Morphology and Growth of Arthrospira Platensis During Cultivation in a Flat-Type Bioreactor

Total Page:16

File Type:pdf, Size:1020Kb

Morphology and Growth of Arthrospira Platensis During Cultivation in a Flat-Type Bioreactor life Communication Morphology and Growth of Arthrospira platensis during Cultivation in a Flat-Type Bioreactor Conrad H. G. Jung 1, Steffen Braune 2, Peter Waldeck 3, Jan-Heiner Küpper 1,2, Ingolf Petrick 3 and Friedrich Jung 2,* 1 Carbon Biotech Social Enterprise AG, 01968 Senftenberg, Germany; [email protected] (C.H.G.J.); [email protected] (J.-H.K.) 2 Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany; [email protected] 3 Institute of Materials Chemistry, Thermodynamics, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany; [email protected] (P.W.); [email protected] (I.P.) * Correspondence: [email protected] Abstract: Arthrospira platensis (AP) is a cyanobacterium with a high economic value and is nowadays one of the most important industrially cultivated microalgae. Knowledge of its growth is essential for the understanding of its physiology and yield. The growth of AP biomass occurs through two mechanisms: (1) propagation by fragmentation of trichomes, and (2) the trichomes are extended by binary fission until they reach their mature status. These phases are visualized by live cell light and laser scanning microscopy, demonstrating the different phases of AP growth. Keywords: Arthrospira platensis; Spirulina; life cycle; morphology; fragmentation; fission Citation: Jung, C.H.G.; Braune, S.; Waldeck, P.; Küpper, J.-H.; Petrick, I.; 1. Introduction Jung, F. Morphology and Growth of Arthrospira platensis during Arthrospira platensis (AP) is a species of cyanobacterial phylum. Cyanobacteria typi- Cultivation in a Flat-Type Bioreactor. cally carry out oxygenic photosynthesis with water as an electron donor and use carbon Life 2021, 11, 536. https://doi.org/ dioxide as a carbon source. This cyanobacterium (often called blue-green alga) grows as 10.3390/life11060536 filamentous, helicoidal trichomes, performs oxygenic photosynthesis and reproduces by binary fission [1]. AP has a long history of use as food and gained considerable popularity Academic Editor: Fabia U. Battistuzzi in the human health food industry due to its therapeutic properties, including antioxidant, anti-inflammatory, immune-modulatory and anticancer activities [2–4]. In many countries Received: 16 April 2021 of Asia, it is used as a protein supplement, as human health food and as feed for poultry Accepted: 1 June 2021 and aquaculture. Nowadays, the successful commercial exploitation of AP due to its high Published: 9 June 2021 nutritional value, chemical composition and the safety of the biomass has made it one of the most important industrially cultivated microalgae [5]. Publisher’s Note: MDPI stays neutral Knowledge of its physiology is essential for understanding its growth status. The with regard to jurisdictional claims in main factors for the growth of AP are light and CO2 or HCO3¯, respectively [6–8]. The published maps and institutional affil- life cycle of AP (see Figure1) was first described by Ciferri [ 9]. Here, we investigated the iations. morphology of AP (strain: SAG21.99, Göttingen, Germany) during growth in a bioreactor from the 1st day up to the 7th day via different live cell imaging techniques. Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Life 2021, 11, 536. https://doi.org/10.3390/life11060536 https://www.mdpi.com/journal/life LifeLife2021 2021,,11 11,, 536 x FOR PEER REVIEW 22 of 88 FigureFigure 1.1. LifeLife cyclecycle ofof ArthrospiraArthrospira platensisplatensis (modified(modified accordingaccording toto [[9]).9]). TheThe asteriskasterisk (*)(*) indicatesindicates necridia.necridia. 2.2. Materials and Methods APAP used for cultivation cultivation was was obtained obtained from from the the “The “The Culture Culture Collection Collection of ofAlgae Algae at atGoettingen Goettingen University” University” (strain: (strain: SAG21.99). SAG21.99). AP wereAP culturedwere cultured in a flat-type in a flat-type (2 cm) vertical (2 cm) verticaltransparent transparent bioreactor bioreactor consisting consisting of a flexibl of ae flexiblepolyethylene polyethylene (PE, food (PE, safe food grade) safe grade)sleeve sleevewith a with1.0 L aworking 1.0 L working volume. volume. The PE Thesleeve PE was sleeve pressed was pressedbetween between two adaptable two adaptable polyme- polymethyl-methacrylatethyl-methacrylate plates (see plates the (seegreen the reactor green in reactor Figure in 2). Figure For the2). experiments, For the experiments, Zarrouk ◦ Zarroukmedium mediumwas used was [10]. used The [growth10]. The medium growth was medium initially was sterilized initially at sterilized 121 °C in at a 121HV-50C inautoclave a HV-50 (SYSMEX autoclave VX-95, (SYSMEX Sysmex, VX-95, Norderst Sysmex,edt, Norderstedt, Germany) Germany)for 15 min. for The 15 bioreactor min. The bioreactorwas inoculated was inoculatedwith AP cells with (0.19 AP cellsg/L) from (0.19 g/L)a light-limited—because from a light-limited—because of the shading of the of shadingthe high of cell the density—back-up high cell density—back-up bioreactor bioreactor in which inthe which AP had the already AP had alreadyreached reachedthe sta- thetionary stationary growth growth phase. phase. At this At stage this of stage develo of development,pment, AP cells AP were cells transferred were transferred into a intobio- areactor bioreactor filled filled with withZarrouk Zarrouk medium, medium, aerated aerated with air with supplemented air supplemented with 2% with CO 2%2 and CO il-2 andluminated illuminated with a with blue-red a blue-red LED LEDlamp lamp (AP673L, (AP673L, Valoya, Valoya, Helsinki, Helsinki, Finland) Finland) set to set 250 to 2 250µmol/(mµmol/(m2 * s) at* the s) at bioreactor the bioreactor surface surface for up forto seven up to days. seven Stirring days. Stirring of the culture of the suspen- culture suspensionsion was carried was carried out using out usingsix tubes six tubesso that so sufficient that sufficient mixing mixing of the of culture the culture medium medium was µ wasachieved. achieved. Air was Air waspumped pumped through through a membrane a membrane filter filter (Millipore; (Millipore; 0.45 0.45 µm porem pore size, size, 10 10cm cm diameter) diameter) and and moistened moistened by by passaging passaging it itth throughrough distilled distilled water, water, with with a flowflow raterate ofof 200200 L/h,L/h, respectively. respectively. Aeration was adjusted using area flowflow meters.meters. TheThe appropriateappropriate airair volumevolume flowflow waswas measuredmeasured inin pretestspretests soso thatthat thethe pHpH valuevalue ofof thethe growthgrowth mediummedium waswas maintained between pH 9 and pH 10.0 for the duration of the experiment. The filling level maintained between pH 9 and pH 10.0 for the duration of the experiment. The filling level was kept constant to compensate for evaporation losses. The temperature in the bioreactor was kept constant to compensate for evaporation losses. The temperature in the bioreactor was maintained at 25 ◦C. Light intensity was measured using a LI-250 light meter with was maintained at 25 °C. Light intensity was measured using a LI-250 light meter with a a LI-190SA pyranometer sensor (LI-COR, Inc., Lincoln, NE, USA). The optical density LI-190SA pyranometer sensor (LI-COR, Inc., Lincoln, NE, USA). The optical density (Ther- (Thermofisher, Genesys 100 Bio, Waltham, MA, USA), temperature (PT1000, Wernberg, mofisher, Genesys 100 Bio, Waltham, MA, USA), temperature (PT1000, Wernberg, Ger- Germany), pH values (EGA 133, Sensortechnik Meinsberg, Meinsberg, Germany) and many), pH values (EGA 133, Sensortechnik Meinsberg, Meinsberg, Germany) and oxygen oxygen concentration (FDA120, Hamilton, Bonaduz, Switzerland) of the culture medium concentration (FDA120, Hamilton, Bonaduz, Switzerland) of the culture medium were were monitored during the cultivation time continuously. A sketch of the bioreactor is monitored during the cultivation time continuously. A sketch of the bioreactor is shown shown in Figure2 (for details, see [11]). in Figure 2 (for details, see [11]). Life 2021, 11, 536 3 of 8 LifeLife 20212021,, 1111,, xx FORFOR PEERPEER REVIEWREVIEW 33 ofof 88 FigureFigure 2. 2. SketchSketch of of the the bioreactor bioreactor for for the the production production of of ArthrospiraArthrospira platensisplatensis (adapted(adapted fromfrom [[11]).[11]).11]). OnOn each each experimentalexperimentalexperimental day, day,day, samples samplessamples were werewere taken takentaken from fromfrom the thethe bioreactor bioreactorbioreactor and andand were werewere examined exam-exam- inedviained bright viavia brightbright field andfieldfield phase andand phase contrastphase contrastcontrast microscopy microscopymicroscopy (Axio Scope, (Axio(Axio ZeissScope,Scope, Microimaging ZeissZeiss MicroimagingMicroimaging GmbH, GmbH,Jena,GmbH, Germany; Jena,Jena, Germany;Germany; BZ-X810, BZ-X810,BZ-X810, Keyence, Keyence,Keyence, Japan). Samples JapaJapan).n). Samples wereSamples further werewere studied furtherfurther by studiedstudied laser scanning byby laserlaser scanningmicroscopyscanning microscopymicroscopy (Axio Observer.Z1/7, (Axio(Axio Observer.Z1/7,Observer.Z1/7, Zeiss Microimaging ZeissZeiss MicroimagingMicroimaging GmbH, Jena GmbH,GmbH, Germany). JenaJena Germany).Germany). Geometry
Recommended publications
  • Volume 19 Winter 2002 the Coral Hind, Lapu Lapu, Or Miniata
    FREE ISSN 1045-3520 Volume 19 Winter 2002 Introducing a Zonal Based Natural Photo by Robert Fenner Filtration System for Reef Aquariums by Steve Tyree Quite a few natural based filtration systems have been devised by reef aquarists and scientists in the past twenty years. Some systems utilized algae to remove organic and inorganic pollutants from the reef aquarium; others utilized sediment beds. The natural filtration system that I have been researching and designing is drastically different from both of these types. No external algae are used. I believe that all the algae a functional reef requires are already growing in the reef, even if they are not apparent. They include micro-algae, turf algae, coralline algae, single-cell algae within photosynthetic corals, and cyanobacteria with photosynthetic capabilities. Most of the systems that I have set up to research this concept have not included sediment beds. All organic matter and pollutants are recycled and processed within the system by macro-organisms. Sediment beds have not been utilized to process excess Miniata Grouper, Cephalopholis miniata organic debris, but that does not prevent other aquarists from adding them. The main concept behind my system is the use of living sponges, sea squirts, and filter feeders for filtration. Sponges consume bacteria, can reach about twenty inches in length in the wild, and dissolved and colloidal organic material, micro-plankton, The Coral Hind, Lapu about half that in captivity. It is undoubtedly the most and fine particulate matter. Sea squirts consume large Lapu, or Miniata prized member of the genus for the aquarium trade.
    [Show full text]
  • Assessment of the Flame Angelfish (Centropyge Loriculus) As a Model Species in Studies on Egg and Larval Quality in Marine Fishes Chatham K
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library 8-2007 Assessment of the Flame Angelfish (Centropyge loriculus) as a Model Species in Studies on Egg and Larval Quality in Marine Fishes Chatham K. Callan Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd Part of the Aquaculture and Fisheries Commons, and the Oceanography Commons Recommended Citation Callan, Chatham K., "Assessment of the Flame Angelfish (Centropyge loriculus) as a Model Species in Studies on Egg and Larval Quality in Marine Fishes" (2007). Electronic Theses and Dissertations. 126. http://digitalcommons.library.umaine.edu/etd/126 This Open-Access Dissertation is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. ASSESSMENT OF THE FLAME ANGELFISH (Centropyge loriculus) AS A MODEL SPECIES IN STUDIES ON EGG AND LARVAL QUALITY IN MARINE FISHES By Chatham K. Callan B.S. Fairleigh Dickinson University, 1997 M.S. University of Maine, 2000 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (in Marine Biology) The Graduate School The University of Maine August, 2007 Advisory Committee: David W. Townsend, Professor of Oceanography, Advisor Linda Kling, Associate Professor of Aquaculture and Fish Nutrition, Co-Advisor Denise Skonberg, Associate Professor of Food Science Mary Tyler, Professor of Biological Science Christopher Brown, Professor of Marine Science (Florida International University) LIBRARY RIGHTS STATEMENT In presenting this thesis in partial fulfillment of the requirements for an advanced degree at The University of Maine, I agree that the Library shall make it freely available for inspection.
    [Show full text]
  • The Halotolerance and Phylogeny of Cyanobacteria with Tightly Coiled Trichomes (Spirulina Turpin) and the Description of Halospirulina Tapeticola Gen
    International Journal of Systematic and Evolutionary Microbiology (2000), 50, 1265–1277 Printed in Great Britain The halotolerance and phylogeny of cyanobacteria with tightly coiled trichomes (Spirulina Turpin) and the description of Halospirulina tapeticola gen. nov., sp. nov. Ulrich Nu$ bel,† Ferran Garcia-Pichel‡ and Gerard Muyzer§ Author for correspondence: Ulrich Nu$ bel. Tel: j1 406 994 3412. Fax: j1 406 994 4926. e-mail: unuebel!montana.edu Max-Planck-Institute for The morphologies, halotolerances, temperature requirements, pigment Marine Microbiology, compositions and 16S rRNA gene sequences of five culture collection strains Bremen, Germany and six novel isolates of cyanobacteria with helical, tightly coiled trichomes were investigated. All strains were very similar morphologically and could be assigned to the genus Spirulina (or section Euspirulina sensu Geitler), according to traditional classification. However, the isolates showed significantly different requirements for salinity and temperature, which were in accordance with their respective environmental origins. The genetic divergence among the strains investigated was large. The results indicate the drastic underestimation of the physiological and phylogenetic diversity of these cyanobacteria by the current morphology-based classification and the clear need for new taxa. Three of the isolates originated from hypersaline waters and were similar with respect to their high halotolerance, broad euryhalinity and elevated temperature tolerance. By phylogenetic analyses, they were
    [Show full text]
  • First Insights Into the Impacts of Benthic Cyanobacterial Mats on Fish
    www.nature.com/scientificreports OPEN First insights into the impacts of benthic cyanobacterial mats on fsh herbivory functions on a nearshore coral reef Amanda K. Ford 1,2*, Petra M. Visser 3, Maria J. van Herk3, Evelien Jongepier 4 & Victor Bonito5 Benthic cyanobacterial mats (BCMs) are becoming increasingly common on coral reefs. In Fiji, blooms generally occur in nearshore areas during warm months but some are starting to prevail through cold months. Many fundamental knowledge gaps about BCM proliferation remain, including their composition and how they infuence reef processes. This study examined a seasonal BCM bloom occurring in a 17-year-old no-take inshore reef area in Fiji. Surveys quantifed the coverage of various BCM-types and estimated the biomass of key herbivorous fsh functional groups. Using remote video observations, we compared fsh herbivory (bite rates) on substrate covered primarily by BCMs (> 50%) to substrate lacking BCMs (< 10%) and looked for indications of fsh (opportunistically) consuming BCMs. Samples of diferent BCM-types were analysed by microscopy and next-generation amplicon sequencing (16S rRNA). In total, BCMs covered 51 ± 4% (mean ± s.e.m) of the benthos. Herbivorous fsh biomass was relatively high (212 ± 36 kg/ha) with good representation across functional groups. Bite rates were signifcantly reduced on BCM-dominated substratum, and no fsh were unambiguously observed consuming BCMs. Seven diferent BCM-types were identifed, with most containing a complex consortium of cyanobacteria. These results provide insight into BCM composition and impacts on inshore Pacifc reefs. Tough scarcely mentioned in the literature a decade ago, benthic cyanobacterial mats (BCMs) are receiving increasing attention from researchers and managers as being a nuisance on tropical coral reefs worldwide1–4.
    [Show full text]
  • Spirulina Microalgae and Brain Health: a Scoping Review of Experimental and Clinical Evidence
    marine drugs Review Spirulina Microalgae and Brain Health: A Scoping Review of Experimental and Clinical Evidence Vincenzo Sorrenti 1,2,* , Davide Augusto Castagna 3, Stefano Fortinguerra 4 , Alessandro Buriani 2 , Giovanni Scapagnini 5 and Donald Craig Willcox 6,7 1 Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy 2 Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy; [email protected] 3 MedicRiab srls Via Novara, 6, 36071 Arzignano, Italy; [email protected] 4 IRCCS SDN, 80143 Napoli, Italy; [email protected] 5 Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; [email protected] 6 Department of Human Welfare, Okinawa International University, Ginowan 901-2701, Japan; [email protected] 7 Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA * Correspondence: [email protected] Abstract: Spirulina microalgae contain a plethora of nutrient and non-nutrient molecules provid- ing brain health benefits. Numerous in vivo evidence has provided support for the brain health potential of spirulina, highlighting antioxidant, anti-inflammatory, and neuroprotective mechanisms. Preliminary clinical studies have also suggested that spirulina can help to reduce mental fatigue, protect the vascular wall of brain vessels from endothelial damage and regulate internal pressure, Citation: Sorrenti, V.; Castagna, D.A.; thus contributing to the prevention and/or mitigating of cerebrovascular conditions. Furthermore, Fortinguerra, S.; Buriani, A.; the use of spirulina in malnourished children appears to ameliorate motor, language, and cognitive Scapagnini, G.; Willcox, D.C. skills, suggesting a reinforcing role in developmental mechanisms.
    [Show full text]
  • "Phycology". In: Encyclopedia of Life Science
    Phycology Introductory article Ralph A Lewin, University of California, La Jolla, California, USA Article Contents Michael A Borowitzka, Murdoch University, Perth, Australia . General Features . Uses The study of algae is generally called ‘phycology’, from the Greek word phykos meaning . Noxious Algae ‘seaweed’. Just what algae are is difficult to define, because they belong to many different . Classification and unrelated classes including both prokaryotic and eukaryotic representatives. Broadly . Evolution speaking, the algae comprise all, mainly aquatic, plants that can use light energy to fix carbon from atmospheric CO2 and evolve oxygen, but which are not specialized land doi: 10.1038/npg.els.0004234 plants like mosses, ferns, coniferous trees and flowering plants. This is a negative definition, but it serves its purpose. General Features Algae range in size from microscopic unicells less than 1 mm several species are also of economic importance. Some in diameter to kelps as long as 60 m. They can be found in kinds are consumed as food by humans. These include almost all aqueous or moist habitats; in marine and fresh- the red alga Porphyra (also known as nori or laver), an water environments they are the main photosynthetic or- important ingredient of Japanese foods such as sushi. ganisms. They are also common in soils, salt lakes and hot Other algae commonly eaten in the Orient are the brown springs, and some can grow in snow and on rocks and the algae Laminaria and Undaria and the green algae Caulerpa bark of trees. Most algae normally require light, but some and Monostroma. The new science of molecular biology species can also grow in the dark if a suitable organic carbon has depended largely on the use of algal polysaccharides, source is available for nutrition.
    [Show full text]
  • Spirulina Platensis an “Ultimate Food”: a Review
    © 2019 IJRAR March 2019, Volume 6, Issue 1 www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138) Spirulina Platensis an “Ultimate Food”: A Review 1Akshita Sharma, 2 Kamalpreet Kaur, 3 Manjri, 4 Deepti Marwaha 1,4Assistant Professor, 2,3Research Scholar 1Department of Biotechnology, 1Guru Nanak Girls College, Model town, Ludhiana, India. Introduction: Spirulina platensis is non toxic blue green algae which is filamentous cyanobacteria taken by the human as dietary supplement and use it as a food. Spirulina platensis is a biomass which is dried form of Arthrospira platensis .This blue green algae is the primary diet in humans, animals and aquatic life. Spirulina platensis is easily digested due to absence of cell wall .This blue green algae is an important diet in humans and in animals. In humans it is used as a source of protein and vitamin without causes any harmful effect. It is rich in phenolic acids, tocopherol and y-linolenic acids [1]. Spirulina platensis is most commonly available and widely used genus which has been extensively studied in different fields specially food and medicine [2]. Spirulina platensis was originally discovered in ponds and lakes. Spirulina platensis has been proven to boost the immune system, bolster the energy and reduce the risk of many cancers and infection. The nutritional quantity of the Blue-green algae Spirulina platensis has been evaluated on the basis of its chemical and amino acid composition and feeding trails with rats [3]. Due to high content of highly valuable proteins, indispensable amino acids, vitamins, beta carotene and other pigments, mineral substances, indispensable fatty acids and polysaccharides, Spirulina platensis has been found suitable for use as bioactive additives [4].
    [Show full text]
  • Production, Purification, and Study of the Amino Acid Composition of Microalgae Proteins
    molecules Article Production, Purification, and Study of the Amino Acid Composition of Microalgae Proteins Anna Andreeva 1, Ekaterina Budenkova 1, Olga Babich 1 , Stanislav Sukhikh 1,2, Elena Ulrikh 3, Svetlana Ivanova 4,5,* , Alexander Prosekov 6 and Vyacheslav Dolganyuk 1,2 1 Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia; [email protected] (A.A.); [email protected] (E.B.); [email protected] (O.B.); [email protected] (S.S.); [email protected] (V.D.) 2 Department of Bionanotechnology, Kemerovo State University, 650043 Kemerovo, Russia 3 Kuzbass State Agricultural Academy, 650056 Kemerovo, Russia; [email protected] 4 Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, 650043 Kemerovo, Russia 5 Department of General Mathematics and Informatics, Kemerovo State University, 650043 Kemerovo, Russia 6 Laboratory of Biocatalysis, Kemerovo State University, 650043 Kemerovo, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-384-239-6832 Abstract: Microalgae are known to be rich in protein. In this study, we aim to investigate methods of producing and purifying proteins of 98 microalgae including Chlorella vulgaris, Arthrospira platensis, Nostoc sp., Dunaliella salina, and Pleurochrysis carterae (Baltic Sea). Therefore, we studied their amino acid composition and developed a two-stage protein concentrate purification method from the microalgae biomass. After an additional stage of purification, the mass fraction of protein substances with a molecular weight greater than 50 kDa in the protein concentrate isolated from the biomass of the microalga Dunaliella salina increased by 2.58 times as compared with the mass fraction before Citation: Andreeva, A.; Budenkova, filtration.
    [Show full text]
  • Arthrospira Platensis) for Its Antioxidant and Neuroprotective Effect
    Review Article http://doi.org/10.18231/j.ijcaap.2019.024 A review on spirulina (Arthrospira Platensis) for its antioxidant and neuroprotective effect Rashmi B.R Lecturer, Dept, of Physiology, A.J. Institute of Allied Health Sciences, Kuntikana, Mangalore, Karnataka, India *Corresponding Author: Rashmi B.R Email: [email protected] Abstract Spirulina (Arthrospira platensis), belongs to a class of cyanobacteria. It is a free-floating filamentous microalgae and is also capable of photosynthesis. The nutritional content of Spirulina reveals high content of protein (60-70% by dry weight), vitamins, minerals, essential fatty acids, and other nutrients. The Food and Agriculture Organization of the United Nations (FAO) position paper describes Arthrospira platensis as follows: "An easily digestible high protein product with high levels of beta-carotene, vitamin B12, iron and trace minerals, and the rare essential fatty acid γ-linolenic acid also called gamma- linolenic acid (GLA), or omega-6". Arthrospira platensis has been generally recognized as safe (GRAS) for human consumption. Human clinical studies and animal studies over the past several decades support such notion. Also, FDA had no question on the GRAS notice of Arthrospira platensis. Keywords: Arthrospira Platensis. Introduction functions such as antioxidant, antibacterial, antiviral, Spirulina (Arthrospira platensis) belongs to family of anticancer, anti-inflammatory, anti-allergic and anti- blue-green algae. They have characteristic spiral shape diabetic and plethora of beneficial functions.5 in their morphology apperence.1 It is free-floating Toxicological studies on Arthrospira platensis filamentous microalgae growing in alkaline water have proven Spirulina's safety. Spirulina now belongs bodies.2 to the substances that are listed by the US Food and Arthrospira platensis is considered under phylum Drug Administration under the category Generally of Cyanobacteria.
    [Show full text]
  • Redalyc. the Effect of Spirulina (Arthrospira Platensis ) (Oscillatoriales: Cyanobacteria) on the Experimental Breeding of Pseud
    Revista de Biología Tropical ISSN: 0034-7744 [email protected] Universidad de Costa Rica Costa Rica Prepelitchi, Lucila; Pujadas, Julieta M.; Wisnivesky-Colli, Cristina The effect of spirulina (Arthrospira platensis ) (Oscillatoriales: Cyanobacteria) on the experimental breeding of Pseudosuccinea columella (Basommatophora: Lymnaeidae) Revista de Biología Tropical, vol. 63, núm. 2, enero, 2015, pp. 479-489 Universidad de Costa Rica San Pedro de Montes de Oca, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44938603011 Abstract Snails of the family Lymnaeidae, as Pseudosuccinea columella , are the intermediate hosts of Fasciola hepatica , the causative agent of fasciolosis in human and livestock all over the world. A thorough knowledge of snail biology is essential for describing the transmission dynamics and for controlling this disease. Since food quality has had a significant effect on snail growth, fecundity and fertility, in this study we evaluated the use of spirulina ( Arthrospira platensis ) as a food resource for the artificial breeding of P. columella , an invasive snail and the main intermediate host of F. hepatica in Northeastern Argentina. The main purpose was to measure the effect of spirulina on fitness parameters such as survival rate, growth rate, size at first reproduction, lifetime fecundity and viable offspring. A total of 20 676 newly-laid F 2 eggs were used; half of them were fed with lettuce (treatment L) and the other half with lettuce plus spirulina (treatment L+S). In comparison with P. colu - mella snails fed only with lettuce, we found that P. columella fed with lettuce plus spirulina: 1) showed higher survival rates, 2) grew faster and showed higher growth increments, 3) attained sexual maturity earlier in time (L+S:60 days vs.
    [Show full text]
  • Potential Applications of Native Cyanobacterium Isolate (Arthrospira Platensis NIOF17/003) for Biodiesel Production and Utilizat
    sustainability Article Potential Applications of Native Cyanobacterium Isolate (Arthrospira platensis NIOF17/003) for Biodiesel Production and Utilization of Its Byproduct in Marine Rotifer (Brachionus plicatilis) Production Mohamed A. Zaki 1, Mohamed Ashour 2,* , Ahmed M. M. Heneash 2, Mohamed M. Mabrouk 3, Ahmed E. Alprol 2, Hanan M. Khairy 2, Abdelaziz M. Nour 1, Abdallah Tageldein Mansour 4,5 , Hesham A. Hassanien 4,6 , Ahmed Gaber 7 and Mostafa E. Elshobary 8,9,* 1 Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt; [email protected] (M.A.Z.); [email protected] (A.M.N.) 2 National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt; [email protected] (A.M.M.H.); [email protected] (A.E.A.); [email protected] (H.M.K.) 3 Fish Division, Animal Production Department, Faculty of Agriculture, Al-Azhar University, Cairo 11823, Egypt; [email protected] 4 Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia; [email protected] (A.T.M.); [email protected] (H.A.H.) 5 Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Citation: Zaki, M.A.; Ashour, M.; Alexandria 21531, Egypt Heneash, A.M.M.; Mabrouk, M.M.; 6 Animal Production Department, Faculty of Agriculture, Cairo University, Gamma St., Giza 12613, Egypt Alprol, A.E.; Khairy, H.M.; Nour, 7 Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; A.M.; Mansour, A.T.; Hassanien, H.A.; [email protected] 8 Gaber, A.; et al.
    [Show full text]
  • Detailed Characterization of the Arthrospira Type Species Separating
    www.nature.com/scientificreports OPEN Detailed characterization of the Arthrospira type species separating commercially grown Received: 13 August 2018 Accepted: 27 November 2018 taxa into the new genus Limnospira Published: xx xx xxxx (Cyanobacteria) Paulina Nowicka-Krawczyk 1, Radka Mühlsteinová2 & Tomáš Hauer 2 The genus Arthrospira has a long history of being used as a food source in diferent parts of the world. Its mass cultivation for production of food supplements and additives has contributed to a more detailed study of several species of this genus. In contrast, the type species of the genus (A. jenneri), has scarcely been studied. This work adopts a polyphasic approach to thoroughly investigate environmental samples of A. jenneri, whose persistent bloom was noticed in an urban reservoir in Poland, Central Europe. The obtained results were compared with strains designated as A. platensis, A. maxima, and A. fusiformis from several culture collections and other Arthrospira records from GenBank. The comparison has shown that A. jenneri difers from popular species that are massively utilized commercially with regard to its cell morphology, ultrastructure and ecology, as well as its 16S rRNA gene sequence. Based on our fndings, we propose the establishment of a new genus, Limnospira, which currently encompasses three species including the massively produced L. (A.) fusiformis and L. (A.) maxima with the type species Limnospira fusiformis. Among the simple trichal cyanobacteria, three genera possess helically-coiled trichomes as a prominent dia- critical feature: Spirulina Turpin ex Gomont 1892, Halospirulina Nübel, Garcia-Pichel et Muyzer 2000, and Arthrospira Stizenberger ex Gomont 1892. Te latter is a widely-known taxon with long history of use as a food source, for example as dihé in Africa or tecuitlatl in Mexico1–3.
    [Show full text]