Complete Genome Sequence of Methanoculleus Bourgensis Strain
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae -
Evidence of Active Methanogen Communities in Shallow Sediments
Evidence of active methanogen communities in shallow sediments of the Sonora Margin cold seeps Adrien Vigneron, St´ephaneL'Haridon, Anne Godfroy, Erwan Roussel, Barry A Cragg, R. John Parkes, Laurent Toffin To cite this version: Adrien Vigneron, St´ephaneL'Haridon, Anne Godfroy, Erwan Roussel, Barry A Cragg, et al.. Evidence of active methanogen communities in shallow sediments of the Sonora Margin cold seeps. Applied and Environmental Microbiology, American Society for Microbiology, 2015, 81 (10), pp.3451-3459. <10.1128/AEM.00147-15>. <hal-01144705> HAL Id: hal-01144705 http://hal.univ-brest.fr/hal-01144705 Submitted on 23 Apr 2015 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps Adrien Vigneron,a,b,c,e Stéphane L’Haridon,b,c Anne Godfroy,a,b,c Erwan G. Roussel,a,b,c,d Barry A. Cragg,d R. John Parkes,d Downloaded from Laurent Toffina,b,c Ifremer, Laboratoire de Microbiologie -
MIAMI UNIVERSITY the Graduate School Certificate for Approving The
MIAMI UNIVERSITY The Graduate School Certificate for Approving the Dissertation We hereby approve the Dissertation of Qiuyuan Huang Candidate for the Degree: Doctor of Philosophy _______________________________________ Hailiang Dong, Director ________________________________________ Yildirim Dilek, Reader ________________________________________ Jonathan Levy, Reader ______________________________________ Chuanlun Zhang, External examiner ______________________________________ Annette Bollmann, Graduate School Representative ABSTRACT GEOMICROBIAL INVESTIGATIONS ON EXTREME ENVIRONMENTS: LINKING GEOCHEMISTRY TO MICROBIAL ECOLOGY IN TERRESTRIAL HOT SPRINGS AND SALINE LAKES by Qiuyuan Huang Terrestrial hot springs and saline lakes represent two extreme environments for microbial life and constitute an important part of global ecosystems that affect the biogeochemical cycling of life-essential elements. Despite the advances in our understanding of microbial ecology in the past decade, important questions remain regarding the link between microbial diversity and geochemical factors under these extreme conditions. This dissertation first investigates a series of hot springs with wide ranges of temperature (26-92oC) and pH (3.72-8.2) from the Tibetan Plateau in China and the Philippines. Within each region, microbial diversity and geochemical conditions were studied using an integrated approach with 16S rRNA molecular phylogeny and a suite of geochemical analyses. In Tibetan springs, the microbial community was dominated by archaeal phylum Thaumarchaeota -
Analyzing Metagenome Data Obtained by High-Throughput Sequencing
Centrum für Biotechnologie Analyzing Metagenome Data Obtained by High-Throughput Sequencing A. Pühler Center for Biotechnology Bielefeld University International Conference: Getting Post 2010 Biodiversity Targets Right Bragança Paulista/SP, Brazil December 11th – 15th, 2010 Content of Talk • Sequence analysis of the metagenome of a model microbial community • Analysis of assembled contigs and single reads by the help of completely sequenced genomes • The functional and taxonomic analysis of single reads using the software programs MetaSAMS and CARMA • The taxonomic analysis of a model microbial community based on 16S-rDNA sequences Sequence Analysis of the Metagenome of a Model Microbial Community (Part I) • Sequencing devices at the CeBiTec of Bielefeld University • Introduction of the model microbial community residing in an agrigultural biogas production • Sequence analysis of the metagenome of the model microbial community High-Throughput Sequencing Devices at the CeBiTec of Bielefeld University Sequencing techniques high-throughput sequencing ABI 3730xl DNA Genome Sequencer Genome Analyzer Analyzer (Applied GS FLX (Roche) (Illumina, Inc.) Biosystems) Genomics Platform Bioinformatics expertise and environment professional data evaluation Bioinformatics Platform Comparison of Different Sequencing Technologies Sequencing techniques ABI 3730xl DNA Genome Sequencer Genome Analyzer Analyzer (Applied GS FLX (Roche) (Illumina, Inc.) Biosystems) read length: 1100 bp 400 bp 150 bp sequenced bases/run: 0,1 Mb 500 Mb 45 Gb The GS FLX system is evidently best suited for a metagenome analysis since it offers long read length combined with an acceptable output. Metagenome Analysis of a Model Microbial Community Residing in a Biogas Production Plant Using Ultrafast Sequencing Biogas production from primary renewable products Biogas is produced during anaerobic digestion of biomass by specific microbial consortia Characteristics of the Analyzed Biogas Plant Located Close to the City of Bielefeld . -
Representatives of a Novel Archaeal Phylum Or a Fast-Evolving
Open Access Research2005BrochieretVolume al. 6, Issue 5, Article R42 Nanoarchaea: representatives of a novel archaeal phylum or a comment fast-evolving euryarchaeal lineage related to Thermococcales? Celine Brochier*, Simonetta Gribaldo†, Yvan Zivanovic‡, Fabrice Confalonieri‡ and Patrick Forterre†‡ Addresses: *EA EGEE (Evolution, Génomique, Environnement) Université Aix-Marseille I, Centre Saint-Charles, 3 Place Victor Hugo, 13331 Marseille, Cedex 3, France. †Unite Biologie Moléculaire du Gène chez les Extremophiles, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex ‡ 15, France. Institut de Génétique et Microbiologie, UMR CNRS 8621, Université Paris-Sud, 91405 Orsay, France. reviews Correspondence: Celine Brochier. E-mail: [email protected]. Simonetta Gribaldo. E-mail: [email protected] Published: 14 April 2005 Received: 3 December 2004 Revised: 10 February 2005 Genome Biology 2005, 6:R42 (doi:10.1186/gb-2005-6-5-r42) Accepted: 9 March 2005 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2005/6/5/R42 reports © 2005 Brochier et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Placement<p>Anteins from analysis 25of Nanoarcheumarchaeal of the positiongenomes equitans of suggests Nanoarcheum in the that archaeal N. equitans phylogeny inis likethe lyarchaeal to be the phylogeny representative using aof large a fast-evolving dataset of concatenatedeuryarchaeal ribosomalineage.</p>l pro- deposited research Abstract Background: Cultivable archaeal species are assigned to two phyla - the Crenarchaeota and the Euryarchaeota - by a number of important genetic differences, and this ancient split is strongly supported by phylogenetic analysis. -
Methanogens Diversity During Anaerobic Sewage Sludge Stabilization and the Effect of Temperature
processes Article Methanogens Diversity during Anaerobic Sewage Sludge Stabilization and the Effect of Temperature Tomáš Vítˇez 1,2, David Novák 3, Jan Lochman 3,* and Monika Vítˇezová 1,* 1 Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] 2 Department of Agricultural, Food and Environmental Engineering, Faculty of AgriSciences, Mendel University, 61300 Brno, Czech Republic 3 Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] * Correspondence: [email protected] (J.L.); [email protected] (M.V.); Tel.: +420-549-495-602 (J.L.); Tel.: +420-549-497-177 (M.V.) Received: 29 June 2020; Accepted: 10 July 2020; Published: 12 July 2020 Abstract: Anaerobic sludge stabilization is a commonly used technology. Most fermenters are operated at a mesophilic temperature regime. Modern trends in waste management aim to minimize waste generation. One of the strategies can be achieved by anaerobically stabilizing the sludge by raising the temperature. Higher temperatures will allow faster decomposition of organic matter, shortening the retention time, and increasing biogas production. This work is focused on the description of changes in the community of methanogenic microorganisms at different temperatures during the sludge stabilization. At higher temperatures, biogas contained a higher percentage of methane, however, there was an undesirable accumulation of ammonia in the fermenter. Representatives of the hydrogenotrophic genus Methanoliea were described at all temperatures tested. At temperatures up to 50 ◦C, a significant proportion of methanogens were also formed by acetoclastic representatives of Methanosaeta sp. and acetoclastic representatives of the order Methanosarcinales. -
Taxonomic Binning Approaches and Functional Characteristics of the Microbial Community During the Anaerobic Digestion of Hydrolyzed Corncob
energies Article Taxonomic Binning Approaches and Functional Characteristics of the Microbial Community during the Anaerobic Digestion of Hydrolyzed Corncob Luz Breton-Deval 1 , Ilse Salinas-Peralta 1 , Jaime Santiago Alarcón Aguirre 2, Belkis Sulbarán-Rangel 2,* and Kelly Joel Gurubel Tun 2,* 1 Catedras Conacyt, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; [email protected] (L.B.-D.); [email protected] (I.S.-P.) 2 Department of Water and Energy, University of Guadalajara Campus Tonalá, Tonalá 45425, Mexico; [email protected] * Correspondence: [email protected] (B.S.-R.); [email protected] (K.J.G.T.); Tel.: +52-33-2000-2300 (K.J.G.T.) Abstract: Maize forms the basis of Mexican food. As a result, approximately six million tons of corncob are produced each year, which represents an environmental issue, as well as a potential feedstock for biogas production. This research aimed to analyze the taxonomic and functional shift in the microbiome of the fermenters using a whole metagenome shotgun approach. Two strategies were used to understand the microbial community at the beginning and the end of anaerobic digestion: (i) phylogenetic analysis to infer the presence and coverage of clade-specific markers to assign taxonomy and (ii) the recovery of the individual genomes from the samples using the binning of the assembled scaffolds. The results showed that anaerobic digestion brought some noticeable changes and the main microbial community was composed of Corynebacterium variable, Desulfovibrio desulfuricans, Vibrio furnissii, Shewanella spp., Actinoplanes spp., Pseudoxanthomonas spp., Saccharomonospora azurea, Citation: Breton-Deval, L.; Agromyces spp., Serinicoccus spp., Cellulomonas spp., Pseudonocardia spp., Rhodococcus rhodochrous, Salinas-Peralta, I.; Alarcón Aguirre, Sphingobacterium spp. -
Presence of Archaea in the Indoor Environment and Their Relationships with Housing Characteristics
Microb Ecol (2016) 72:305–312 DOI 10.1007/s00248-016-0767-z ENVIRONMENTAL MICROBIOLOGY Presence of Archaea in the Indoor Environment and Their Relationships with Housing Characteristics Sepideh Pakpour1,2 & James A. Scott3 & Stuart E. Turvey 4,5 & Jeffrey R. Brook3 & Timothy K. Takaro6 & Malcolm R. Sears7 & John Klironomos1 Received: 3 April 2016 /Accepted: 5 April 2016 /Published online: 20 April 2016 # Springer Science+Business Media New York 2016 Abstract Archaea are widespread and abundant in soils, Based on the results, Archaea are not equally distributed with- oceans, or human and animal gastrointestinal (GI) tracts. in houses, and the areas with greater input of outdoor However, very little is known about the presence of Archaea microbiome and higher traffic and material heterogeneity tend in indoor environments and factors that can regulate their to have a higher abundance of Archaea. Nevertheless, more re- abundances. Using a quantitative PCR approach, and search is needed to better understand causes and consequences of targeting the archaeal and bacterial 16S rRNA genes in floor this microbial group in indoor environments. dust samples, we found that Archaea are a common part of the indoor microbiota, 5.01 ± 0.14 (log 16S rRNA gene copies/g Keywords Archaea . Bacteria . Indoor environment . qPCR . dust, mean ± SE) in bedrooms and 5.58 ± 0.13 in common Building characteristics . Human activities rooms, such as living rooms. Their abundance, however, was lower than bacteria: 9.20 ± 0.32 and 9.17 ± 0.32 in bed- rooms and common rooms, respectively. In addition, by mea- Introduction suring a broad array of environmental factors, we obtained preliminary insights into how the abundance of total archaeal The biology and ecology of the third domain of life, Archaea, 16S rRNA gene copies in indoor environment would be asso- have been studied far less when compared to the other do- ciated with building characteristics and occupants’ activities. -
UNIVERSITY of CALIFORNIA RIVERSIDE Microbial
UNIVERSITY OF CALIFORNIA RIVERSIDE Microbial Diversity Studies in Sediments of Perennially Ice-covered Lakes, McMurdo Dry Valleys, Antarctica A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philososphy in Microbiology by Chao Tang December 2009 Dissertation Committee: Dr. Brian Lanoil, Chairperson Dr. James Borneman Dr. David Crowley Copyright by Chao Tang 2009 The Dissertation of Chao Tang is approved: Committee Chairperson University of California, Riverside Acknowledgments There are numerous people who have provided me with help and inspiration during my studies here at UC Riverside. First and foremost, I would like to express my sincere appreciation for my advisor, Dr. Brian Lanoil, for giving me a great opportunity to study Antarctica microbiology, challenging and guiding me in pursuit of science. I would also like to acknowledge the past and present members of the Lanoil and Stein groups for the stimulating scientific discussions, help with experiments and encouragement in persevering through difficult times. I would like to thank Dr. David Crowley and Dr. James Borneman on my dissertation committee for their support and advice. I’d also like to thank our collaborators in the McMurdo Dry Valleys Microbial Observatory program, Dr. Michael Madigan from Southern Illinois University and Dr. Vladimir Samarkin from University of Georgia, Athens, for bringing field equipments, joint sampling efforts, and sharing their knowledge and insights for my research. I appreciate the Long Term Ecological Research limnology team led by Dr. John Priscu of Montana State University for help with fieldwork and their friendship. I am very grateful to my parents for their love, support, understanding and patience over the years. -
(12) Patent Application Publication (10) Pub. No.: US 2011/0287504 A1 Mets (43) Pub
US 2011 0287504A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0287504 A1 Mets (43) Pub. Date: Nov. 24, 2011 (54) METHOD AND SYSTEM FOR CONVERTING Publication Classification ELECTRICITY INTO ALTERNATIVE ENERGY RESOURCES (51) Int. Cl. CI2P 5/02 (2006.01) (75) Inventor: Laurens Mets, Chicago, IL (US) (52) U.S. Cl. ........................................................ 435/167 (73) Assignee: THE UNIVERSITY OF CHICAGO, Chicago, IL (US) (57) ABSTRACT (21) Appl. No.: 13/204,398 A method of using electricity to produce methane includes maintaining a culture comprising living methanogenic micro (22) Filed: Aug. 5, 2011 organisms at a temperature above 50° C. in a reactor having a first chamber and a second chamber separated by a proton Related U.S. Application Data permeable barrier, the first chamber comprising a passage between an inlet and an outlet containing at least a porous (63) Continuation of application No. 13/049,775, filed on electrically conductive cathode, the culture, and water, and Mar. 16, 2011, which is a continuation-in-part of appli the second chamber comprising at least an anode. The method cation No. PCT/US 10/40944, filed on Jul. 2, 2010. also includes coupling electricity to the anode and the cath (60) Provisional application No. 61/222,621, filed on Jul. 2, ode, Supplying carbon dioxide to the culture in the first cham 2009, provisional application No. 61/430,071, filed on ber, and collecting methane from the culture at the outlet of Jan. 5, 2011. the first chamber. Patent Application Publication Nov. 24, 2011 Sheet 1 of 12 US 2011/0287504 A1 PRIOR ART O2 H2 CHA -CH -D -O 50 52 -CH CO2 FIG. -
Lists of Names of Prokaryotic Candidatus Taxa
NOTIFICATION LIST: CANDIDATUS LIST NO. 1 Oren et al., Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijsem.0.003789 Lists of names of prokaryotic Candidatus taxa Aharon Oren1,*, George M. Garrity2,3, Charles T. Parker3, Maria Chuvochina4 and Martha E. Trujillo5 Abstract We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, pro- posed between the mid- 1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evo- lutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current propos- als to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes. Introduction of the category called Candidatus was first pro- morphology, basis of assignment as Candidatus, habitat, posed by Murray and Schleifer in 1994 [1]. The provisional metabolism and more. However, no such lists have yet been status Candidatus was intended for putative taxa of any rank published in the journal. that could not be described in sufficient details to warrant Currently, the nomenclature of Candidatus taxa is not covered establishment of a novel taxon, usually because of the absence by the rules of the Prokaryotic Code. -
Methanogenic Archaea: Emerging Partners in the Field of Allergic Diseases
Clinical Reviews in Allergy & Immunology (2019) 57:456–466 https://doi.org/10.1007/s12016-019-08766-5 Methanogenic Archaea: Emerging Partners in the Field of Allergic Diseases Youssouf Sereme1,2 & Soraya Mezouar1,2 & Ghiles Grine1,2 & Jean Louis Mege1,2,3 & Michel Drancourt1,2 & Pierre Corbeau4,5,6 & Joana Vitte1,2,3 Published online: 14 September 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Archaea, which form one of four domains of life alongside Eukarya, Bacteria, and giant viruses, have long been neglected as components of the human microbiota and potential opportunistic infectious pathogens. In this review, we focus on methanogenic Archaea, which rely on hydrogen for their metabolism and growth. On one hand, methanogenic Archaea in the gut are functional associates of the fermentative digestion of dietary fibers, favoring the production of beneficial short-chain fatty acids and likely contributing to the weaning reaction during the neonatal window of opportunity. On the other hand, methanogenic Archaea trigger the activation of innate and adaptive responses and the generation of specific T and B cells in animals and humans. In mouse models, lung hypersensitivity reactions can be induced by inhaled methanogenic Archaea mimicking human professional exposure to organic dust. Changes in methanogenic Archaea of the microbiota are detected in an array of dysimmune conditions comprising inflammatory bowel disease, obesity, malnutrition, anorexia, colorectal cancer, and diverticulosis. At the subcellular level, methanogenic Archaea are activators of the TLR8-dependent NLRP3 inflammasome, modulate the release of antimicrobial peptides and drive the production of proinflammatory, Th-1, Th-2, and Th-17 cytokines.