RMC) Construction for African Dams and Small Hydropower Projects
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
3.4 Stone Masonry
Table of contents 3.0 Introduction 5 3.1 Excavating and backfilling for foundations 6 3.1.1 Excavating and preparing foundations 7 3.1.2 Backfilling foundations 10 3.2 Building foundations 12 3.2.1 Defining the size and type of foundations 12 3.2.2 General rules for the construction of foundations 14 3.3 Brick and block masonry works 16 3.3.1 Wall and bond types 16 3.3.2 Preparatory activities for brick masonry works 17 3.3.3 Materials for brick masonry works 18 3.3.4 Bricklaying 21 3.3.5 Pointing for brick masonry 28 3.4 Stone masonry 30 3.4.1 Wall and masonry types 30 3.4.2 Preparatory activities for stone masonry works 31 3.4.3 Material for stone masonry works 32 3.4.4 Laying stone 35 3.4.5 Pointing for stone masonry 39 3.5 Installing doors, windows, lintels and ventilators 41 3.5.1 Installing frames for doors and windows 41 3.5.2 Constructing lintels and sunshades 43 3.5.3 Installation of ventilators 43 3.6 Plastering 46 3.7 IPS flooring 49 Learning Unit 3 Masonry works 3.0 Introduction The purpose of this Learning Unit is to: enable a rural mason to build various masonry structures using brick, block or stone and fix ready-to-install doors, windows and ventilators. By the end of this Learning Unit the rural mason should be able to: (i) Manage excavation works for foundations, (ii) Construct foundations for rural houses, (iii) Perform brick masonry for construction of foundations, footings, load bearing and non-load bearing walls, columns, and including plinths and DPC, (iv) Perform rubble stone masonry for construction of foundation walls, including plinths and DPC, (v) Fix ready-to-install doors, windows, lintels and ventilators, (vi) Carry out pointing and plastering of wall surfaces, and (vii) Lay IPS floor slabs. -
The Art of Stone Masonry in the Rockbridge County Area (1700 to Present)
The Art of Stone Masonry In the Rockbridge County Area (1700 to present) Steven Connett Archaeology 377 5/25/83 Dr. McDaniel The art of stone masonry in the Shenandoah valley seems to be somewhat of a mystery prior to the nineteenth century. However, as some of us have learned from the anthropology 101 course: The absence of artifacts (documents in this case) is just as important as the presence of artifacts. In order to make sure that the lack of information was not due to my possible incompetence in research, I spoke with a current day stone masoner named Alvis Reynolds. Mr. Reynolds relayed t o me that when he was trying to learn the skills of stone masonry he, too, had great difficulty in obtaining information and thus decided to teach himself this art through the process of trial and error. Although this information did not directly aid me in my research, Mr. Reynolds did provide me with a bit of information that allowed me to derive a hypothesis on why there is this unusual lack of information in this line of study. I will state my hypothesis in this paper, however, I will not be able to prove it or disprove it due to the deficiency in available information. Mr. Reynolds explained to me that in the eighteenth century there were nomadic stone masoners. These nomadic workers went from valley to valley in search of people who needed help with building their houses. Since these people did not know how to cut stone themselves (after all, stone cutting is not the type of thing that is innate to most people) they had no choice but to p~y these men for their services or go unsheltered. -
HOUSING REPORT Rubble-Stone Masonry House
World Housing Encyclopedia an Encyclopedia of Housing Construction in Seismically Active Areas of the World an initiative of Earthquake Engineering Research Institute (EERI) and International Association for Earthquake Engineering (IAEE) HOUSING REPORT Rubble-stone masonry house Report # 58 Report Date 05-06-2002 Country SLOVENIA Housing Type Stone Masonry House Housing Sub-Type Stone Masonry House : Rubble stone without/with mud/lime/cement mortar Author(s) Marjana Lutman, Miha Tomazevic Reviewer(s) Svetlana N. Brzev Important This encyclopedia contains information contributed by various earthquake engineering professionals around the world. All opinions, findings, conclusions & recommendations expressed herein are those of the various participants, and do not necessarily reflect the views of the Earthquake Engineering Research Institute, the International Association for Earthquake Engineering, the Engineering Information Foundation, John A. Martin & Associates, Inc. or the participants' organizations. Summary Rubble-stone masonry houses are still found throughout Slovenia. This housing type with its special history represents a typical, older residential building in the northwestern part of Slovenia. After their destruction during World War I, these houses were rebuilt, mostly with the recycled stone material from demolished buildings. Many houses of this type were subsequently damaged during the last two earthquakes in Slovenia (1976 Friuli and 1998 Bovec). In order to preserve the country's architectural heritage, about 66% of these houses were strengthened following these earthquakes. http://www.world-housing.net/whereport1view.php?id=100025 1. General Information Buildings of this construction type can be found in the area of Upper Posocje. The residential housing stock built before the World War II in that area is generally of this type. -
Holding Back Time: How Are Georgia's Historic Dams Unique Resources?
HOLDING BACK TIME: HOW ARE GEORGIA'S HISTORIC DAMS UNIQUE RESOURCES? by MARK MOONEY (Under the Direction of Wayde Brown) ABSTRACT Much of what we recognize as modern, urban, industrialized Georgia can be credited to the availability and development of water power. Historic dams, originally through direct mechanical drives and later through electrical generation and transmission, provided significant impetus for the growth of the state. Additionally, the scale, scope, effort, and ingenuity involved in the construction of large dams makes them awe inspiring structures. Despite their contribution to our culture, and the complex context surrounding their construction, dams are often overlooked as historic resources. This thesis studies historic dams from around the country to establish a context for examining Georgia's own dams. How are they unique resources, deserving of a discrete set of tools for preservation? Four Georgia dams are evaluated and suggestions are made based on the conclusions found. INDEX WORDS: Dams, Historic Preservation, Industrial Archaeology, Hydropower, Hydroelectricity, Historic Survey, National Register, National Inventory, GNAHRGIS, Whitehall Dam, Eagle & Phenix Dam, Morgan Falls Dam, Tallulah Dam. HOLDING BACK TIME: HOW ARE GEORGIA'S HISTORIC DAMS UNIQUE RESOURCES? by MARK MOONEY B.S. University of Georgia, 2007 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF HISTORIC PRESERVATION ATHENS, GEORGIA 2012 © 2012 Mark Mooney All Rights Reserved HOLDING BACK TIME: HOW ARE GEORGIA'S HISTORIC DAMS UNIQUE RESOURCES? by MARK MOONEY Major Professor: Wayde Brown Committee: Mark Reinberger Mark Williams April Ingle Electronic Version Approved: Maureen Grasso Dean of the Graduate School The University of Georgia May 2012 ACKNOWLEDGEMENTS For bearing with me through five, six, seven, different topics, each of questionable quality and feasibility, I want to thank Wayde Brown. -
Reviewing Arch-Dams' Building Risk Reduction Through a Sustainability
sustainability Review Reviewing Arch-Dams’ Building Risk Reduction Through a Sustainability–Safety Management Approach Enrico Zacchei 1,2 and José Luis Molina 3,* 1 Itecons—Institute for Research and Technological Development in Construction, Energy, Environment and Sustainability, Pedro Hispano Avenue, 3030-289 Coimbra, Portugal; [email protected] 2 School of Civil Engineering of Bauru, São Paulo State University (UNESP), 14-01 Eng. Luís Edmundo Carrijo Coube Avenue, Bauru 17033-360, Brazil 3 IGA Research Group, Higher Polytechnic School of Ávila, University of Salamanca (USAL), 50 Avenue Hornos Caleros, 05003 Ávila, Spain * Correspondence: [email protected] Received: 29 November 2019; Accepted: 31 December 2019; Published: 3 January 2020 Abstract: The importance of dams is rapidly increasing due to the impact of climate change on increasing hydrological process variability and on water planning and management need. This study tackles a review for the concrete arch-dams’ design process, from a dual sustainability/safety management approach. Sustainability is evaluated through a design optimization for dams´ stability and deformation analysis; safety is directly related to the reduction and consequences of failure risk. For that, several scenarios about stability and deformation, identifying desirable and undesirable actions, were estimated. More than 100 specific parameters regarding dam-reservoir-foundation-sediments system and their interactions have been collected. Also, a summary of mathematical modelling was made, and more than 100 references were summarized. The following consecutive steps, required to design engineering (why act?), maintenance (when to act) and operations activities (how to act), were evaluated: individuation of hazards, definition of failure potential and estimation of consequences (harm to people, assets and environment). -
A Short Text-Book on Masonry Construction, In- Cluding Descriptions of the Materials Used, Their Preparation and Arrangement in Structures
WORKS OF PROF. M. A. HOWE PUBLISHED BY JOHN WILEY & SONS, Inc. Masonry. A short Text-book on Masonry Construction, in- cluding Descriptions of the Materials Used, their Preparation and Arrangement in Structures. 8vo, ix +160 pages. 115 figures. Cloth, $1.50 net. Foundations. A short Text-book on Ordinary Foundations, including a brief Description of the Methods Used for Difficurt Foundations. 8vo, vii + 110 pages. 56 figures. Cloth, $1.25 net. Influence Diagrams for the Determination of Maximum Moments in Trusses and Beams 8vo, vii+65 pages, 42 figures. Cloth, $1.25 net. The Design of Simple Roof=trusses in Wood and Steel. With an Introduction to the Elements of Graphic Statics. Third edition, revised and enlarged. 8vo, vi+173 pages, 124 figures and 3 folding plates. Cloth, $1.80 net. Retaining-walls for Earth. Including the theory of Earth-pressure as Devel- oped from the Ellipse of Stress. With a Short Treatise on Foundations. Illustrated with Ex- amples from Practice. Sixth edition, revised and enlarged. 12mo, xv +194 pages, 110 figures. Cloth, $1.25 net. A Treatise on Arches. Designed for the use of Engineers and Students in Technical Schools. Second edition, revised and enlarged. 8vo, xxv +369 pages, 74 figures. Cloth, $4.00 net. Symmetrical Masonry Arches. Including Natural Stone, Plain concrete and Rein- forced concrete arches, for the use of Technical Schools, Engineers and Computers .in Designing Arches according to the Elastic Theory. Second edition, revised and enlarged. 8vo, xxiv -r245 pages. Profusely illustrated with figures in the text and folding plates. Cloth, $2.50 net. -
The 5 Biggest Dams in India
The 5 Biggest Dams in India After independence we have made lots of progress in Dam and water reservoirs, Now India is one of the world’s most prolific dam-builders. Around 4300 large dams already constructed and many more in the pipeline, Almost half of which are more than twenty years old. These dams are major attraction of tourists from all over India. Some facts about the Indian dams are: . Tehri Dam is the eighth highest dam in the world. The Idukki dam is the first Indian arch dam in Periyar River Kerala and the largest arch dam in Asia. The Grand Anicut, Kallanai, located on Holy Cavery River in Tamil Nadu, is the oldest dam in the world. Indira Sagar Dam is the Largest Reservoir in India. These dams with the channel provides an ideal environment for wildlife. Tehri Dam -Uttaranchal Tehri Dam located on the Bhagirathi River, Uttaranchal Now become Uttarakhand. Tehri Dam is the highest dam in India,With a height of 261 meters and the eighth tallest dam in the world. The high rock and earth-fill embankment dam first phase was completed in 2006 and other two phases are under construction. The Dam water reservoir use for irrigation, municipal water supply and the generation of 1,000 MW of hydroelectricity. Height: 260 meters . Length: 575 meters . Type: Earth and rock-fill . Reservoir Capacity: 2,100,000 acre·ft . River: Bhagirathi River . Location: Uttarakhand . Installed capacity: 1,000 MW Bhakra Nangal Dam -Himachal Pradesh Bhakra Nangal Dam is a gravity dam across the Sutlej river Himachal Pradesh. -
To: Panel [email protected] From: Katty Law Date: 11/09/2014 11
CB(1)2000/13-14(01) To: [email protected] From: Katty Law Date: 11/09/2014 11:38AM Subject: Objection to the proposed pumping station at the Flagstaff House Monument, Hong Kong Park (See attached file: Flagstaff house paper.pdf) (See attached file: Flagstaff House Paper Appendices.pdf) (See attached file: photo2.jpg) (See attached file: photo7.jpg) (See attached file: photo8.jpg) (See attached file: photo29.jpg) (PLEASE CIRCULATE TO ALL MEMBERS OF THE DEVELOPMENT PANEL) Legislative Councillors Members of the Panel on Development Legislative Council Hong Kong Dear Councillors, On behalf of the Central & Western Concern Group and Heritage Watch, I would like to bring to your attention the serious threat posed to the Flagstaff House monument at Hong Kong Park by the proposed repositioning of the Harcourt Road Freshwater pumping station. Our consultant conservation architect Mr Ken Borthwick has written a detailed assessment of this proposed scheme and the paper is attached herewith for your consideration. In his assessment (which closely examines aspects of WSD's HIA) Mr Borthwick looks at the original positioning of Flagstaff House on the crest of the slope, as well as at what he assesses to be its original grounds based on historical plans and early pictures of Flagstaff House in the HIA. He has made an assessment of an historic, rubble stone, fortified defensive wall with loopholes for firing through, which he opines may be the earliest example of British military fortification surviving in Hong Kong and a vital piece of historic evidence. WSD's HIA totally fails to identify this feature for what it is, nor assess its historical and cultural importance. -
1 ROMANS CHANGED the MODERN WORLD How The
1 ROMANS CHANGED THE MODERN WORLD How the Romans Changed the Modern World Nick Burnett, Carly Dobitz, Cecille Osborne, Nicole Stephenson Salt Lake Community College 2 Romans are famous for their advanced engineering accomplishments, although some of their own inventions were improvements on older ideas, concepts and inventions. Technology to bring running water into cities was developed in the east, but was transformed by the Romans into a technology inconceivable in Greece. Romans also made amazing engineering feats in other every day things such as roads and architecture. Their accomplishments surpassed most other civilizations of their time, and after their time, and many of their structures have withstood the test of time to inspire others. Their feats were described in some detail by authors such as Vitruvius, Frontinus and Pliny the Elder. Today our bridges look complex and so thin that one may think it cannot hold very much weight without breaking or falling apart, but they can. Even from the very beginning of building bridges, they have been made so many times that we can look at different ways to make the bridge less bulky and in the way, to one that is very sturdy and even looks like artwork. What allows an arch bridge to span greater distances than a beam bridge, or a suspension bridge to stretch over a distance seven times that of an arch bridge? The answer lies in how each bridge type deals with the important forces of compression and tension. Tension: What happens to a rope during a game of tug-of-war? It undergoes tension from the two opposing teams pulling on it. -
Streatham and Streatham Hill Conservation Area Statement
Streatham High Road and Streatham Hill conservation area statement Location 1The Streatham High Road & Streatham Hill Conservation Area is in the southern part of the London Borough of Lambeth. The Conservation Area stretches from Telford Avenue to the Streatham United Reform Church encompassing buildings on Streatham Hill (not including those already within the Leigham Court Estate CA31) and those that line the length of Streatham High Road. The Conservation Area includes the impressive length of commercial and purpose built residential apartment blocks dating from the late Victorian, Edwardian and inter-war eras and includes the Free Tate Library, the Police Station, St. Leonard’s Church, the Odeon and ABC Cinemas and other public buildings, which form an important centre for shopping, recreation and commerce. Origins of development and settlement Streatham High Road is one of London’s major arterial roads. From Roman times, and perhaps earlier, it has been an important highway running between London and the 2Weald. Traces of pre Christian burials were discovered when St. Leonard’s was rebuilt in the 19th century and demonstrate that this was a burial place over 2000 years ago. Also discovered were Roman masonry, coins and a Roman ditch. It is probably that the Romans built a military station on the site of St. Leonard’s consisting of a small fort enclosing 2 or three acres surrounded by an earthwork and a ditch. The derivation of the name “Streatham” being from the Saxon “Strat” Street and “Ham” Settlement. Streatham probably evolved as scattered settlements of Saxon farms along the two Roman roads, which ran through the area. -
STONE MASONRY in CLAY MORTAR with GABION BANDS
RUBBLE STONE MASONRY IN MUD MORTAR with “GABION BANDS” [submittal by Conservationtech Consulting] STONE MASONRY IN CLAY MORTAR with GABION BANDS Submittal Randolph Langenbach Conservationtech Consulting Oakland, Ca. 94618, USA. +1-510-428-2252 www.conservationtech.com www.traditional-is-modern.net/Nepal.html TYPE OF HOUSE: SCALE: DATE: Nepal Housing GABION BAND submitted proposal None 26/11/2015 26 November, 2015 Reconstruction Programme DRAWING TITLE : DESIGNED BY: 1 Randolph Langenbach (USA) 1 RUBBLE STONE MASONRY IN MUD MORTAR with “GABION BANDS” [submittal by Conservationtech Consulting] GABION BANDS Alternative to timber bands for masonry in mud mortar A report submitted to the Nepal DUDBC by Randolph Langenbach, Conservationtech Consulting, www.conservationtech.com This proposal is not for a single house type, but is rather a simple modification of what is already permitted in the Nepal National Building Code (NBC) in response to following criteria: First, the geography of Nepal makes access to industrially produced heavy construction materials such as concrete and steel prohibitively expensive and difficult or impossible to deliver to many of the rural mountainside sites in the country. Second, there is a profound need to provide a technology for the safe reconstruction of owner-built rubble stone houses that is not dependent on high quality timber in areas where timber has been depleted or is too costly for many families to afford. The system proposed here, which has been invented and named “Gabion Bands” by Randolph Langenbach of Conservationtech Consulting, is intended to be an alternative means to meet the provisions of the National Building Code, but with a substitution of wire mesh (or polypropylene geogrid mesh) instead of the timber or reinforced concrete that are shown in the NBC for bands (ring beams) in the masonry walls of code compliant buildings. -
Gabion Wall–A Cost Effective Solution
Journal of Basic and Applied Engineering Research p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 3, Issue 3; January-March, 2016, pp. 290-292 © Krishi Sanskriti Publications http://www.krishisanskriti.org/Publication.html Gabion Wall–A Cost Effective Solution Radha Joshi Graduate Member IStructE, MWH E-mail: [email protected] Abstract—Gabion walls are in the industry since many years now. Efficiency in gabion structures, rather than decreasing with However the use of Gabion walls in the Indian market has not gained age, actually increases. During early periods of use, silt and as much popularity as in the foreign countries. Gabions are useful vegetation will collect with the rock fill to form a naturally not only due to their aesthetic appearance but the cost consideration permanent structure and may be used to remove solid of this wall is also an important aspect that has to be considered pollutants or "floatables" from the water. while choosing the type of wall for construction. India being a developing country, infrastructure development cost is In India now with the growing challenges to the construction a major issue. The reduction of cost in any infrastructural element industry, engineers are putting forward the option of Gabion along with increased construction speed is very valuable. From a wall and we will talk about the two projects where the Gabion general market survey, I have observed that the difference between the construction cost of RCC and gabion wall of medium height (1 to wall is implemented as solution and cost comparison. 4m) is around 40%. Many of the private builders have taken this option very seriously and implemented also.