters use heat and (enough to stretch across Suspended solids and biochemical oxygen demand are removed during the treatment beneficial bacteria to treat Just one drop of motor oil can Canada and back!) process. sludge to reduce odours contaminate 50 litres of water, making it and harmful bacteria. This uninhabitable for aquatic vegetation and produces biosolids. animal life. For the future, Metro Vancouver will: 2011 • Replace primary wastewater treatment plants with Vancouver Joint Lions Gate Iona Island Lulu Island Annacis Island Northwest Langley Annacis Island WWTP Lulu Island WWTP Province approves Iona WWTP upgrades Province approves New Lions Gate WWTP secondary plants Sewerage & Drainage WWTP* opens WWTP opens WWTP opens WWTP opens WWTP opens upgrades to upgrades to Liquid Waste primary treatment Integrated Liquid consultation and design District Formed secondary treatment secondary treatment Management Plan process Waste and Resource process • Expand the region’s treatment capacity, to service a * WWTP = Wastewater Treatment Plant Management Plan growing population What is wastewater? Wastewater comes from: • Flushing toilets, doing laundry, washing dishes, and anything else that sends “used” water into a drain Primary treatment is largely a mechanical process that removes materials that settle or float. It removes Secondary treatment is a biological process that removes 90% or more of the Rethinking wastewater • Commercial and industrial 50 to 60 per cent of total suspended solids (TSS) and 30 to 50 per cent of the biochemical oxygen demand (BOD). materials in wastewater. This includes suspended solids and dissolved materials Through innovation, we can operations (biochemical oxygen demand). develop new ways to use wastewater. Metro Vancouver is recovering resources from What’s in it: Screening Pumping Grit removal Removing solids Trickling filters Solids contact tanks Secondary clarifiers wastewater by: • Soap, food scraps, human Wastewater is screened Wastewater is pumped Pumped air keeps In the sedimentation As wastewater trickles Smaller particles join to Solid material (sludge) • Enabling municipalities to waste, oils and other chemicals to remove wood, stones, to a higher elevation organic materials tanks, the heavier through this tank, bacteria form larger particles settles and is removed capture heat from sewer plastics and other large so gravity can move it suspended while forcing ‘sludge’ settles to the – which consume organic (flocculation process), which to the digester. pipes and use it to heat In our region: debris. through the treatment grit – sand and bottom and lighter material – cling to the then settle more easily. nearby buildings. process. gravel – to settle and ‘scum’ floats to the top. plastic filter material. • Turning gas from treatment be removed. • Over 1 billion litres of processes into electricity and wastewater are produced heat for use in treatment every day plants (co-generation). • 80% comes from our homes Some gas may be used in The most Storm sewers carry Combined sewers • Every person produces an homes and businesses. common pipes, rain and other water carry both average of 500 litres of PRIMARY TREATMENT SCUM SECONDARY TREATMENT ODOUR CONTROL LIDS • Using biosolids as an sanitary sewers, directly to local wastewater and wastewater per day BEGINS REMOVED TO BEGINS DIGESTER ingredient
Recommended publications
  • Hauser-Solids.Pdf
    l'llAl lllAL MANUAL UI WA'ilLWA IUll I lllMltJ lllY pro<lu ing a truly curvc<l slope (which the graphing prm;edurc attempts to fore(.) into a straightc line). If the sample to be tested is out of range of the standard concentrations normally used forthe test, it is better to dilute the sample than to raise the standard concentrations. • Solids Solids in water are defined as any matter that remains as residue upon evaporation and drying at 103 degrees Celsius. They are separated into two classes: suspended and dissolved. Total Solids = Suspended Solids + Dissolved Solids ( nonfil terable residue) (filterable residue) Each of these has Volatile (organic) and Fixed (inorganic) components which can be separated by burning in a muffle furnace at 550 degrees Celsius. The organic components are converted to carbon dioxide and water, and the ash is left. Weight of the volatile solids can be calculated by subtracting the ash weight from the total dry weight of the solids. DOMESTIC WASTEWATER t 999,000 mg/L Total Solids 1,000 mg/L 41 •! :/.========== l 'l\AI lltAI MANUAi tJ I WA llWAlll\tt!I MI 11\Y •I Total Suspended Solids/Volatile Solids treatment (adequate aeration, proper F/M & MCRT, good return wasting rates) , and the settling capacity of the secondary sludge. Excessivl:and The Total Suspended Solids test is extremely valuable in the analysis of polluted suspended solids in final effluent will adversely affect disinfection capacity . waters. It is one of the two parameters which has federal discharge limits at 30 Volatile component of final effluent suspended solids is also monitored.
    [Show full text]
  • “Some Things Just DON't Belo
    Wilson, NC 27894 Box 10 P.O. Reclamation Facility Water City of Wilson and Treatment System Report System Treatment and Wastewater Collection Wastewater City of Wilson Fiscal Year 2017-2018 Year Fiscal “Some Things Just DON’T Belong in the Toilet” Toilets are meant for one activity, and you know what we’re talking about! When The following is a partial list of items that the wrong thing is flushed, results can include costly backups on your own prop- should not be flushed: erty or problems in the City’s sewer collection system, and at the wastewater 6 Baby wipes, diapers treatment plant. That’s why it is so important to treat toilets properly and flush 6 Cigarette butts only your personal contributions to the City’s wastewater system. 6 Rags and towels 6 Cotton swabs, medicated wipes (all brands) “Disposable Does Not Mean Flushable” 6 Syringes Flushing paper towels and other garbage down the toilet wastes water and can 6 Candy and other food wrappers create sewer backups and SSOs. The related costs associated with these SSOs can 6 Clothing labels be passed on to ratepayers. Even if the label reads “flushable”, you are still safer 6 Cleaning sponges and more environmentally correct to place the item in a trash can. 6 Toys 6 Plastic items 6 Aquarium gravel or kitty litter 6 Rubber items such as latex gloves 6 Sanitary napkins “It’s a Toilet, 6 Hair 6 Underwear 6 Disposable toilet brushes NOT 6 Tissues (nose tissues, all brands) 6 Egg shells, nutshells, coffee grounds a Trash Can!” 6 Food scraps 6 Oil 6 Grease 6 Medicines Wilson, NC 27894 Box 10 P.O.
    [Show full text]
  • BASICS of the TOTAL SUSPENDED SOLIDS (TSS) WASTEWATER ANALYTICAL TEST November 2016 Dr
    BASICS OF THE TOTAL SUSPENDED SOLIDS (TSS) WASTEWATER ANALYTICAL TEST November 2016 Dr. Brian Kiepper Associate Professor Since the implementation of the Clean Water Act and subsequent creation of the United States Environmental Protection Agency (USEPA) in the early 1970s, poultry processing plants have been required to continually improve the quality of their process wastewater effluent discharges. The determination of wastewater quality set forth in environmental permits has been established in a series of laboratory analytical tests focused in four (4) major categories: organics, solids, nutrients and physical properties. For most poultry professionals a complete understanding of the standard methods required to accurately complete critical wastewater analytical tests is not necessary. However, a fundamental understanding of the theory behind and working knowledge of the basic procedures used to complete these wastewater tests, and the answers to commonly asked questions about each test can be a valuable tool for anyone involved in generating, monitoring, treating or discharging process wastewater. Measuring SOLIDS in Wastewater A number of analytical tests have been developed and are used to determine the concentration (typically in milligrams per liter - mg/L - or the equivalent unit of parts per million - ppm) of the various forms SOLIDS can exist within a wastewater sample. One of the laboratory test most widely used to establish and monitor environmental permit limits for the concentration of SOLIDS in wastewater samples is total suspended solids (TSS). SOLIDS in wastewater can be viewed in two basic ways: particulate size or particulate composition. The TSS test is based within the category of particulate size and is represented in the following formula: Total Solids (TS) = Total Suspended Solids (TSS) + Total Dissolved Solids (TDS) Basics of the TSS Test As the formula above shows, TS in a wastewater sample can be separated based on particulate size into TSS and TDS fractions.
    [Show full text]
  • Human Waste Management Topic Summary: the Human Population Produces a Significant Amount of Human Waste Every Year
    Human Waste Management Topic Summary: The human population produces a significant amount of human waste every year. Solid waste (feces) liquid waste (urine) and medical waste (blood, used health care supplies) are all produced in nations throughout the world on a daily basis. Disposing of the waste is often done unsafely, with some solid waste disposed of in drinking water, and medical waste left in landfills. Each year, waterborne illnesses, caused in part by improper disposal of solid waste, is the single greatest cause of death in the world. In most years, more people are dying of infections and diseases caused by unsafe water than armed conflict. Despite this fact, discussion of sanitation practices as a focus of public conversations is rare in most places in the world. Either the topic is taboo and uncomfortable (discussing it requires talking about feces), or people are ignorant of the need for sanitation practices to improve public health. While relatively safe human waste management guidelines have been developed by the international community, many nations have not made steps to improve public sanitation. In large part, this is due to lack of infrastructure and resources. The guidelines can’t be implemented successfully with a lack of equipment, lack of awareness, and lack of a mindful effort to safely dispose of waste. Further, medical waste, like syringes and used bandages, sometimes show up in general landfills. Often in least developed countries, children are tasked with picking through landfills for food or metals (which can be sold). One wrong step or move, and these impoverished children can be stuck with needles and contract fatal diseases.
    [Show full text]
  • Leachate Treatability Study
    Leachate Treatability Study HOD LANDFILL Antioch, Illinois r. „'- <••> ••• o ••» j^ V u v/v >• \.'l» Waste Management of North America- Midwest Two Westbrook Corporate Center • Suite 1000 • Westchester, Illinois 60154 Prepared by: RUST ENVIRONMENT & INFRASTRUCTURE, INC. Formerly SEC Donohve, Inc. Solid Waste Division 1240 Dichl Road • Naperville, Illinois 60563 • 708/955-6600 March 1993 Waste Management of North America- Midwest HOD LANDFILL LEACHATE TREATABILITY STUDY [; tr Project No. 70006 0 n I : ir • n [ J Prepared by: ! , RUST Environment & Infrastructure [ Formerfy SEC Donohue, Inc. ^ 1240 East Diehl Road n Naperville, Illinois 60563 MARCH 1993 0.0 Executive Summary A treatability study was conducted for HOD Landfill to determine the ability of a preliminary treatment facility design to reduce contaminants to limits acceptable for discharge to the City of Antioch POTW. Two pilot scale Sequencing Batch Reactors (SBRs) were operated at varying loading conditions between 0.1 and 0.7 g Chemical Oxygen Demand (COD)/g Mixed Liquor Volatile Suspended Solids (MLVSS) per day and the r reactors were monitored for treatability performance and optimal operating conditions. r: Optimal design/ operating conditions were evaluated during the study as well. The full- scale system should be designed with a loading of 0.2 gCOD/gMLVSS for conservative purposes. The reactor will be capable of successfully operating at varying loadings between 0.1-0.4 gCOD/gMLVSS with a pH range of 7.0-8.0 and temperature between 20-30 *C in the reactor. Table 11 presents the optimal design/operating conditions for the full-scale process. During higher loading conditions, pH control will be necessary to maximize the process efficiency and reduce effluent concentrations.
    [Show full text]
  • Individual Home Wastewater Characterization and Treatment
    INDIVIDUAL HOME WASTEWATER CHARACTERIZATION AND TREATMENT Edwin R. Bennett and K. Daniel Linstedt Completion Report No. 66 INDIVIDUAL HDME WASTEWATER CHARACTERIZATION AND TREATMENT Completion Report OWRT Project No. A-021-COLO July 1975 by Edwin R. Bennett and K. Daniel Linstedt Department of Civil and Environmental Engineering University of Colorado Boulder, Colorado submitted to Office of Water Research and Technology U. S. Department of the Interior Washington, D. C. The work upon which this report is based was supported by funds provided by the U. S. Department of the Interior, Office of Water Research and Technology, as authorized by the Water Resources Research Act of 1964, and pursuant to Grant Agreement Nos. 14-31-0001-3806, 14-31-0001-4006, and 14-31-0001-5006. Colorado Water Resources Research Institute Colorado State University Fort Collins. Colorado 80523 Norman A. Evans, Director TABLE OF CONTENTS Page Chapter I. Introduction 1 Chapter II. Water Use in the Home 6 Comparison with Published Data ". 23 Discussion ...... .. 26 Chapter III. Wastewater Po11utiona1 Strength Characteristics 28 Work of Other Researchers. 37 Summary. ... 43 Chapter IV. Individual Home Treatment Systems 45 Septic Tanks . 45 Discussion 60 Aerobic Treatment Units 61 Evapo-Transpiration Systems 67 Water Saving Appliances and In-Home Reuse. 74 Cost Considerations.•.......• 78 Chapter V. Recycling Potential of Home Wastewater Streams. 81 Experimental Procedures and Results. 85 Phase 1. 86 Phase 2. 91 Results 98 Biological Oxidation . 98 Dual Media Filtration .101 Carbon Adsorption. .. .109 Work of Other Researchers .119 Discussion ... .126 Chapter VI. Summary .132 References . .134 LIST OF TABLES Page 1. Composition of Families in Homes Studied 6 2.
    [Show full text]
  • Reduction in Median Load of Total Suspended Solids (TSS) Due To
    Reduction in Median Load of Total Suspended Solids [TSS] Due to Tree Cover This EnviroAtlas community map estimates the annual reduction in kilograms of the median load of total suspended solids (TSS) in urban stormwater runoff due to filtration by trees within each census block group. Estimates were produced with the i-Tree Hydro analysis tool developed by the USDA Forest Service. Why is total suspended solids reduction important? Urban stormwater runoff is a major source of total suspended solids (or TSS) entering streams and lakes near developed areas. Sources of TSS in urban runoff include soil from pavement, overland flow, and landfills; airborne dust and chemical compounds; organic debris; and sewage.1,2 TSS from aerial and terrestrial sources accumulates on urban land and pavement until runoff from precipitation carries the Besides degrading water quality, polluted stormwater runoff pollutants into stormwater drains and directly to local affects recreational opportunities, community aesthetics, and waterbodies. The highest TSS loadings originate from sense of well-being for local residents.1 Urban tree cover can construction sites (a typical load is 6000 lbs/acre/year) and benefit communities by reducing the influx of total suspended impervious surfaces (e.g., commercial properties, freeways, solids. The proportions of tree cover relative to impervious and industrial sites [at ≤ 1000 lbs/acre/year]).2 Sediment surfaces in community neighborhoods influence the quantity particles also carry molecules of nutrients, pesticides, heavy and speed of urban stormwater runoff entering nearby metals, and volatile chemicals such as petroleum products, waterbodies. Trees planted along roadways, in retention which may be released by disturbance or microbial activity.3 basins, or riparian buffers intercept runoff, slow the passage of stormwater to drains, and filter significant quantities of Impervious surfaces greatly increase peak runoff velocity and sediment.
    [Show full text]
  • Is the Microfiltration Process Suitable As a Method of Removing
    resources Article Is the Microfiltration Process Suitable as a Method of Removing Suspended Solids from Rainwater? Karolina Fitobór * and Bernard Quant Department of Water and Wastewater Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza Street, 80-233 Gdansk, Poland; [email protected] * Correspondence: karfi[email protected]; Tel.: +485-834-71353 Abstract: Due to climate change and anthropogenic pressure, freshwater availability is declining in areas where it has not been noticeable so far. As a result, the demands for alternative sources of safe drinking water and effective methods of purification are growing. A solution worth considering is the treatment of rainwater by microfiltration. This study presents the results of selected analyses of rainwater runoff, collected from the roof surface of individual households equipped with the rainwater harvesting system. The method of rainwater management and research location (rural area) influenced the low content of suspended substances (TSS < 0.02 mg/L) and turbidity (< 4 NTU). Microfiltration allowed for the further removal of suspension particles with sizes larger than 0.45 µm and with efficiency greater than 60%. Granulometric analysis indicated that physical properties of suspended particles vary with the season and weather. During spring, particles with an average size of 500 µm predominated, while in autumn particles were much smaller (10 µm). However, Silt Density Index measurements confirmed that even a small amount of suspended solids can contribute to the fouling of membranes (SDI > 5). Therefore, rainwater cannot be purified by microfiltration without an appropriate pretreatment. Citation: Fitobór, K.; Quant, B. Is the Microfiltration Process Suitable as a Keywords: rainwater harvesting systems; rainwater management; circular economy; quality of Method of Removing Suspended runoff; TSS particles sizes; microfiltration; SDI test Solids from Rainwater? Resources 2021, 10, 21.
    [Show full text]
  • The Removal of Turbidity and TSS of the Domestic Wastewater by Coagulation-Flocculation Process Involving Oyster Mushroom As Biocoagulant
    E3S Web of Conferences 31, 05007 (2018) https://doi.org/10.1051/e3sconf/20183105007 ICENIS 2017 The Removal of Turbidity and TSS of the Domestic Wastewater by Coagulation-Flocculation Process Involving Oyster Mushroom as Biocoagulant Astrid Pardede1,*, Mochamad Arief Budihardjo1, and Purwono1 1Department of Environmental Engineering, Faculty of Engineering, Diponegoro University, Semarang - Indonesia Abstract. Oyster mushroom (Pleurotus ostreatus) can be utilized as biocoagulant since it has chitin cell wall. Chitin has characteristics of bioactivity, biodegradability, absorption and could bind the metal ions. In this study, Oyster Mushroom is micronized and mixed with wastewater to treat turbidity and Total Suspended Solid (TSS) using coagulation-flocculation process employed jartest method. Various doses of Oyster mushroom, 600 mg/l, 1000 mg/l, and 2000 mg/l were tested in several rapid mixing rates which were 100 rpm, 125 rpm, and 150 rpm for 3 minutes followed by 12 minutes of slow mixing at 45 rpm. The mixture then was settled for 60 minutes with pH level maintained at 6-8. The result showed that the Oyster mushroom biocoagulant was able to remove 84% of turbidity and 90% of TSS. These reductions were achieved with biocoagulant dose of 600 mg/ L at 150 rpm mixing rate. 1 Introduction many researchers have related Alzheimer's disease to the residual aluminum ions in the treated waters [7]. For the Coagulation flocculation as a step in water treatment application of synthetic organic polymers, concerns processes is applied for removal of turbidity in raw water about the presence of residual monomers which are that comes from suspended particles and colloidal neurotoxicity and carcinogenic have impeded its use material [1].
    [Show full text]
  • Treatment of Landfill Leachate Using Palm Oil Mill Effluent
    processes Article Treatment of Landfill Leachate Using Palm Oil Mill Effluent Tawfiq J. H. Banch 1, Marlia M. Hanafiah 1,2,*, Salem S. Abu Amr 3, Abbas F. M. Alkarkhi 3 and Mohammed Hasan 1 1 Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; [email protected] (T.J.H.B.); [email protected] (M.H.) 2 Centre for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia 3 Universiti Kuala Lumpur Business School (Unikl bis), Kuala Lumpur 50250, Malaysia; [email protected] (S.S.A.A.); [email protected] (A.F.M.A.) * Correspondence: [email protected] Received: 18 April 2020; Accepted: 14 May 2020; Published: 18 May 2020 Abstract: Sanitary landfilling is the most common method of removing urban solid waste in developing countries. Landfills contain high levels of organic materials, ammonia, and heavy metals, thereby producing leachate which causes a possible future pollution of ground and surface water. Recently, agricultural waste was considered a co-substratum to promote the biodegradation of organics in industrial wastewater. The use of low-cost and natural materials for wastewater treatment is now being considered by many researchers. In this study, palm oil mill effluent (POME) was used for treating stabilized leachate from old landfill. A set of preliminary experiments using different POME/leachate ratios and aeration times was performed to identify the setting of experimental design and optimize the effect of employing POME on four responses: chemical oxygen demand (COD), total suspended solids (TSS), color, and ammoniacal nitrogen (NH3-N).
    [Show full text]
  • Global Atlas of Excreta, Wastewater Sludge, and Biosolids Management: Moving Forward the Sustainable and Welcome Uses of a Global Resource
    GLOBAL ATLAS OF EXCRETA, WASTEWATER SLUDGE, AND BIOSOLIDS MANAGEMENT: MOVING FORWARD THE SUSTAINABLE AND WELCOME USES OF A GLOBAL RESOURCE GLOBAL ATLAS OF EXCRETA, WASTEWATER SLUDGE, AND BIOSOLIDS MANAGEMENT: MOVING FORWARD THE SUSTAINABLE AND WELCOME USES OF A GLOBAL RESOURCE For further information please contact: Graham P. Alabaster Chief, Section I, Water, Sanitation and Infrastructure Branch Human Settlements Financing Division UN-HABITAT P.O. Box 30030, Nairobi 00100, Kenya Tel: +254 20 762 3054 Fax: +254 20 762 3588 [email protected] www.unhabitat.org Ronald J. LeBlanc Chairman – Greater Moncton Sewerage Commission Président – Commission d’épuration des eaux usées du Grand Moncton 355 chemin Hillsborough Road Riverview, New Brunswick (Nouveau-Brunswick) CANADA E1B 1S5 Tel: +1 506-387-7977 Fax: +1 506-387-7389 [email protected] www.gmsc.nb.ca Edited by: Ronald J. LeBlanc, Peter Matthews, Roland P. Richard Graphic design and layout: Daniel Vilnersson Cover pho to © Metrogro/Nikki Stefonick World map on chapter title pages is based on UN map no. 4136 rev. 5, September 2006. © United Nations Printed by HS/1030/08E ISBN: 978-92-1-132009-1 DISCLAIMER The designations employed and the presentation of the material in this atlas do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations, the Greater Moncton Sewerage Com- mission and the Editors concerning the legal status of any country, territory, city or area, or of its authorities, or concerning delimitation of its frontiers or boundaries, or regarding its economic system or degree of development. The analysis and conclusions of this report do not necessarily reflect the views of the United Nations or its Member States, the Greater Moncton Sewerage Commission and the Editors.
    [Show full text]
  • Comparability of Suspended-Sediment Concentration and Total Suspended Solids Data
    1 science for a changing world Comparability of Suspended-Sediment Concentration and Total Suspended Solids Data By John R. Gray, G. Douglas Glysson, Lisa M. Turcios, and Gregory E. Schwarz Water-Resources Investigations Report 00-4191 U.S. Department of the Interior WRIR 00-4191 U.S. Geological Survey August 2000 2 3 COMPARABILITY OF SUSPENDED-SEDIMENT CONCENTRATION AND TOTAL SUSPENDED SOLIDS DATA By John R. Gray, G. Douglas Glysson, Lisa M. Turcios, and Gregory E. Schwarz U. S. GEOLOGICAL SURVEY Water-Resources Investigations Report 00-4191 Reston, Virginia 2000 4 U.S. Department of the Interior Bruce Babbitt, Secretary U.S. Department of the Interior Charles G. Groat, Director The use of firm, trade, or brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey For additional information write to: Copies of this report can be purchased from: U.S. Geological Survey U.S. Geological Survey Chief, Office of Surface Water Information Services Mail Stop 415 Box 25286, Mail Stop 417 12201 Sunrise Valley Drive Denver Federal Center Reston, VA 20192 Denver, CO 80225-0286 5 CONTENTS Abstract ........................................................................................................................................................................................ 1 Introduction .................................................................................................................................................................................. 1 Field Techniques
    [Show full text]