September 1993

Total Page:16

File Type:pdf, Size:1020Kb

September 1993 WASP Warren Astronomical Society Paper Volume 25, Number 9 $1.00 for non-members September 1993 Journal Roundup By Scott Jorgensen enus is often called Earth's twin sister or its little sister. limits of the process that truly shapes our world. V The reasonable similarity in mean diameter accounts The mountains on Venus in the Eastern Aphrodite for this comparison. Do you know how close they are? Ask Terra are analogous in extent to our Rockies, which stretch around, somebody in the club can tell you! from Mexico to Alaska. Based on Magellan data, this area of Because of the similarity in size, the Venusian surface Venus might be a subduction zone, a place in which one is rearranged by plate tectonics just as the Earth. Widely plate rides over another and forces it into the interior of the accepted only in the 1960s, plate tectonics is the idea that planet, where it melts. However it had also been labeled a huge portions of the earth's crust (called plates) slowly rift zone, where plates pull apart. move about over the globe. It is the relative motion of these A recent article in Science suggests that the confusion plates that cause earthquakes and the submersion arises because it is not a tectonic area at all, but an area sim- (technically subduction) of one plate under another that ilar to Hawaii where lava comes to the surface and forms a gives rise to some volcanoes, notably those in the Pacific volcano. However, on Venus, the magma did not get to the northwest and in Japan. In the middle of the Atlantic and surface but instead spread out under it forming a "blister." Pacific oceans are areas where the sea floor is literally rip- The uplifting of the land over these blisters stretches it and ping apart. These areas are spreading centers. causes both radial and circumferential cracks. Thus this The driving force for all this motion is heat inside the area has large circular cracks and also straight cracks. The Earth. Convection, or flow, of the molten rock causes the radar pictures are very interesting; if you have not seen crust above it to move, rise or fall. It is suspected that Mars them take a look at the articles in Scientific American, Na- is too small to have tectonics now - if it ever did. It would tional Geographic or any of the astronomy magazines. cool too quickly. The Moon almost certainly never had tec- Here is a test that should be complete by the time you tonic motion. But Venus does, and comparison of plate tec- read this. Hopefully the Perseids were really good this year tonics on another world is very useful in understanding the since the parent comet swung by about a year ago. Recent analysis of data from the Giotto comet probe indicates that more dust is thrown out of comets than previously thought. If that is right then we should have had a real good meteor display. Either that or we were unlucky and hit a very thin patch in the dust left behind. Based on the encounters with comets Halley and Grigg-Skjellerup, the Giotto found many more large dust grains (here large is the size of a human hairs width and up) than expected. The large particles don't reflect light very efficiently, so they would not contribute much to the dust tail we see. But they are there nonetheless and they make pretty meteors. So the dust to gas ratio may be much higher in a comet tail than thought. That not only means better meteor shows, it also means more mass is lost from a comet than previously thought. That totally changes the predictions for internal structure and outgassing dy- namics. Since the orbit is known, the density or size of the comet must be larger than previously suspected. Otherwise the comet would follow a different path due to the higher ejection of mass. While the more recent visit to comet G-S did not get the press the Halley fly-by got, it may prove (Continued on page 6) The WASP WARREN ASTRONOMICAL SOCIETY PAPER The WASP is the official monthly publication of the Socie- Volume 25, Number 9 — September1993 ty. Each new issue of the WASP is made available at the Macomb meeting on the third Thursday. Non-members will be charged Published by: $1.00 for each new issue. Back issues, when available, are free. Warren Astronomical Society, Inc. Requests by other clubs to receive the WASP and other corre- P.O. Box 1505 spondence should be addressed to the editor. Warren, Michigan 48090-1505 Articles for inclusion in the WASP are strongly encouraged and should be submitted to the editor on or before the first Thurs- 1993 OFFICERS day of each month. For further information on contribution, see President: Robert Halsall the "Instructions for Authors" box on page 4 of Volume 23, Num- 1st Vice President: Marty Kunz ber 5. 2nd Vice President: Jeff Bondono Secretary: Nancy Rowe Send articles to the editor: Treasurer: Mike O'Dowd Douglas E. Goudie Librarian: Louis Namee 2420 Alexander Troy, Michigan 48083-2405 Internet: [email protected] The Warren Astronomical Society, Inc. is a local, non-profit Bitnet: cl771%cleveland.freenet.edu@cunyvm organization of amateur astronomers. The Society holds meetings on the first and third Thursdays of each month, starting at 7:30 p.m. Disclaimer: The articles presented herein represent the opinions of the their authors and are not necessarily the opinions General meeting on first Thursdays: of the Warren Astronomical Society or tis editor. The WASP Cranbrook Institute of Science reserves the right to edit or deny publication of any submissions. 500 Lone Pine Road Bloomfield Hills, Michigan Business meeting on third Thursdays: STARGATE OBSERVATORY Macomb Community College The observatory is owned and operated by the Society. South Campus, Building B, Room 209 Located on the grounds of Camp Rotary on 29 Mile Road, 1.8 14500 Twelve Mile Road miles east of Romeo Plank Road, Stargate features a 12.5 inch Warren Michigan f/17 club-built Cassegrainian telescope under a steel dome. The observatory is open to all club members in accordance to the "Stargate Observatory Rules:' Those wishing to use the observa- MEMBERSHIP AND DUES tory must call the Observatory Chairperson (2nd Vice President) Membership in the Society is open to all. Annual dues are: by 7:00 p.m. on the evening of the session. Student $12.00 College $17.00 LIBRARY Individual $25.00 The Society maintains a library of astronomy-related books Additional Family Members $ 5.00 per person and periodicals at the Macomb County Community College meet- Senior Citizen $15.00 ing room. See the Librarian for rules or to check out a book. Among the many benefits of membership are: SUBGROUPS Discount magazine subscriptions: • Special interest subgroups exist for those interested in spe- Astronomy $16.00 (12 monthly issues) cialized areas of astronomy. Contact the chairperson of each sub- Sky and Telescope $20.00 (12 monthly issues) group for more information on that group. • Free copy of each WASP newsletter. Computers: Larry Kalinowski • Free use of Stargate Observatory. Lunar / Planetary: Riyad Matti • Special interest subgroups. (See subgroup chairpersons.) Solar: Ed Cressman Telescope making: Jim Houser • Call list - don't miss unexpected events. • Free membership in Astronomical League. CALL LIST • Free copy of Reflector (Astronomical League newsletter). The Call List is a list of people who wish to be alerted of • Free use of W.A.S. library. (See Librarian.) spectacular and unexpected astronomical events. Anyone who notices such an event calls the next person on the call list. That • Rental telescopes. (See Observatory Chairperson.) person in turn calls the next person, etc. A call list member can restrict callings to certain available times. Any Society member is Send membership applications and dues to: welcome to join the call list. Mike O’Dowd To join the call list, please notify Marty Kunz at 4734 Brockham Way Sterling Heights, Michigan 48310 2 Warren Astronomical Society Paper September 1993 Subgroup Reports as the guru of eyepieces testers. He received a couple of eyepieces from the firm of Borg-Oasis Studio in Japan be- cause of his excellent reputation as an eyepiece critic. The Computer Chatter plastic lens and plastic barrel surprised him, too. Light as a By Larry F. Kalinowski feather, these eyepieces are sealed against dirt and dust and as you've probably guessed, don't cost much either. A Comet Shoemaker-Levy (1993e) is making big complete set of four or five eyepieces cost about as much as news again. Remember the comet that broke up one expensive glass eyepiece. Their quality? Roger says when it approached Jupiter? It's been captured by they're as good as any medium-priced eyepiece. Another the planet. According to the latest information, all the pieces added attraction is durability. He bounced them on the will eventually collide with Jupiter around July 22, 1994. ground from 25 feet and they stayed in alignment Roger This will be the first time in the history of mankind that any- says "you wouldn't wand to use them for solar projection, one will be able to witness such an event, even though it has but then the same goes for the expensive, cemented glass probably happened many times in the past. Needless to say, eyepieces, too." Sounds like something we could use in our observatory. We seem to be replacing dropped eyepieces all the time. Astronomy magazine says the lowest cost 35mm cam- era you can buy for astrophotography is the Pentax K1000.
Recommended publications
  • X-Ray Emission from a Merger Remnant, NGC 7252,The “Atoms-For-Peace” Galaxy
    X-ray emission from a merger remnant, NGC 7252,the \Atoms-for-Peace" galaxy Hisamitsu Awaki Department of Physics, Faculty of Science, Ehime University Hironori Matsumoto1 Department of Earth and Space Science, Osaka University, and Hiroshi Tomida Space Utilization Research Program, National Space Development Agency of Japan, ABSTRACT We observed a nearby merger remnant NGC 7252 with the X-ray satellite ASCA, 13 1 2 and detected X-ray emission with the X-ray flux of (1.8 0.3) 10− ergs s− cm− in ± × 40 1 the 0.5–10 keV band. This corresponds to the X-ray luminosity of 8.1 10 ergs s− . The X-ray emission is well described with a two-component model: a soft× component with kT =0:72 0.13 keV and a hard component with kT > 5:1 keV. Although NGC 7252 is referred± to as a dynamically young protoelliptical, the 0.5–4 keV luminosity of 40 1 the soft component is about 2 10 ergs s− , which is low for an early-type galaxy. The × ratio of LX=LFIR suggests that the soft component originated from the hot gas due to star formation. Its low luminosity can be explained by the gas ejection from the galaxy as galaxy winds. Our observation reveals the existence of hard X-ray emission with the 40 1 2–10 keV luminosity of 5.6 10 ergs s− . This may indicate the existence of nuclear activity or intermediate-mass× black hole in NGC 7252. Subject headings: galaxies: evolution — galaxies: individual (NGC 7252) — X-rays: galaxies 1Center for Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, NE80-6045, Cambridge, MA02139-4307, USA 1 1.
    [Show full text]
  • Understanding the H2/HI Ratio in Galaxies 3
    Mon. Not. R. Astron. Soc. 394, 1857–1874 (2009) Printed 6 August 2021 (MN LATEX style file v2.2) Understanding the H2/HI Ratio in Galaxies D. Obreschkow and S. Rawlings Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford, OX1 3RH, UK Accepted 2009 January 12 ABSTRACT galaxy We revisit the mass ratio Rmol between molecular hydrogen (H2) and atomic hydrogen (HI) in different galaxies from a phenomenological and theoretical viewpoint. First, the local H2- mass function (MF) is estimated from the local CO-luminosity function (LF) of the FCRAO Extragalactic CO-Survey, adopting a variable CO-to-H2 conversion fitted to nearby observa- 5 1 tions. This implies an average H2-density ΩH2 = (6.9 2.7) 10− h− and ΩH2 /ΩHI = 0.26 0.11 ± · galaxy ± in the local Universe. Second, we investigate the correlations between Rmol and global galaxy properties in a sample of 245 local galaxies. Based on these correlations we intro- galaxy duce four phenomenological models for Rmol , which we apply to estimate H2-masses for galaxy each HI-galaxy in the HIPASS catalog. The resulting H2-MFs (one for each model for Rmol ) are compared to the reference H2-MF derived from the CO-LF, thus allowing us to determine the Bayesian evidence of each model and to identify a clear best model, in which, for spi- galaxy ral galaxies, Rmol negatively correlates with both galaxy Hubble type and total gas mass. galaxy Third, we derive a theoretical model for Rmol for regular galaxies based on an expression for their axially symmetric pressure profile dictating the degree of molecularization.
    [Show full text]
  • Investigating the Relation Between CO (3-2) and Far Infrared Luminosities
    Publ. Astron. Soc. Japan (2014) 00(0), 1–16 1 doi: 10.1093/pasj/xxx000 Investigating the Relation between CO (3–2) and Far Infrared Luminosities for Nearby Merging Galaxies Using ASTE Tomonari MICHIYAMA,1,2 Daisuke IONO,1,2 Kouichiro NAKANISHI1,2 Junko UEDA,3 Toshiki SAITO,4,2 Misaki ANDO,1,2 Hiroyuki KANEKO,5,2 Takuji YAMASHITA,6 Yuichi MATSUDA,1,2 Bunyo HATSUKADE,2 Kenichi KIKUCHI,2 Shinya KOMUGI,7 and Takayuki MUTO7 1Department of Astronomical Science, SOKENDAI (The Graduate University of Advanced Studies), Mitaka, Tokyo 181-8588 2National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588 3Harvard-Smithsonian Center for Astrophysics, 60 Garden Street,Cambridge, MA 02138, USA 4Department of Astronomy, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033 5Nobeyama Radio Observatory, 462-2, Minamimaki, Minamisaku, Nagano, 384-1305 6Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 7Division of Liberal Arts, Kogakuin University, 1-24-2, Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677 ∗E-mail: [email protected] Received ; Accepted Abstract We present the new single dish CO (3–2) emission data obtained toward 19 early stage and 7 late stage nearby merging galaxies using the Atacama Submillimeter Telescope Experiment (ASTE). Combining with the single dish and interferometric data of galaxies observed in pre- ′ vious studies, we investigate the relation between the CO (3–2) luminosity (LCO(3−2)) and the far Infrared luminosity (LFIR) in a sample of 29 early stage and 31 late stage merging galaxies, and 28 nearby isolated spiral galaxies.
    [Show full text]
  • Aqr – Objektauswahl NGC Teil 1
    Aqr – Objektauswahl NGC Teil 1 NGC 6945 NGC 6978 NGC 7069 NGC 7170 NGC 7198 NGC 7251 NGC 7293 NGC 7349 NGC 6959 NGC 6981 NGC 7077 NGC 7171 NGC 7211 NGC 7252 NGC 7298 NGC 7351 Teil 2 NGC 6961 NGC 6985 NGC 7081 NGC 7180 NGC 7215 NGC 7255 NGC 7300 NGC 7359 NGC 6962 NGC 6994 NGC 7089 NGC 7181 NGC 7218 NGC 7256 NGC 7301 NGC 7364 NGC 6964 NGC 7001 NGC 7111 NGC 7182 NGC 7220 NGC 7260 NGC 7302 NGC 7365 NGC 6965 NGC 7009 NGC 7120 NGC 7183 NGC 7222 NGC 7266 NGC 7308 NGC 7371 NGC 6967 NGC 7010 NGC 7121 NGC 7184 NGC 7230 NGC 7269 NGC 7309 NGC 7377 NGC 6968 NGC 7047 NGC 7164 NGC 7185 NGC 7239 NGC 7284 NGC 7310 NGC 7378 NGC 6976 NGC 7051 NGC 7165 NGC 7188 NGC 7246 NGC 7285 NGC 7341 NGC 7381 NGC 6977 NGC 7065 NGC 7167 NGC 7189 NGC 7247 NGC 7288 NGC 7344 NGC 7391 Sternbild- Zur Objektauswahl: Nummer anklicken Übersicht Zur Übersichtskarte: Objekt in Aufsuchkarte anklicken Zum Detailfoto: Objekt in Übersichtskarte anklicken Aqr – Objektauswahl NGC Teil 2 NGC 7392 NGC 7491 NGC 7600 NGC 7721 NGC 7761 NGC 7393 NGC 7492 NGC 7606 NGC 7723 NGC 7763 Teil 1 NGC 7399 NGC 7494 NGC 7646 NGC 7724 NGC 7776 NGC 7406 NGC 7498 NGC 7656 NGC 7725 NGC 7416 NGC 7520 NGC 7663 NGC 7727 NGC 7425 NGC 7573 NGC 7665 NGC 7730 NGC 7441 NGC 7576 NGC 7692 NGC 7736 NGC 7443 NGC 7585 NGC 7709 NGC 7754 NGC 7444 NGC 7592 NGC 7717 NGC 7758 NGC 7450 NGC 7596 NGC 7719 NGC 7759 Sternbild- Zur Objektauswahl: Nummer anklicken Übersicht Zur Übersichtskarte: Objekt in Aufsuchkarte anklicken Zum Detailfoto: Objekt in Übersichtskarte anklicken Aqr Übersichtskarte Auswahl NGC 6945_6968_6976_6977_6978
    [Show full text]
  • Astronomy Magazine 2011 Index Subject Index
    Astronomy Magazine 2011 Index Subject Index A AAVSO (American Association of Variable Star Observers), 6:18, 44–47, 7:58, 10:11 Abell 35 (Sharpless 2-313) (planetary nebula), 10:70 Abell 85 (supernova remnant), 8:70 Abell 1656 (Coma galaxy cluster), 11:56 Abell 1689 (galaxy cluster), 3:23 Abell 2218 (galaxy cluster), 11:68 Abell 2744 (Pandora's Cluster) (galaxy cluster), 10:20 Abell catalog planetary nebulae, 6:50–53 Acheron Fossae (feature on Mars), 11:36 Adirondack Astronomy Retreat, 5:16 Adobe Photoshop software, 6:64 AKATSUKI orbiter, 4:19 AL (Astronomical League), 7:17, 8:50–51 albedo, 8:12 Alexhelios (moon of 216 Kleopatra), 6:18 Altair (star), 9:15 amateur astronomy change in construction of portable telescopes, 1:70–73 discovery of asteroids, 12:56–60 ten tips for, 1:68–69 American Association of Variable Star Observers (AAVSO), 6:18, 44–47, 7:58, 10:11 American Astronomical Society decadal survey recommendations, 7:16 Lancelot M. Berkeley-New York Community Trust Prize for Meritorious Work in Astronomy, 3:19 Andromeda Galaxy (M31) image of, 11:26 stellar disks, 6:19 Antarctica, astronomical research in, 10:44–48 Antennae galaxies (NGC 4038 and NGC 4039), 11:32, 56 antimatter, 8:24–29 Antu Telescope, 11:37 APM 08279+5255 (quasar), 11:18 arcminutes, 10:51 arcseconds, 10:51 Arp 147 (galaxy pair), 6:19 Arp 188 (Tadpole Galaxy), 11:30 Arp 273 (galaxy pair), 11:65 Arp 299 (NGC 3690) (galaxy pair), 10:55–57 ARTEMIS spacecraft, 11:17 asteroid belt, origin of, 8:55 asteroids See also names of specific asteroids amateur discovery of, 12:62–63
    [Show full text]
  • Making a Sky Atlas
    Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it.
    [Show full text]
  • Kinematics, Ages and Metallicities of Star Clusters in NGC 1316: a 3-Gyr-Old Merger Remnant
    Mon. Not. R. Astron. Soc. 322, 643±657 (2001) Kinematics, ages and metallicities of star clusters in NGC 1316: a 3-Gyr-old merger remnant Paul Goudfrooij,1w² Jennifer Mack,1 Markus Kissler-Patig,2 Georges Meylan1,2² and Dante Minniti3 1Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 2European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching, Germany 3Department of Astronomy, P. Universidad CatoÂlica, Casilla 306, Santiago 22, Chile Accepted 2000 October 18. Received 2000 October 18; in original form 2000 August ABSTRACT We report on multi-object spectroscopy in the red spectral region of 37 candidate star clusters in an ,8 Â 8 arcmin2 field centred on the giant early-type radio galaxy NGC 1316 (Fornax A), the brightest galaxy in the Fornax cluster. Out of this sample, 24 targets are found to be genuine star clusters associated with NGC 1316, and 13 targets are Galactic foreground stars. For the star cluster sample, we measure a mean heliocentric velocity 21 21 vhel 1698 ^ 46 km s and a velocity dispersion s 227 ^ 33 km s within a galacto- centric radius of 24 kpc. Partly responsible for the velocity dispersion is a significant rotation in the star cluster system, with a mean velocity of ,175 ^ 70 km s21 along a position angle of ,68 ^ 188: Using the projected mass estimator and assuming isotropic orbits, the 11 estimated total mass is 6:6 ^ 1:7Â10 M( within a radius of 24 kpc. The mass is uncertain by about a factor of 2, depending on the orbital assumptions.
    [Show full text]
  • 2013 Annual Progress Report and 2014 Program Plan of the Gemini Observatory
    2013 Annual Progress Report and 2014 Program Plan of the Gemini Observatory Association of Universities for Research in Astronomy, Inc. Table&of&Contents& 1 Executive Summary ......................................................................................... 1! 2 Introduction and Overview .............................................................................. 4! 3 Science Highlights ........................................................................................... 5! 3.1! First Results using GeMS/GSAOI ..................................................................... 5! 3.2! Gemini NICI Planet-Finding Campaign ............................................................. 6! 3.3! The Sun’s Closest Neighbor Found in a Century ........................................... 7! 3.4! The Surprisingly Low Black Hole Mass of an Ultraluminous X-Ray Source 7! 3.5! GRB 130606A ...................................................................................................... 8! 3.6! Observing the Accretion Disk of the Active Galaxy NGC 1275 ..................... 9! 4 Operations ...................................................................................................... 10! 4.1! Gemini Publications and User Relationships ................................................ 10! 4.2! Operations Summary ....................................................................................... 11! 4.3! Instrumentation ................................................................................................ 11! 4.4!
    [Show full text]
  • Event Horizons, Gravitational Waves and Astrophysical Kicks in Black-Hole Spacetimes J
    Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 10-1-2011 Event horizons, gravitational waves and astrophysical kicks in black-hole spacetimes J. Marcelo Ponce Castro Follow this and additional works at: http://scholarworks.rit.edu/theses Recommended Citation Ponce Castro, J. Marcelo, "Event horizons, gravitational waves and astrophysical kicks in black-hole spacetimes" (2011). Thesis. Rochester Institute of Technology. Accessed from This Dissertation is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Event Horizons, Gravitational Waves and Astrophysical Kicks in Black-Hole Spacetimes Ph.D. Doctor of Philosophy in Astrophysical Sciences and Technology M.Sc. Marcelo Ponce C. Rochester Institute of Technology Rochester, New York October 2011 ASTROPHYSICAL SCIENCES AND TECHNOLOGY COLLEGE OF SCIENCE ROCHESTER INSTITUTE OF TECHNOLOGY ROCHESTER, NEW YORK CERTIFICATE OF APPROVAL Ph.D. DEGREE DISSERTATION The Ph.D. Degree Dissertation of J. Marcelo Ponce Castro has been examined and approved by the dissertation committee as satisfactory for the dissertation requirement for the Ph.D. degree in Astrophysical Sciences and Technology. Dr. Douglas Meadows, Committee Chair Dr. Manuela Campanelli, Committee Member Dr. Joshua A. Faber, Committee Member Dr. Joel Kastner, Committee Member Dr. Carlos Lousto, Committee Member Dr. Jorge Pullin, Committee Member Professor Dr. Yosef Zlochower, Thesis Advisor Date EVENT HORIZONS, GRAVITATIONAL WAVES AND ASTROPHYSICAL KICKS IN BLACK HOLES SPACETIMES By J. Marcelo Ponce Castro A dissertation submitted in partial fulfillment of the requirements for the degree of Ph.D.
    [Show full text]
  • List of Publications - Roberto Philip Saglia
    List of Publications - Roberto Philip Saglia Papers published in refereed journals 1. G. Bertin, R.P. Saglia, M. Stiavelli, 1988, “Masses and mass to light ratios for eight elliptical galaxies from a test of anisotropic models”, 1988, ApJ, 330,78-90 2. R.P. Saglia, R. Sancisi, 1988, “HI observations of the massive spiral galaxy NGC 5635”, A&A 203, 28-38 3. G. Bertin, R.P. Saglia, M. Stiavelli, 1992, “Elliptical galaxies with dark matter: I Self-consistent models”, ApJ, 384, 423-432 4. R.P. Saglia, G. Bertin, M. Stiavelli, 1992, “Elliptical galaxies with dark matter: II Optimal luminous-dark matter decomposition for a sample of bright ellipticals”, ApJ, 384, 433-447 5. R.P. Saglia, G. Bertin, F. Bertola, I.J. Danziger, H. Dejonghe, E.M. Sadler, M. Stiavelli, T. De Zeeuw, W.W. Zeilinger, 1993, “Stellar dynamical evidence for dark halos in elliptical galaxies: the case of NGC 4472, IC 4296, and NGC 7144”, ApJ, 403, 567-572 6. G. Bertin, E. Pignatelli, R.P. Saglia, 1993 “X-ray emission and temperature profiles for optically selected models of elliptical galaxies”, A&A, 271, 381-390 7. M.M. Colless, D. Burstein, G. Wegner, R.P. Saglia, R. McMahan, R.L. Davies, E. Bertschinger, G. Baggley, 1993 “Photoelectric and CCD photometry of E and S0 galaxies”, MNRAS, 262, 475-490 8. R.P. Saglia, E. Bertschinger, G. Baggley, D. Burstein, M.M. Colless, R.L. Davies, R. McMahan, G. Wegner, 1993 “Effects of seeing on the photometric properties of elliptical galaxies”, MNRAS, 264, 961-974 9. R.P.
    [Show full text]
  • The Full Appendices with All References
    Breakthrough Listen Exotica Catalog References 1 APPENDIX A. THE PROTOTYPE SAMPLE A.1. Minor bodies We classify Solar System minor bodies according to both orbital family and composition, with a small number of additional subtypes. Minor bodies of specific compositions might be selected by ETIs for mining (c.f., Papagiannis 1978). From a SETI perspective, orbital families might be targeted by ETI probes to provide a unique vantage point over bodies like the Earth, or because they are dynamically stable for long periods of time and could accumulate a large number of artifacts (e.g., Benford 2019). There is a large overlap in some cases between spectral and orbital groups (as in DeMeo & Carry 2014), as with the E-belt and E-type asteroids, for which we use the same Prototype. For asteroids, our spectral-type system is largely taken from Tholen(1984) (see also Tedesco et al. 1989). We selected those types considered the most significant by Tholen(1984), adding those unique to one or a few members. Some intermediate classes that blend into larger \complexes" in the more recent Bus & Binzel(2002) taxonomy were omitted. In choosing the Prototypes, we were guided by the classifications of Tholen(1984), Tedesco et al.(1989), and Bus & Binzel(2002). The comet orbital classifications were informed by Levison(1996). \Distant minor bodies", adapting the \distant objects" term used by the Minor Planet Center,1 refer to outer Solar System bodies beyond the Jupiter Trojans that are not comets. The spectral type system is that of Barucci et al. (2005) and Fulchignoni et al.(2008), with the latter guiding our Prototype selection.
    [Show full text]
  • BLOX: the Bonn Lensing, Optical, and X-Ray Selected Galaxy Clusters I
    A&A 470, 821–834 (2007) Astronomy DOI: 10.1051/0004-6361:20077281 & c ESO 2007 Astrophysics BLOX: the Bonn lensing, optical, and X-ray selected galaxy clusters I. Cluster catalog construction, J. P. Dietrich1,2,T.Erben1, G. Lamer3,P.Schneider1,A.Schwope3, J. Hartlap1, and M. Maturi4 1 Argelander-Institut für Astronomie, University of Bonn, Auf dem Hügel 71, 53121 Bonn, Germany e-mail: [email protected] 2 ESO, Karl-Schwarzschild-Str. 2, 85748 Garching b. München, Germany 3 Astrophysikalisches Institut Potsdam, An der Sternwarte 14, 14482 Potsdam, Germany 4 Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany Received 12 February 2007 / Accepted 19 April 2007 ABSTRACT The mass function of galaxy clusters is an important cosmological probe. Differences in the selection method could potentially lead to biases when determining the mass function. From the optical and X-ray data of the XMM-Newton Follow-Up Survey, we obtained a sample of galaxy cluster candidates using weak gravitational lensing, the optical Postman matched filter method, and a search for extended X-ray sources. We developed our weak-lensing search criteria by testing the performance of the aperture mass statistic on realistic ray-tracing simulations matching our survey parameters and by comparing two filter functions. We find that the dominant noise source for our survey is shape noise at almost all significance levels and that spurious cluster detections due to projections of large-scale structures are negligible, except possibly for highly significantly detected peaks. Our full cluster catalog has 155 cluster candidates, 116 found with the Postman matched filter, 59 extended X-ray sources, and 31 shear selected potential clusters.
    [Show full text]