UNIVERSITY of CALIFORNIA, SAN DIEGO Signaling by PHLPP1 And

Total Page:16

File Type:pdf, Size:1020Kb

UNIVERSITY of CALIFORNIA, SAN DIEGO Signaling by PHLPP1 And UNIVERSITY OF CALIFORNIA, SAN DIEGO Signaling by PHLPP1 and PKC alpha: function and specificity A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biomedical Sciences by Audrey Kathleen O’Neill Committee in Charge: Professor Alexandra C. Newton, Chair Professor Joan Heller Brown Professor Kun-Liang Guan Professor Jerrold Olefsky Professor Jing Yang 2012 Copyright Audrey Kathleen O’Neill, 2012 All Rights Reserved The dissertation of Audrey Kathleen O’Neill is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2012 iii DEDICATION Dedicated to my grandparents, Thomas & Kathryn O’Neill and Jack and Nancy Reardan, for their love and support. iv TABLE OF CONTENTS Signature page................................................................................................................................ iii Dedication page ..............................................................................................................................iv Table of Contents.............................................................................................................................v List of Figures .................................................................................................................................vi List of Tables................................................................................................................................. viii Acknowledgements.........................................................................................................................ix Vita..................................................................................................................................................xi Abstract of the Dissertation............................................................................................................ xii Chapter 1: Regulation of signaling by PHLPP and PKC..................................................................1 Chapter 2: Characterization of PHLPP1-null mice.........................................................................40 Chapter 3: PKCα promotes cell migration through a PDZ-dependent interaction with its novel substrate Discs Large homolog (DLG) 1........................................................................................72 Chapter 4: Summary and Conclusions ........................................................................................102 Appendix A: PKCα signaling in invadopodia ...............................................................................114 v LIST OF FIGURES Figure 1.1: Signaling by PHLPP and PKC .....................................................................................25 Figure 1.2: Domain structure of the human PHLPP isozymes.......................................................26 Figure 1.3: PHLPP suppresses the PI3K/Akt signaling pathway...................................................27 Figure 1.4: Domain structure and activator sensitivity of the three classes of PKC isozymes.......28 Figure 1.5: Mechanisms by which scaffolding proteins regulate cPKC signaling ..........................29 Figure 2.1: Expression of PHLPP1 and 2 mRNA in various mouse tissues ..................................61 Figure 2.2: Generation of PHLPP1-null mice.................................................................................62 Figure 2.3: Expression and phosphorylation of various signaling factors in PHLPP1-null mouse tissues............................................................................................................................................63 Figure 2.4: Body weights and blood parameters of PHLPP1-null and heterozygous mice............64 Figure 2.5: Responses of PHLPP-null mice and their wild type littermates to a high fat diet.........65 Figure 2.6: Characterization of pancreatic islets in PHLPP1-null and wild type mice....................66 Figure 2.7: Characterization of biochemical changes and apoptosis in primary and immortalized mouse embryonic fibroblasts (MEFs) lacking PHLPP1 .................................................................67 Figure 2.8: Increased PKC signaling and decreased apoptosis in primary astrocytes isolated from PHLPP1-null mice..........................................................................................................................68 Figure 3.1: PKCα interacts via its PDZ ligand with the PDZ domain scaffold DLG1/SAP97 .........90 Figure 3.2: PKCα promotes cell migration in wound healing assays.............................................91 Figure 3.3. A second shRNA construct targeting PKCα also inhibits wound healing ....................92 Figure 3.4: Wild type PKCα but not PKCα lacking the last three amino acids rescues wound healing in PKCα-depleted H1703 cells ..........................................................................................93 Figure 3.5: Interfering with DLG1 blocks the effects of PKCα knockdown on wound healing .......94 Figure 3.6: A second siRNA targeting DLG1 also inhibits wound healing .....................................95 Figure 3.7: DLG1 contains a conserved conventional PKC phosphorylation site..........................96 Figure 3.8: PKCα phosphorylates DLG1 at T656 ..........................................................................97 vi Figure 3.9: PKCα signaling at the DLG1 scaffold is increased in highly invasive NSCLC lines relative to their less invasive counterparts .....................................................................................98 Figure 4.1: Conclusions ...............................................................................................................111 Figure A.1: DLG1 and PKCα are both present at invadopodia in Src-transformed 3T3 fibroblasts.....................................................................................................................................124 Figure A.2: Conventional PKC activity is necessary for the maintenance and formation of invadopodia in Src-trasformed 3T3 fibroblasts ............................................................................125 Figure A.3: Stimulation of PKC activity is not sufficient to increase invadopodia formation in Src- transformed fibroblasts ................................................................................................................126 Figure A.4: DLG1 localization at invadopodia is dependent on cPKC activity but not presence of the phosphoacceptor at position T656.........................................................................................127 Figure A.5: DLG1 is not necessary for maintenance of invadopodia in Src-transformed fibroblasts.....................................................................................................................................128 vii LIST OF TABLES Table 1.1: Alterations in PHLPP levels in human cancer...............................................................30 viii ACKNOWLEDGMENTS First, I would like to thank my mentor, Alexandra Newton, who has helped bring this dissertation to completion by supporting and guiding my research and by teaching me how to design, perform, and, most importantly, learn from experiments (even those producing negative results). She has been a wonderful leader and inspiration for me, and her relentless positivity and persistence have set an example that I will do my best to follow. I would also like to acknowledge the critical contributions of past and present members of the Newton lab (Hilde Abrahamsen, Corina Antal, Laura Braughton, John Brognard, Lisa Gallegos, Christine Gould, Tianyan Gao, C.C. King, Maya Kunkel, Matt Niederst, Gloria (Ximena) Reyes, Cicely Schramm, Emma Sierecki, Shoana Sikorski, Irene Tobias, Noel Warfel, and Alyssa Wu-Zhang), who provided invaluable technical assistance and helpful discussions of data. I would particularly like to thank Lisa Gallegos, with whom I collaborated on the PKCα/DLG1 project and who was consistently reliable, helpful, and positive; Gloria Reyes, Tianyan Gao, and Shoana Sikorski, who gave me a great deal of assistance with the PHLPP1-null mouse project; and C.C. King and Maya Kunkel, who are inexhaustible sources of wisdom and kindness. Many members of the scientific community in San Diego contributed their time and expertise to helping me learn new techniques and/or gain access to materials I needed for this work. I would like to thank members of the Brown lab, especially Nicole Purcell and Sunny Xiang, as well as Vincenzo Cirulli, Malik Keshwani, Manuela Quintavalle, and Sara Courtneidge, for their assistance. I would also like to acknowledge Jeffrey Morimune for his help in the lab. Finally and most importantly, I would like to note the contributions of my thesis committee, Drs. Joan Heller Brown, Kun-Liang Guan, Jerry Olefsky, and Jing Yang, for their excellent critiques of and suggestions for my research. I would also like to thank my collaborators, who include Satoru Masubuchi and Paolo Sassone-Corsi at UC Irvine; Muhan Chen and Lloyd Trotman at Cold Spring Harbor; Erin Garcia and Randy Hall at Emory University; and Verline Justilien and Alan Fields at the Mayo Clinic, as ix well as Lisa Gallegos and Matt Niederst. In particular, I would like to acknowledge the continuing contributions and critiques from Randy Hall, Verline Justilien, and Alan Fields, who were instrumental in bringing the PKCα/DLG1 project to completion.
Recommended publications
  • Alopecia in a Viable Phospholipase C Delta 1 and Phospholipase C Delta 3 Double Mutant
    Alopecia in a Viable Phospholipase C Delta 1 and Phospholipase C Delta 3 Double Mutant Fabian Runkel1¤, Maik Hintze1,2, Sebastian Griesing1,2, Marion Michels1, Birgit Blanck1, Kiyoko Fukami3, Jean-Louis Gue´net4, Thomas Franz1* 1 Anatomisches Institut, Universita¨t Bonn, Bonn, Germany, 2 Studiengang Molekulare Biomedizin, LIMES, Bonn, Germany, 3 Laboratory of Genome and Biosignal, Tokyo University of Pharmacy and Life Science, Hachioji-city, Tokyo, Japan, 4 De´partement de Biologie du De´veloppement, Institut Pasteur, Paris, France Abstract Background: Inositol 1,4,5trisphosphate (IP3) and diacylglycerol (DAG) are important intracellular signalling molecules in various tissues. They are generated by the phospholipase C family of enzymes, of which phospholipase C delta (PLCD) forms one class. Studies with functional inactivation of Plcd isozyme encoding genes in mice have revealed that loss of both Plcd1 and Plcd3 causes early embryonic death. Inactivation of Plcd1 alone causes loss of hair (alopecia), whereas inactivation of Plcd3 alone has no apparent phenotypic effect. To investigate a possible synergy of Plcd1 and Plcd3 in postnatal mice, novel mutations of these genes compatible with life after birth need to be found. Methodology/Principal Findings: We characterise a novel mouse mutant with a spontaneously arisen mutation in Plcd3 (Plcd3mNab) that resulted from the insertion of an intracisternal A particle (IAP) into intron 2 of the Plcd3 gene. This mutation leads to the predominant expression of a truncated PLCD3 protein lacking the N-terminal PH domain. C3H mice that carry one or two mutant Plcd3mNab alleles are phenotypically normal. However, the presence of one Plcd3mNab allele exacerbates the alopecia caused by the loss of functional Plcd1 in Del(9)olt1Pas mutant mice with respect to the number of hair follicles affected and the body region involved.
    [Show full text]
  • Read the Summer 2021 Newsletter
    CCR Fellows & Young Investigators Newsletter Center for Cancer Research Volume 20, Issue 3 Summer 2021 CCR-FYI Newsletter Team Special newsletter edition: 21st CCR FYI Colloquium EDITOR IN CHIEF – From Mechanisms to Therapies: Alida Palmisano Current Highlights in Cancer Research MANAGING EDITOR – Annan Timon EDITORS – Enitome Bafor Sarah Burnash Dorothy L. Butler Molly Congdon Jessica Eisenstatt Amy Funk Mary Grace Katusiime Victoria Hill Sarwat Naz Carlos Villapudua CONTRIBUTORS – Srikanta Basu Dorothy Butler Sunita Chopra Molly Congdon Mary Grace Katusiime Katelyn Ludwig Isita Jhulki Babul Ram Geraldine Vilmen In the picture above, the CCR-FYI Colloquium Planning Committee: CCR-FYI Association is Chairs: Srikanta Basu, Katelyn Ludwig. Vice Chairs: Dorothy L. Butler, Anna Ratliff. supported by the NCI Knicki Bergman, Molly Congdon, Ruchika Bhujbalrao, Vasty Osei Amponsa, Sabina Kaczanowska, Center for Cancer Training Neha Wali, Joshua Rose, Sunita Chopra, Isita Jhulki, Mary Grace Katusiime, Sumirtha Balaratnam. (CCT) and CCR Office of Not in the picture, but part of the Planning Committee: Cassey Singler, Jose Delgado the Director. Support of the CCT-Office of Training and Education, CCR-FYI SC and CBIIT was essential for the success of this event, in particular the Committee wants to thank Amy Funk, Jessica Connect with CCR-FYI Eisenstatt, Angela Jones, Robert Montano, Erika Ginsburg and Oliver Bogler. VOLUME 20 – ISSUE 3 – SUMMER 2021 While the COVID-19 pandemic continues to have a major impact on the life of many NCI fellows, we are happy to see that one of the big CCR events of the year (the CCR-FYI Colloquium) returned in 2021 after being cancelled in 2020.
    [Show full text]
  • Mouse Plcd3 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Plcd3 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Plcd3 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Plcd3 gene (NCBI Reference Sequence: NM_152813 ; Ensembl: ENSMUSG00000020937 ) is located on Mouse chromosome 11. 15 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 15 (Transcript: ENSMUST00000103077). Exon 9~10 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Plcd3 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-133L3 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 9 starts from about 59.53% of the coding region. The knockout of Exon 9~10 will result in frameshift of the gene. The size of intron 8 for 5'-loxP site insertion: 1710 bp, and the size of intron 10 for 3'-loxP site insertion: 714 bp. The size of effective cKO region: ~945 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 8 9 10 11 15 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Plcd3 Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • The Protein Phosphatase PP2A Plays Multiple Roles in Plant Development by Regulation of Vesicle Traffic—Facts and Questions
    International Journal of Molecular Sciences Review The Protein Phosphatase PP2A Plays Multiple Roles in Plant Development by Regulation of Vesicle Traffic—Facts and Questions Csaba Máthé *, Márta M-Hamvas, Csongor Freytag and Tamás Garda Department of Botany, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary; [email protected] (M.M.-H.); [email protected] (C.F.); [email protected] (T.G.) * Correspondence: [email protected] Abstract: The protein phosphatase PP2A is essential for the control of integrated eukaryotic cell functioning. Several cellular and developmental events, e.g., plant growth regulator (PGR) mediated signaling pathways are regulated by reversible phosphorylation of vesicle traffic proteins. Reviewing present knowledge on the relevant role of PP2A is timely. We discuss three aspects: (1) PP2A regulates microtubule-mediated vesicle delivery during cell plate assembly. PP2A dephosphorylates members of the microtubule associated protein family MAP65, promoting their binding to microtubules. Regulation of phosphatase activity leads to changes in microtubule organization, which affects vesicle traffic towards cell plate and vesicle fusion to build the new cell wall between dividing cells. (2) PP2A-mediated inhibition of target of rapamycin complex (TORC) dependent signaling pathways contributes to autophagy and this has possible connections to the brassinosteroid signaling pathway. (3) Transcytosis of vesicles transporting PIN auxin efflux carriers. PP2A regulates vesicle localization and recycling of PINs related to GNOM (a GTP–GDP exchange factor) mediated pathways. The proper intracellular traffic of PINs is essential for auxin distribution in the plant body, thus in whole Citation: Máthé, C.; M-Hamvas, M.; plant development.
    [Show full text]
  • Lipid Metabolism Has Been Good to Me George M
    REFLECTIONS Lipid metabolism has been good to me https://doi.org/10.1016/j.jbc.2021.100786 George M. Carman* From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA Edited by the Reflections and Classics Committee headed by Patrick Sung My career in research has flourished through hard work, program director of the National Science Foundation), supportive mentors, and outstanding mentees and collabora- encouraged me to pursue a research career in biochemistry; tors. The Carman laboratory has contributed to the under- she continues to be a mentor and friend. My MS degree standing of lipid metabolism through the isolation and advisor, John Keller, introduced me to laboratory research characterization of key lipid biosynthetic enzymes as well as and gave me an appreciation for science in a broader context through the identification of the enzyme-encoding genes. Our by encouraging me to attend meetings of the Theobald Smith findings from yeast have proven to be invaluable to understand Society for Microbiology (local branch of the American So- regulatory mechanisms of human lipid metabolism. Several ciety for Microbiology). He also encouraged me to apply to rewarding aspects of my career have been my service to the the University of Massachusetts (PhD, 1977) where Robert Journal of Biological Chemistry as an editorial board member Levin had an open graduate research position in food and Associate Editor, the National Institutes of Health as a microbiology. I did not realize that my PhD degree would be member of study sections, and national and international sci- in Food Science or that I would have to take undergraduate entific meetings as an organizer.
    [Show full text]
  • The Regulatory Roles of Phosphatases in Cancer
    Oncogene (2014) 33, 939–953 & 2014 Macmillan Publishers Limited All rights reserved 0950-9232/14 www.nature.com/onc REVIEW The regulatory roles of phosphatases in cancer J Stebbing1, LC Lit1, H Zhang, RS Darrington, O Melaiu, B Rudraraju and G Giamas The relevance of potentially reversible post-translational modifications required for controlling cellular processes in cancer is one of the most thriving arenas of cellular and molecular biology. Any alteration in the balanced equilibrium between kinases and phosphatases may result in development and progression of various diseases, including different types of cancer, though phosphatases are relatively under-studied. Loss of phosphatases such as PTEN (phosphatase and tensin homologue deleted on chromosome 10), a known tumour suppressor, across tumour types lends credence to the development of phosphatidylinositol 3--kinase inhibitors alongside the use of phosphatase expression as a biomarker, though phase 3 trial data are lacking. In this review, we give an updated report on phosphatase dysregulation linked to organ-specific malignancies. Oncogene (2014) 33, 939–953; doi:10.1038/onc.2013.80; published online 18 March 2013 Keywords: cancer; phosphatases; solid tumours GASTROINTESTINAL MALIGNANCIES abs in sera were significantly associated with poor survival in Oesophageal cancer advanced ESCC, suggesting that they may have a clinical utility in Loss of PTEN (phosphatase and tensin homologue deleted on ESCC screening and diagnosis.5 chromosome 10) expression in oesophageal cancer is frequent, Cao et al.6 investigated the role of protein tyrosine phosphatase, among other gene alterations characterizing this disease. Zhou non-receptor type 12 (PTPN12) in ESCC and showed that PTPN12 et al.1 found that overexpression of PTEN suppresses growth and protein expression is higher in normal para-cancerous tissues than induces apoptosis in oesophageal cancer cell lines, through in 20 ESCC tissues.
    [Show full text]
  • Antigen-Specific Memory CD4 T Cells Coordinated Changes in DNA
    Downloaded from http://www.jimmunol.org/ by guest on September 24, 2021 is online at: average * The Journal of Immunology The Journal of Immunology published online 18 March 2013 from submission to initial decision 4 weeks from acceptance to publication http://www.jimmunol.org/content/early/2013/03/17/jimmun ol.1202267 Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells Shin-ichi Hashimoto, Katsumi Ogoshi, Atsushi Sasaki, Jun Abe, Wei Qu, Yoichiro Nakatani, Budrul Ahsan, Kenshiro Oshima, Francis H. W. Shand, Akio Ametani, Yutaka Suzuki, Shuichi Kaneko, Takashi Wada, Masahira Hattori, Sumio Sugano, Shinichi Morishita and Kouji Matsushima J Immunol Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Author Choice option Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Freely available online through http://www.jimmunol.org/content/suppl/2013/03/18/jimmunol.120226 7.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Author Choice Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 24, 2021. Published March 18, 2013, doi:10.4049/jimmunol.1202267 The Journal of Immunology Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells Shin-ichi Hashimoto,*,†,‡ Katsumi Ogoshi,* Atsushi Sasaki,† Jun Abe,* Wei Qu,† Yoichiro Nakatani,† Budrul Ahsan,x Kenshiro Oshima,† Francis H.
    [Show full text]
  • Stimulation of Phospholipid Metabolism in Embryonic Muscle
    Proc. Natl. Acad. Sci. USA Vol. 76, No. 9, pp. 4474-4478, September 1979 Cell Biology Stimulation of phospholipid metabolism in embryonic muscle cells treated with phospholipase C (phospholipid synthesis/myogenesis) CLAUDIA KENT Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907 Communicated by Edwin T. Mertz, May 29, 1979 ABSTRACT Phospholipid metabolism is dramatically MATERIALS AND METHODS stimulated in cultured myogenic cells in which cell fusion was inhibited with phospholipase C (phosphatidylcholine choline- Cultured Cells. Pectoral muscle from 11-day chicken em- phosphohydrolase; EC 3.1.4.3). Phospholipase C was active bryos was dissected, loose connective tissue was removed, and under the culture conditions as shown by the degradation of the muscle was minced into 1- to 2-mm fragments. Cells were exogenous phosphatidylcholine. Rates of incorporation of 32p; dissociated from the tissue fragments by trituration with a and [metkyl-3Hlcholine into lipids were about 5-fold greater in phospholipase-treated cells than in either untreated fusing cells pasteur pipette (8) in calcium- and magnesium-free Earle's salt or untreated cells prevented from fusing by-calcium deprivation. solution. The cell suspension was filtered through cheesecloth, The greatest stimulation in the phospholipase C-treated cultures preplated for 15 min (9), and then diluted with culture medium occurred with synthesis of phospai tlcholine and sphin- to 5 X 105 cells/ml. The cells were plated in tissue culture dishes gomyelin; synthesis of phosphatidyinositol and cardiolipin was precoated with rat tail collagen (10) at 8 ml of cell suspension not stimulated. Degradation of cellular [32Plphosphatidylcholine and appearance in the culture medium of the degradation per 100 mm dish.
    [Show full text]
  • Emerging Roles of PHLPP Phosphatases in Cell Signaling
    PA61CH26_Newton ARjats.cls September 22, 2020 12:5 Annual Review of Pharmacology and Toxicology PHLPPing the Script: Emerging Roles of PHLPP Phosphatases in Cell Signaling Timothy R. Baffi,∗ Ksenya Cohen Katsenelson,∗ and Alexandra C. Newton Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721, USA; email: [email protected] Annu. Rev. Pharmacol. Toxicol.2021. 61:26.1–26.21 Keywords The Annual Review of Pharmacology and Toxicology is PHLPP, Akt, PKC, phosphatase, phosphorylation, cancer, transcription online at pharmtox.annualreviews.org https://doi.org/10.1146/annurev-pharmtox-031820- Abstract 122108 Whereas protein kinases have been successfully targeted for a variety of dis- Copyright © 2021 by Annual Reviews. eases, protein phosphatases remain an underutilized therapeutic target, in All rights reserved part because of incomplete characterization of their effects on signaling net- ∗ These authors contributed equally to this article works. The pleckstrin homology domain leucine-rich repeat protein phos- Annu. Rev. Pharmacol. Toxicol. 2021.61. Downloaded from www.annualreviews.org phatase (PHLPP) is a relatively new player in the cell signaling field, and new Access provided by University of California - San Diego on 11/11/20. For personal use only. roles in controlling the balance among cell survival, proliferation, and apop- tosis are being increasingly identified. Originally characterized for its tumor- suppressive function in deactivating the prosurvival kinase Akt, PHLPP may have an opposing role in promoting survival, as recent evidence suggests. Additionally, identification of the transcription factor STAT1 as a substrate unveils a role for PHLPP as a critical mediator of transcriptional programs in cancer and the inflammatory response.
    [Show full text]
  • Mouse ENPP7 / NPP-7 Protein (His Tag)
    Mouse ENPP7 / NPP-7 Protein (His Tag) Catalog Number: 50567-M08H General Information SDS-PAGE: Gene Name Synonym: ALK-SMase; E-NPP7; NPP-7; NPP7; Alk-SMase; Gm254 Protein Construction: A DNA sequence encoding the mouse ENPP7 (Q3TIW9) (Met 1-Gln 421) was expressed, with a polyhistidine tag at the C-terminus. Source: Mouse Expression Host: Human Cells QC Testing Purity: > 90 % as determined by SDS-PAGE Endotoxin: Protein Description < 1.0 EU per μg of the protein as determined by the LAL method Mouse Ectonucleotide pyrophosphatase / phosphodiesterase family Stability: member 7, also known as Alkaline sphingomyelin phosphodiesterase, Intestinal alkaline sphingomyelinase, Alk-Smase, ENPP7 and NPP-7, is a Samples are stable for up to twelve months from date of receipt at -70 ℃ single-pass type I membrane protein which belongs to the nucleotide pyrophosphatase / phosphodiesterase family. ENPP7 / NPP-7 is Predicted N terminal: Ala 22 expressed in the intestines and human bile. ENPP7 / NPP-7 is localized at Molecular Mass: the surface of the microvillar membrane in small intestine enterocytes, as well as in endosome-like structures and in Golgi complex. The main The secreted recombinant mouse ENPP7 consists of 411 amino acids and function of ENPP7 / NPP-7 is to convert the dietary sphingomyelin into has a calculated molecular mass of 47 kDa. It migrates as an ceramide, the sphingolipid messengers via hydrolyzation. ENPP7 / NPP-7 approximately 60 kDa band in SDS-PAGE under reducing conditions due is also reported to exert a phospholipase C activity toward palmitoyl lyso- to glycosylation. phosphocholine. The activity of this enzyme is inhibited in a dose dependent manner by ATP, imidazole, orthovanadate and zinc ion.
    [Show full text]
  • PLCD3, a Flotillin2-Interacting Protein, Is Involved in Proliferation, Migration and Invasion of Nasopharyngeal Carcinoma Cells
    ONCOLOGY REPORTS 39: 45-52, 2018 PLCD3, a flotillin2-interacting protein, is involved in proliferation, migration and invasion of nasopharyngeal carcinoma cells WeIDoNg LIu1,2*, XuXu LIu1,2*, LeI WANg1,2, BIN ZHu1,2, CHANG ZHANG1,2, WeI JIA1,2, HeCHeNg ZHu3, XINgDoNg LIu3, MeIZuo ZHoNg3, DAN XIE4, YANYu LIu1,2, SHASHA LI1,2, JIA SHI1,2, JIANXINg LIN1,2, XIAOMENG XIA5, XINgJuN JIANg6 and CAIPING REN1,2 1The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of education, Xiangya Hospital, Central South university, Changsha, Hunan 410008; 2Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South university, Changsha, Hunan 410078; 3Changsha Kexin Cancer Hospital, Changsha, Hunan 410205; 4State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen university Cancer Center, guangzhou, Hunan 510060; 5Department of Gynecology and Obstetrics, The Second Xiangya Hospital, Central South university, Changsha, Hunan 410011; 6Department of Neurosurgery, Xiangya Hospital, Central South university, Changsha, Hunan 410008, P.R. China Received April 1, 2017; Accepted September 18, 2017 DoI: 10.3892/or.2017.6080 Abstract. Phospholipase C (PLC) is a pivotal enzyme in the tial of 5-8F, a highly metastatic NPC cell line, by restraining phosphoinositide pathway that promotes the second messen- its growth, proliferation, mobility and migration. The present gers, diacylglycerol (DAG) and inositol 1,4,5-trisphosphate study demonstrated that PLCD3 may be an oncogenic protein (IP3), to participate in eukaryotic signal transduction. Several in NPC and that it plays an important role in the progression PLC isozymes are associated with cancer, such as PLC-β1, of NPC partially by interacting with Flot2.
    [Show full text]
  • Kidney V-Atpase-Rich Cell Proteome Database
    A comprehensive list of the proteins that are expressed in V-ATPase-rich cells harvested from the kidneys based on the isolation by enzymatic digestion and fluorescence-activated cell sorting (FACS) from transgenic B1-EGFP mice, which express EGFP under the control of the promoter of the V-ATPase-B1 subunit. In these mice, type A and B intercalated cells and connecting segment principal cells of the kidney express EGFP. The protein identification was performed by LC-MS/MS using an LTQ tandem mass spectrometer (Thermo Fisher Scientific). For questions or comments please contact Sylvie Breton ([email protected]) or Mark A. Knepper ([email protected]).
    [Show full text]