UC San Diego UC San Diego Electronic Theses and Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

UC San Diego UC San Diego Electronic Theses and Dissertations UC San Diego UC San Diego Electronic Theses and Dissertations Title Regulation of PHLPP and Akt signaling Permalink https://escholarship.org/uc/item/1ff6w0r6 Author Warfel, Noel Andrew Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Regulation of PHLPP and Akt signaling A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biomedical Sciences by Noel Andrew Warfel Committee in charge: Professor Alexandra C. Newton, Chair Professor Steve F. Dowdy Professor Kun-Liang Guan Professor Tony Hunter Professor Jing Yang 2011 The Dissertation of Noel Andrew Warfel is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2011 iii DEDICATION Dedicated to Meredith Warfel for her endless dedication, love, and support and being a constant source of inspiration Dedicated to Stephen and Barbara Warfel for their guidance throughout my life. Without their support and advice this would not have been possible. iv TABLE OF CONTENTS Signature Page……………………………………………………...…………...…….iii Dedication……………………………………………………………………………..iv Table of Contents…………………………………...………………………...………..v List of Figures……………………………………………………………..…..……....vi List of Tables…………………………………...………………………..…..……......ix Acknowledgements…………………………………………………….……..…...….x Vita…………………………………………………………………………....….......xii Abstract of the Dissertation….…………………..…………………………..……....xiv Chapter 1: An Introduction to Akt and PHLPP………………….….....……..……1 Chapter 2: Identification of a Negative Feedback Loop through which Akt Activity Controls the Stability of PHLPP1.……..…….…........................….…19 Chapter 3: Mislocalization of the E3 ligase, β-TrCP1, in Glioblastoma Uncouples Negative feedback between PHLPP1 and Akt......……..…47 Chapter 4: Disruption of the Interface Between the PH and Kinase Domains of Akt is Sufficient for Hydrophobic Motif Phosphorylation Site in the Absence of mTORC2.…………………………………….....……..…89 Chapter 5: Unraveling a Complex Network of Signal Transduction Pathways...120 Appendix A: Regulation of PHLPP Activity and Evidence of PHLPP Phosphorylation……………………………….……..………….…..141 v LIST OF FIGURES Chapter 1 Figure 1.1: Akt activation by mitogen stimulation.………………..………...…....17 Figure 1.2: The PHLPP family of phosphatases.……………………………..…...18 Chapter 2 Figure 2.1: PHLPP1α and PHLPP1β are degraded more rapidly than PHLPP2.....40 Figure 2.2: Chronic inhibition of Akt decreases PHLPP1 protein levels.…...........41 Figure 2.3: PHLPP1β degradation is accelerated in cells lacking mTORC2.…….42 Figure 2.4: Akt activity directly correlates with PHLPP1 stability.…………...….43 Figure 2.5: Regulation of PHLPP1 stability by Akt is dependent on the activity of the proteasome and GSK-3β..…………………………………..…….45 Chapter 3 Figure 3.1: Akt-mediated feedback loop enhancing PHLPP1 levels is preferentially lost in CNS tumors.………………………..………………………….81 Figure 3.2: Loss of the feedback loop in glioblastoma is independent of PHLPP1, CK1, and GSK-3.……..……………………........................................83 Figure 3.3: β-TrCP1 is confined to the nucleus in glioblastoma cell lines and patient samples.…………………………………………………….…84 Figure 3.4: PHLPP1 turnover is slower and mRNA levels are reduced in glioblastoma cell lines..…………………………………………....….85 Figure 3.5: β-catenin turnover is impaired in glioblastoma cell lines……...……..86 vi Figure 3.6: Expression of β-TrCP1 in the cytosol rescues Akt-mediated regulation of PHLPP1 in glioblastoma.…………………………………...….....87 Chapter 4 Figure 4.1: Akt can be phosphorylated at S473 in the absence of mTOR kinase activity.………………………………………………………………113 Figure 4.2: Activation of PI3K is sufficient to restore Akt (S473) phosphorylation in cells lacking mTORC2……………………………………………114 Figure 4.3: Disruption of the PH and kinase domain interface of Akt is sufficient for S473 phosphorylation in the absence of mTORC2…………………………………………………………….115 Figure 4.4: Disruption of the interaction between the PH and kinase domains of Akt overcomes the necessity for mTORC2 for hydrophobic motif phosphorylation.…………………………………..………………....116 Supplemental Figure 4.1: Inhibition of S6K is necessary for rapamycin-induced phosphorylation of S473 in Sin1 -/- MEFs.…………………………117 Supplemental Figure 4.2: Rescue of S473 phosphorylation in Sin1 -/- MEFs is dependent on PI3K activity and the conformation of Akt.…….........118 Supplemental Figure 4.3: Regulation of Akt phosphorylation is specifically mediated by mTORC2.………………………………………………………...119 Chapter 5 vii Figure 5.1: The ability of Akt to regulate PHLPP1 stability is lost in glioblastoma due to the nuclear confinement of β-TrCP1.………………………...139 Figure 5.2: PHLPP expression levels are regulated at multiple levels downstream of PI3K.…………………………………………………………..….140 Appendix A Figure A.1: The phosphatase activity of PHLPP1β and PHLPP2, but not PHLPP1α, is increased in response to EGF stimulation.………………………..153 Figure A.2: Active Ras does not bind to the predicted RA domain of PHLPP1β, but binds to a separate region.…………………………………………...154 Figure A.3: Identification phosphorylation sites on PHLPP1 and PHLPP2 under basal and agonist stimulated conditions.…………………………….155 Figure A.3: PHLPP is phosphorylated in a EGF dependent manner at a site that is recognized by the p-p38 (T180/Y182) antibody.…………………....156 Figure A.4: PHLPP is phosphorylated by its substrates, Akt and PKC.…………157 viii LIST OF TABLES Chapter 3 Supplemental Table 3.1: Numerical values corresponding to each of the NCI60 tumor cell lines analyzed in Figure 3.1..………………..……………….…..89 Supplemental Table 3.2: Experimental identifiers and institutions responsible for generating microarray data made available by the Developmental Therapeutics Program NCI/NIH (http://dtp.cancer.gov/mtargets/mt_index.html)……………………...89 ix ACKNOWLEDGEMENTS I would like to acknowledge Professor Alexandra Newton, Ph.D. for her guidance as my research mentor and chair of my thesis committee. Her sense of optimism and passion for science were a constant source of support and motivation. Also deserving of special recognition for playing a direct role in my training are the members of my thesis committee for their support and insight. I would also like to thank my classmates and friends in San Diego and elsewhere for their support throughout my graduate career. Special thanks to Drs. Maya Kunkel, Matt Niederst, and Charles King for their insight and technical support and the Newton lab, past and present, for making graduate school an enjoyable experience. Chapter 1 is, in part, a review article to be submitted to the Journal of Biological Chemistry, 2011. It was co-authored by Alexandra C. Newton. Figure 5 of Chapter 2 has been previously published as supplemental data in the Journal of Biological Chemistry, 2010. Chapter 3 is, in part, a reprint of the material as it appears in the Journal of Biological Chemistry, 2010. It was co-authored by Matt Niederst, Michael W. Stevens, Paul M. Brennan, Margaret C. Frame, and the research was supported under the guidance of Alexandra C. Newton. I was the primary investigator and author of this research. x Chapter 4 is, in full, a research article accepted for publication in the Journal of Biological Chemistry, 2011. It was co-authored by Matt Niederst and supported under the guidance of Alexandra C. Newton. I was the primary investigator and author of this research. xi VITA 2004 Bachelor of Science, James Madison University 2006 Master of Science, The Johns Hopkins University 2011 Doctor of Philosophy, University of California, San Diego PUBLICATIONS 1. Warfel NA and Newton AC. PH domain Leucine-rich Repeat Protein Phosphatase (PHLPP): Structure, Function, Regulation, and Role in Disease. Manuscript to be submitted. J Biol Chem. 2. N. A. Warfel, M. Niederst, A. C. Newton, Disruption of the interface between the PH and kinase domains of Akt is sufficient for hydrophobic motif site phosphorylation in the absence of mTORC2. J Biol Chem, (2011). 3. Warfel NA, Niederst M, Stevens MW, Brennan PM, Frame MC, Newton AC. Mislocalization of the E3 Ligase, β-Transducin Repeat-containing Protein 1 (β-TrCP1), in Glioblastoma Uncouples Negative Feedback between the Pleckstrin Homology Domain Leucine-rich Repeat Protein Phosphatase 1 (PHLPP1) and Akt. J Biol Chem 2010;286:19777-88. 4. Brognard J, Niederst M, Reyes G, Warfel N, Newton AC. Common polymorphism in the phosphatase PHLPP2 results in reduced regulation of Akt and protein kinase C. J Biol Chem 2009;284:15215-23. 5. Gills JJ, Lopiccolo J, Tsurutani J, Shoemaker RH, Best CJ, Abu-Asab MS, Borojerdi J, Warfel NA, Gardner ER, Danish M, Hollander MC, Kawabata S, Tsokos M, Figg WD, Steeg PS, Dennis PA. Nelfinavir, A lead HIV protease inhibitor, is a broad-spectrum, anticancer agent that induces endoplasmic reticulum stress, autophagy, and apoptosis in vitro and in vivo. Clin Cancer Res 2007;13:5183-94. 6. Gills JJ, Castillo SS, Zhang C, Petukhov PA, Memmott, RM, Hollingshead M, Warfel N, Han J, Kozikowski AP, Dennis PA. Phosphatidylinositol ether lipid analogues that inhibit AKT also independently activate the stress kinase, p38alpha, through MKK3/6-independent and -dependent mechanisms. J Biol Chem 2007;282:27020-9. 7. Granville CA, Warfel N, Tsurutani J, Hollander MC, Robertson M, Fox S, Veenstra TD, Issaq HJ, Linnoila RI, Dennis PA. Identification of a highly xii effective rapamycin schedule that markedly
Recommended publications
  • Read the Summer 2021 Newsletter
    CCR Fellows & Young Investigators Newsletter Center for Cancer Research Volume 20, Issue 3 Summer 2021 CCR-FYI Newsletter Team Special newsletter edition: 21st CCR FYI Colloquium EDITOR IN CHIEF – From Mechanisms to Therapies: Alida Palmisano Current Highlights in Cancer Research MANAGING EDITOR – Annan Timon EDITORS – Enitome Bafor Sarah Burnash Dorothy L. Butler Molly Congdon Jessica Eisenstatt Amy Funk Mary Grace Katusiime Victoria Hill Sarwat Naz Carlos Villapudua CONTRIBUTORS – Srikanta Basu Dorothy Butler Sunita Chopra Molly Congdon Mary Grace Katusiime Katelyn Ludwig Isita Jhulki Babul Ram Geraldine Vilmen In the picture above, the CCR-FYI Colloquium Planning Committee: CCR-FYI Association is Chairs: Srikanta Basu, Katelyn Ludwig. Vice Chairs: Dorothy L. Butler, Anna Ratliff. supported by the NCI Knicki Bergman, Molly Congdon, Ruchika Bhujbalrao, Vasty Osei Amponsa, Sabina Kaczanowska, Center for Cancer Training Neha Wali, Joshua Rose, Sunita Chopra, Isita Jhulki, Mary Grace Katusiime, Sumirtha Balaratnam. (CCT) and CCR Office of Not in the picture, but part of the Planning Committee: Cassey Singler, Jose Delgado the Director. Support of the CCT-Office of Training and Education, CCR-FYI SC and CBIIT was essential for the success of this event, in particular the Committee wants to thank Amy Funk, Jessica Connect with CCR-FYI Eisenstatt, Angela Jones, Robert Montano, Erika Ginsburg and Oliver Bogler. VOLUME 20 – ISSUE 3 – SUMMER 2021 While the COVID-19 pandemic continues to have a major impact on the life of many NCI fellows, we are happy to see that one of the big CCR events of the year (the CCR-FYI Colloquium) returned in 2021 after being cancelled in 2020.
    [Show full text]
  • Lipid Metabolism Has Been Good to Me George M
    REFLECTIONS Lipid metabolism has been good to me https://doi.org/10.1016/j.jbc.2021.100786 George M. Carman* From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA Edited by the Reflections and Classics Committee headed by Patrick Sung My career in research has flourished through hard work, program director of the National Science Foundation), supportive mentors, and outstanding mentees and collabora- encouraged me to pursue a research career in biochemistry; tors. The Carman laboratory has contributed to the under- she continues to be a mentor and friend. My MS degree standing of lipid metabolism through the isolation and advisor, John Keller, introduced me to laboratory research characterization of key lipid biosynthetic enzymes as well as and gave me an appreciation for science in a broader context through the identification of the enzyme-encoding genes. Our by encouraging me to attend meetings of the Theobald Smith findings from yeast have proven to be invaluable to understand Society for Microbiology (local branch of the American So- regulatory mechanisms of human lipid metabolism. Several ciety for Microbiology). He also encouraged me to apply to rewarding aspects of my career have been my service to the the University of Massachusetts (PhD, 1977) where Robert Journal of Biological Chemistry as an editorial board member Levin had an open graduate research position in food and Associate Editor, the National Institutes of Health as a microbiology. I did not realize that my PhD degree would be member of study sections, and national and international sci- in Food Science or that I would have to take undergraduate entific meetings as an organizer.
    [Show full text]
  • Protein Kinase Cζ Exhibits Constitutive Phosphorylation and Phosphatidylinositol-3,4,5-Triphosphate-Independent Regulation Irene S
    Biochem. J. (2016) 473, 509–523 doi:10.1042/BJ20151013 509 Protein kinase Cζ exhibits constitutive phosphorylation and phosphatidylinositol-3,4,5-triphosphate-independent regulation Irene S. Tobias*†, Manuel Kaulich‡, Peter K. Kim§, Nitya Simon*, Estela Jacinto§, Steven F. Dowdy‡, Charles C. King and Alexandra C. Newton*1 *Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, U.S.A. †Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, U.S.A. ‡Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, U.S.A. §Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, U.S.A. Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, U.S.A. Atypical protein kinase C (aPKC) isoenzymes are key modulators and insulin unresponsive, in marked contrast to the insulin- of insulin signalling, and their dysfunction correlates with insulin- dependent activation of Akt monitored by an Akt-specific reporter. resistant states in both mice and humans. Despite the engaged Nor does forced recruitment to phosphoinositides by fusing interest in the importance of aPKCs to type 2 diabetes, much the pleckstrin homology (PH) domain of Akt to the kinase less is known about the molecular mechanisms that govern their domain of PKCζ alter either the phosphorylation or activity cellular functions than for the conventional and novel PKC of PKCζ . Thus, insulin stimulation does not activate PKCζ isoenzymes and the functionally-related protein kinase B (Akt) through the canonical phosphatidylinositol-3,4,5-triphosphate- family of kinases.
    [Show full text]
  • Falke-Single Molecule Studies Kinase C-Biochemistry-14.Pdf
    Article pubs.acs.org/biochemistry Single-Molecule Studies Reveal a Hidden Key Step in the Activation Mechanism of Membrane-Bound Protein Kinase C‑α † ‡ † § † ∥ ‡ Brian P. Ziemba, Jianing Li, Kyle E. Landgraf, , Jefferson D. Knight, , Gregory A. Voth, † and Joseph J. Falke*, † Department of Chemistry and Biochemistry and Molecular Biophysics Program, University of Colorado, Boulder, Colorado 80309-0596, United States ‡ Department of Chemistry, Institute of Biophysical Dynamics, James Franck Institute, and Computation Institute, University of Chicago, Chicago, Illinois 60637, United States *S Supporting Information ABSTRACT: Protein kinase C-α (PKCα) is a member of the conventional family of protein kinase C isoforms (cPKCs) that regulate diverse cellular signaling pathways, share a common activation mechanism, and are linked to multiple pathologies. The cPKC domain structure is modular, consisting of an N-terminal pseudosubstrate peptide, two inhibitory domains (C1A and C1B), a targeting domain (C2), and a kinase domain. Mature, cytoplasmic cPKCs are inactive until they are switched on by a multistep activation reaction that occurs largely on the plasma membrane surface. Often, this activation begins with a cytoplasmic Ca2+ signal that triggers C2 domain targeting to the plasma membrane where it binds phosphatidylserine (PS) and phosphatidylinositol 4,5-bisphosphate (PIP2). Subsequently, the appearance of the signaling lipid diacylglycerol (DAG) activates the membrane-bound enzyme by recruiting the inhibitory pseudosubstrate and one or both C1 domains away from the kinase domain. To further investigate this mechanism, this study has utilized single-molecule total internal reflection fluorescence microscopy (TIRFM) to quantitate the binding and lateral diffusion of full-length PKCα and fragments missing specific domain(s) on supported lipid bilayers.
    [Show full text]
  • Kinetics and Mechanism of the Interaction of Protein
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Kinetics and mechanism of the interaction of the C1 domain of protein kinase C with lipid membranes Permalink https://escholarship.org/uc/item/1vw5x6bm Author Dries, Daniel Robert Publication Date 2007 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO KINETICS AND MECHANISM OF THE INTERACTION OF THE C1 DOMAIN OF PROTEIN KINASE C WITH LIPID MEMBRANES A Dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biomedical Sciences by Daniel Robert Dries Committee in charge: Professor Alexandra C. Newton, Chair Professor Joseph A. Adams Professor Edward A. Dennis Professor Elizabeth A. Komives Professor Palmer W. Taylor 2007 The Dissertation of Daniel Robert Dries is approved, and it is acceptable in quality and form for publication on microfilm. _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ Chair University of California, San Diego 2007 iii Dedicated to Bob and Lisa iv TABLE OF CONTENTS Page SIGNATURE PAGE......................................................................................................iii DEDICATION ...............................................................................................................iv
    [Show full text]
  • Identification of Mammalian Cell Signaling in Response to Plasma Membrane Perforation: Endocytosis of Listeria Monocytogenes and the Repair Machinery
    1 Identification of mammalian cell signaling in response to plasma membrane perforation: Endocytosis of Listeria monocytogenes and The Repair Machinery Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Jonathan Gat-Tze Lam Graduate Program in Microbiology The Ohio State University 2018 Dissertation Committee Stephanie Seveau, Advisor Dan Wozniak John Gunn Li Wu 2 Copyrighted by Jonathan Gar-Tze Lam 2018 3 Abstract The animal plasma membrane is a semi-fluid structural platform that maintains cellular homeostasis by regulating the passage of ions and small molecules in and out of the cell and modulating cell signaling activities. Disruption of its barrier function via mechanical damage or perforation by a pore-forming toxin is quickly followed by a sudden influx of extracellular Ca2+, which triggers efficient plasma membrane repair processes, the mechanisms of which are, to date, not fully elucidated. Efforts to understand cellular responses to plasma membrane damage have resulted in several non- mutually exclusive models of repair, each realized by the use of various cell types damaged using approaches that attempt to replicate normal physiological damage (mechanical, osmotic, and sheer stress) or damage that occurs under infectious conditions (bacterial pore-forming toxins). In the context of infection, evolutionarily distinct pathogens including the parasite Trypanosoma cruzi, the Gram-positive bacterium Listeria monocytogenes, and the non- enveloped Adenovirus have been shown to damage the plasma membrane of non- professional phagocytic cells in order to co-opt the subsequent cellular responses to facilitate their entry into target cells.
    [Show full text]
  • Cell Signaling in Cancer: from Mechanisms to Therapy June 3 – 8, 2018 Steamboat Springs, Colorado
    Cell Signaling in Cancer: from Mechanisms to Therapy June 3 – 8, 2018 Steamboat Springs, Colorado Organizers: John Brognard National Cancer Institute Claus Jorgensen CRUK Manchester Institute Deborah Morrison National Cancer Institute Sunday, June 3, 2018 Time Title/Topic Event 4:00 p.m. – 9:00 p.m. Conference Registration 5:00 p.m. – 6:00 p.m. Welcome Reception 6:00 p.m. – 7:00 p.m. DINNER 7:15 p.m. Opening remarks Session 1: Novel Signaling Chair: Claus Jorgensen, CRUK MI Pathways 7:30 p.m. – 8:00p.m. Targeting SHP2 in Cancer Ben Neel, NYU 8:00 p.m. – 8:30 p.m. Histidine kinases are new Tony Hunter, Salk therapeutic targets in cancers. 8:30 p.m. – 9:00 p.m. Allosteric regulation of protein Susan Taylor, University of kinase signaling. California San Diego 9:00 p.m. – 9:30 p.m. The tumor suppressing kinome John Brognard, NIH and a novel driver kinase in head and neck cancer 10 May 2018 Monday, June 4, 2018 Time Title/Topic Event 7:30 a.m. – 9:00 a.m. BREAKFAST 7:30 a.m. – 12:00 p.m. Conference Registration 8:55 a.m. Additional Opening Remarks 9:00 a.m. – 12:00 p.m. Session 2: Dynamics of Kinase Chair: Ben Neel, NYU Signaling in Cancer 9:00 a.m. – 9:30 a.m. Substrate targeting by oncogenic Ben Turk, Yale Pim kinases 9:30 a.m. – 10:00 a.m. PHLPP Phosphatases in Opposing Alexandra Newton, UCSD Kinase Signaling 10:00 a.m – 10:30 a.m.
    [Show full text]
  • University of California, San Diego
    UNIVERSITY OF CALIFORNIA, SAN DIEGO PHLPP: A Novel Family of Phosphatases that are Critical Regulators of Intracellular Signaling Pathways A dissertation submitted in partial satisfaction of the requirements for the Doctor of Philosophy in Biomedical Sciences by John F. Brognard Jr. Committee in Charge: Professor Alexandra C. Newton, Chair Professor John M Carethers Professor Jack E Dixon Professor Steve F Dowdy Professor Tony Hunter 2008 Copyright 2008 John F. Brognard Jr. All Rights Reserved 2 The dissertation of John F. Brognard Jr. is approved and it is acceptable in quality and form for publication on microfilm: Chair University of California, San Diego 2008 iii Dedicated to Karen Brognard for her loving support and dedication during the many long hours spent pursuing research and preparing this dissertation. Dedicated to John and Donna Brognard for their never ending support throughout my life and career. Without their support and guidance this never would have been possible. “Pursue your passion” – John F. Brognard Sr. Dedicated to Dr. Alexandra Newton for her unfaltering optimism and impeccable mentoring skills. Through her many personal challenges she remained a guiding light for me through challenging times. iv TABLE OF CONTENTS Signature Page……………………………………………………………...…………iii Dedication…………………………………………………………………………..…iv Table of Contents………………………………………………………………………v List of Figures…………………………………………………………………………vi Acknowledgments……………………………………………………………………..ix Vita and Publications…………………………………………………………………..x Abstract……………………..………………………………………………………...xii Chapter 1 An Introduction to the Ser/Thr Phosphatase PHLPP …………...…...…..1 Chapter 2 PHLPP and a Second Isoform, PHLPP2, Differentially Attenuate the Amplitude of Akt Signaling by Regulating Distinct Akt Isoforms...20 Chapter 3 Identification and Functional Characterization of a novel PHLPP2 Variant in Breast Cancer: Impacts on Akt and PKC Phosphorylation....71 Chapter 4 The Three Ps of PHLPP: PH Domain, PKC, and the the PDZ binding motif…………………………………….
    [Show full text]
  • Updated Abstract Book CCR FYI Colloquium 2021 Final 4.19.21.Pdf
    The Center for Cancer Research Fellows and Young Investigators Steering Committee presents: 21st Annual From Mechanisms to Therapies: CCR-FYI Current Highlights in COLLOQUIUM Cancer Research Analysis Testing Treatment April 19–20, 2021 Program U.S. Department of Health & Human Services | National Institutes of Health 21st Annual Center for Cancer Research Fellows and Young Investigators (CCR-FYI) Colloquium 21st Annual Center for Cancer Research Fellows and Young Investigators (CCR- FYI) Colloquium SCHEDULE AND PROGRAM BOOK From Mechanisms to Therapies: Current Highlights in Cancer Research April 19th- 20th, 2021 For internal use only 21st Annual CCR Fellows and Young Investigators Colloquium 21st Annual Center for Cancer Research Fellows and Young Investigators (CCR-FYI) Colloquium Welcome Letter Welcome Colloquium Participants! On behalf of the NCI Center for Cancer Research Fellows and Young Investigators (CCR-FYI) Steering Committee and CCR-FYI Colloquium Subcommittee, we welcome you to the 21st Annual CCR-FYI Colloquium. The CCR-FYI strives to promote scientific, career, and personal success and growth among all postdoctoral fellows, clinical fellows, postbaccalaureate fellows, and graduate students on the NIH campuses. We are kindly assisted by the NCI’s Center for Cancer Research (CCR) Office of the Director and the Center for Cancer Training (CCT) Office of Training and Education, who work to enhance the intramural trainee experience. The CCR-FYI would like to thank Dr. Ned Sharpless, Dr. Glenn Merlino, Dr. William Dahut, Dr. Tom Misteli, Erika Ginsburg, Dr. Oliver Bogler for their continuing assistance and guidance. We would also like to thank Angela Jones from the Center for Cancer Training, Robert Montano and his team from the Center for Biomedical Informatics and Information Technology for providing us with the managerial and technical help, respectively.
    [Show full text]
  • Modulation of PI3K/PTEN Pathway Does Not Affect Catalytic Activity Of
    ANTICANCER RESEARCH 37 : 5415-5423 (2017) doi:10.21873/anticanres.11969 Modulation of PI3K/PTEN Pathway Does Not Affect Catalytic Activity of PDK1 in Jurkat Cells KEUM-JIN YANG 1, LONGZHEN PIAO 1,2 , SANGHEE SHIN 1, SO-YEON SHIN 1, YUWEN LI 1,3 , HYUNJI LEE 1, QUANGDON TRAN 1, JISOO PARK 1, SUNTAEK HONG 4, DEREK P. BRAZIL 5, BRIAN A. HEMMINGS 6, SEON-HWAN KIM 7 and JONGSUN PARK 1 1Metabolic Syndrome and Cell Signaling Laboratory, Department of Pharmacology and Medical Science, Institute for Cancer Research, and 7Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, Republic of Korea; 2Department of Oncology, Yanbian University Hospital, Yanji, P.R. China; 3Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, P.R. China; 4Laboratory of Cancer Cell Biology, Department of Biochemistry, School of Medicine, Gachon University, Incheon, Republic of Korea; 5Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, U.K.; 6Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland Abstract. Unopposed phosphoinositide 3-kinase (PI3K) We demonstrated that reducing the level of 3- activity and 3-phosphoinositide production in Jurkat cells, phosphoinositides in Jurkat cells with pharmacological due to a mutation in the phosphatase and tensin homolog inhibitors of PI3K or expression of PTEN does not affect deleted on chromosome 10 (PTEN) tumor-suppressor PDK1 activity or its intracellular localization. We conclude, protein, results in deregulation of PH domain-containing therefore, that although Jurkat cells lack PTEN expression, proteins including the serine/threonine kinase PKB. In Jurkat only a subset of pathways downstream of PDK1 are cells, PKB is constitutively active and phosphorylated at the perturbed as a consequence of PTEN loss.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Molecular Mechanisms Of
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Molecular Mechanisms of Atypical Protein Kinase C Regulation in Insulin Signaling A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biomedical Sciences by Irene Sophie Tobias Committee in charge: Professor Alexandra Newton, Chair Professor Jack Dixon Professor Steve Dowdy Professor Tracy Handel Professor Joann Trejo 2016 Copyright Irene Sophie Tobias, 2016 All rights reserved The Dissertation of Irene Sophie Tobias is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2016 iii DEDICATION For the Honor of Grayskull iv EPIGRAPH The ability to adapt to new information and hypotheses, to give up old dogmas, to admit that you are wrong, that is what separates the scientifically minded from the moronic masses of automatons. Mat Lalonde, PhD v TABLE OF CONTENTS SIGNATURE PAGE.....................................................................................................iii DEDICATION ..............................................................................................................iv EPIGRAPH..................................................................................................................... v TABLE OF CONTENTS ..............................................................................................vi LIST OF ABBREVIATIONS .....................................................................................viii LIST OF FIGURES.......................................................................................................
    [Show full text]
  • Protein Kinase Activation
    SEE INSIDE FOR 2008 ANNUAL MEETING SESSION OVERVIEWS July 2007 Protein Kinase Activation American Society for Biochemistry and Molecular Biology POSTDOCTORAL FELLOWSHIP Department of Dermatology, OHSU, Portland, Oregon Training Program in Molecular Basis of Skin Pathobiology Promoting Understanding Position for recent PhD, MD/PhD or MD (US citizen or Permanent Resident) in NIH-funded program for training highly of the Molecular Nature qualifi ed candidates for academic careers in basic & translational research in skin diseases, including cancer & psoriasis. OHSU Dermatology has a strong history of clinical & scientifi c of Life Processes research & a 40-year record in training dermatology residents including physician scientists & postdoctoral scientists on the path to independence. Features of this training program are a core of Dermatology faculty & a multidisciplinary network of scientists with international recognition in areas highly relevant to epithelial cell fate, development & diseases. The training program includes seminars in mentors’ departments, Dermatology Research Division meetings & symposia, research forums tailored to postdoctoral students, & national/international meetings in cutaneous biology. Successful candidates desiring an academic career in basic or translational research in cancer The Society’s purpose is to or investigative dermatology using surface epithelial models can advance the science of bio- expect to receive training toward independence in research with chemistry & molecular biology a strong clinical translational
    [Show full text]