Aqr – Objektauswahl NGC Teil 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Infrared Spectroscopy of Nearby Radio Active Elliptical Galaxies
The Astrophysical Journal Supplement Series, 203:14 (11pp), 2012 November doi:10.1088/0067-0049/203/1/14 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. INFRARED SPECTROSCOPY OF NEARBY RADIO ACTIVE ELLIPTICAL GALAXIES Jeremy Mould1,2,9, Tristan Reynolds3, Tony Readhead4, David Floyd5, Buell Jannuzi6, Garret Cotter7, Laura Ferrarese8, Keith Matthews4, David Atlee6, and Michael Brown5 1 Centre for Astrophysics and Supercomputing Swinburne University, Hawthorn, Vic 3122, Australia; [email protected] 2 ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) 3 School of Physics, University of Melbourne, Melbourne, Vic 3100, Australia 4 Palomar Observatory, California Institute of Technology 249-17, Pasadena, CA 91125 5 School of Physics, Monash University, Clayton, Vic 3800, Australia 6 Steward Observatory, University of Arizona (formerly at NOAO), Tucson, AZ 85719 7 Department of Physics, University of Oxford, Denys, Oxford, Keble Road, OX13RH, UK 8 Herzberg Institute of Astrophysics Herzberg, Saanich Road, Victoria V8X4M6, Canada Received 2012 June 6; accepted 2012 September 26; published 2012 November 1 ABSTRACT In preparation for a study of their circumnuclear gas we have surveyed 60% of a complete sample of elliptical galaxies within 75 Mpc that are radio sources. Some 20% of our nuclear spectra have infrared emission lines, mostly Paschen lines, Brackett γ , and [Fe ii]. We consider the influence of radio power and black hole mass in relation to the spectra. Access to the spectra is provided here as a community resource. Key words: galaxies: elliptical and lenticular, cD – galaxies: nuclei – infrared: general – radio continuum: galaxies ∼ 1. INTRODUCTION 30% of the most massive galaxies are radio continuum sources (e.g., Fabbiano et al. -
Guide Du Ciel Profond
Guide du ciel profond Olivier PETIT 8 mai 2004 2 Introduction hjjdfhgf ghjfghfd fg hdfjgdf gfdhfdk dfkgfd fghfkg fdkg fhdkg fkg kfghfhk Table des mati`eres I Objets par constellation 21 1 Androm`ede (And) Andromeda 23 1.1 Messier 31 (La grande Galaxie d'Androm`ede) . 25 1.2 Messier 32 . 27 1.3 Messier 110 . 29 1.4 NGC 404 . 31 1.5 NGC 752 . 33 1.6 NGC 891 . 35 1.7 NGC 7640 . 37 1.8 NGC 7662 (La boule de neige bleue) . 39 2 La Machine pneumatique (Ant) Antlia 41 2.1 NGC 2997 . 43 3 le Verseau (Aqr) Aquarius 45 3.1 Messier 2 . 47 3.2 Messier 72 . 49 3.3 Messier 73 . 51 3.4 NGC 7009 (La n¶ebuleuse Saturne) . 53 3.5 NGC 7293 (La n¶ebuleuse de l'h¶elice) . 56 3.6 NGC 7492 . 58 3.7 NGC 7606 . 60 3.8 Cederblad 211 (N¶ebuleuse de R Aquarii) . 62 4 l'Aigle (Aql) Aquila 63 4.1 NGC 6709 . 65 4.2 NGC 6741 . 67 4.3 NGC 6751 (La n¶ebuleuse de l’œil flou) . 69 4.4 NGC 6760 . 71 4.5 NGC 6781 (Le nid de l'Aigle ) . 73 TABLE DES MATIERES` 5 4.6 NGC 6790 . 75 4.7 NGC 6804 . 77 4.8 Barnard 142-143 (La tani`ere noire) . 79 5 le B¶elier (Ari) Aries 81 5.1 NGC 772 . 83 6 le Cocher (Aur) Auriga 85 6.1 Messier 36 . 87 6.2 Messier 37 . 89 6.3 Messier 38 . -
X-Ray Emission from a Merger Remnant, NGC 7252,The “Atoms-For-Peace” Galaxy
X-ray emission from a merger remnant, NGC 7252,the \Atoms-for-Peace" galaxy Hisamitsu Awaki Department of Physics, Faculty of Science, Ehime University Hironori Matsumoto1 Department of Earth and Space Science, Osaka University, and Hiroshi Tomida Space Utilization Research Program, National Space Development Agency of Japan, ABSTRACT We observed a nearby merger remnant NGC 7252 with the X-ray satellite ASCA, 13 1 2 and detected X-ray emission with the X-ray flux of (1.8 0.3) 10− ergs s− cm− in ± × 40 1 the 0.5–10 keV band. This corresponds to the X-ray luminosity of 8.1 10 ergs s− . The X-ray emission is well described with a two-component model: a soft× component with kT =0:72 0.13 keV and a hard component with kT > 5:1 keV. Although NGC 7252 is referred± to as a dynamically young protoelliptical, the 0.5–4 keV luminosity of 40 1 the soft component is about 2 10 ergs s− , which is low for an early-type galaxy. The × ratio of LX=LFIR suggests that the soft component originated from the hot gas due to star formation. Its low luminosity can be explained by the gas ejection from the galaxy as galaxy winds. Our observation reveals the existence of hard X-ray emission with the 40 1 2–10 keV luminosity of 5.6 10 ergs s− . This may indicate the existence of nuclear activity or intermediate-mass× black hole in NGC 7252. Subject headings: galaxies: evolution — galaxies: individual (NGC 7252) — X-rays: galaxies 1Center for Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, NE80-6045, Cambridge, MA02139-4307, USA 1 1. -
Understanding the H2/HI Ratio in Galaxies 3
Mon. Not. R. Astron. Soc. 394, 1857–1874 (2009) Printed 6 August 2021 (MN LATEX style file v2.2) Understanding the H2/HI Ratio in Galaxies D. Obreschkow and S. Rawlings Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford, OX1 3RH, UK Accepted 2009 January 12 ABSTRACT galaxy We revisit the mass ratio Rmol between molecular hydrogen (H2) and atomic hydrogen (HI) in different galaxies from a phenomenological and theoretical viewpoint. First, the local H2- mass function (MF) is estimated from the local CO-luminosity function (LF) of the FCRAO Extragalactic CO-Survey, adopting a variable CO-to-H2 conversion fitted to nearby observa- 5 1 tions. This implies an average H2-density ΩH2 = (6.9 2.7) 10− h− and ΩH2 /ΩHI = 0.26 0.11 ± · galaxy ± in the local Universe. Second, we investigate the correlations between Rmol and global galaxy properties in a sample of 245 local galaxies. Based on these correlations we intro- galaxy duce four phenomenological models for Rmol , which we apply to estimate H2-masses for galaxy each HI-galaxy in the HIPASS catalog. The resulting H2-MFs (one for each model for Rmol ) are compared to the reference H2-MF derived from the CO-LF, thus allowing us to determine the Bayesian evidence of each model and to identify a clear best model, in which, for spi- galaxy ral galaxies, Rmol negatively correlates with both galaxy Hubble type and total gas mass. galaxy Third, we derive a theoretical model for Rmol for regular galaxies based on an expression for their axially symmetric pressure profile dictating the degree of molecularization. -
1987Apj. . .320. .2383 the Astrophysical Journal, 320:238-257
.2383 The Astrophysical Journal, 320:238-257,1987 September 1 © 1987. The American Astronomical Society. AU rights reserved. Printed in U.S.A. .320. 1987ApJ. THE IRÁS BRIGHT GALAXY SAMPLE. II. THE SAMPLE AND LUMINOSITY FUNCTION B. T. Soifer, 1 D. B. Sanders,1 B. F. Madore,1,2,3 G. Neugebauer,1 G. E. Danielson,4 J. H. Elias,1 Carol J. Lonsdale,5 and W. L. Rice5 Received 1986 December 1 ; accepted 1987 February 13 ABSTRACT A complete sample of 324 extragalactic objects with 60 /mi flux densities greater than 5.4 Jy has been select- ed from the IRAS catalogs. Only one of these objects can be classified morphologically as a Seyfert nucleus; the others are all galaxies. The median distance of the galaxies in the sample is ~ 30 Mpc, and the median 10 luminosity vLv(60 /mi) is ~2 x 10 L0. This infrared selected sample is much more “infrared active” than optically selected galaxy samples. 8 12 The range in far-infrared luminosities of the galaxies in the sample is 10 LQ-2 x 10 L©. The far-infrared luminosities of the sample galaxies appear to be independent of the optical luminosities, suggesting a separate luminosity component. As previously found, a correlation exists between 60 /¿m/100 /¿m flux density ratio and far-infrared luminosity. The mass of interstellar dust required to produce the far-infrared radiation corre- 8 10 sponds to a mass of gas of 10 -10 M0 for normal gas to dust ratios. This is comparable to the mass of the interstellar medium in most galaxies. -
Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland)
Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland) American Astronomical Society August, 2019 100 — New Discoveries scope (JWST), as well as other large ground-based and space-based telescopes coming online in the next 100.01 — Review of TESS’s First Year Survey and two decades. Future Plans The status of the TESS mission as it completes its first year of survey operations in July 2019 will bere- George Ricker1 viewed. The opportunities enabled by TESS’s unique 1 Kavli Institute, MIT (Cambridge, Massachusetts, United States) lunar-resonant orbit for an extended mission lasting more than a decade will also be presented. Successfully launched in April 2018, NASA’s Tran- siting Exoplanet Survey Satellite (TESS) is well on its way to discovering thousands of exoplanets in orbit 100.02 — The Gemini Planet Imager Exoplanet Sur- around the brightest stars in the sky. During its ini- vey: Giant Planet and Brown Dwarf Demographics tial two-year survey mission, TESS will monitor more from 10-100 AU than 200,000 bright stars in the solar neighborhood at Eric Nielsen1; Robert De Rosa1; Bruce Macintosh1; a two minute cadence for drops in brightness caused Jason Wang2; Jean-Baptiste Ruffio1; Eugene Chiang3; by planetary transits. This first-ever spaceborne all- Mark Marley4; Didier Saumon5; Dmitry Savransky6; sky transit survey is identifying planets ranging in Daniel Fabrycky7; Quinn Konopacky8; Jennifer size from Earth-sized to gas giants, orbiting a wide Patience9; Vanessa Bailey10 variety of host stars, from cool M dwarfs to hot O/B 1 KIPAC, Stanford University (Stanford, California, United States) giants. 2 Jet Propulsion Laboratory, California Institute of Technology TESS stars are typically 30–100 times brighter than (Pasadena, California, United States) those surveyed by the Kepler satellite; thus, TESS 3 Astronomy, California Institute of Technology (Pasadena, Califor- planets are proving far easier to characterize with nia, United States) follow-up observations than those from prior mis- 4 Astronomy, U.C. -
Investigating the Relation Between CO (3-2) and Far Infrared Luminosities
Publ. Astron. Soc. Japan (2014) 00(0), 1–16 1 doi: 10.1093/pasj/xxx000 Investigating the Relation between CO (3–2) and Far Infrared Luminosities for Nearby Merging Galaxies Using ASTE Tomonari MICHIYAMA,1,2 Daisuke IONO,1,2 Kouichiro NAKANISHI1,2 Junko UEDA,3 Toshiki SAITO,4,2 Misaki ANDO,1,2 Hiroyuki KANEKO,5,2 Takuji YAMASHITA,6 Yuichi MATSUDA,1,2 Bunyo HATSUKADE,2 Kenichi KIKUCHI,2 Shinya KOMUGI,7 and Takayuki MUTO7 1Department of Astronomical Science, SOKENDAI (The Graduate University of Advanced Studies), Mitaka, Tokyo 181-8588 2National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588 3Harvard-Smithsonian Center for Astrophysics, 60 Garden Street,Cambridge, MA 02138, USA 4Department of Astronomy, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033 5Nobeyama Radio Observatory, 462-2, Minamimaki, Minamisaku, Nagano, 384-1305 6Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 7Division of Liberal Arts, Kogakuin University, 1-24-2, Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677 ∗E-mail: [email protected] Received ; Accepted Abstract We present the new single dish CO (3–2) emission data obtained toward 19 early stage and 7 late stage nearby merging galaxies using the Atacama Submillimeter Telescope Experiment (ASTE). Combining with the single dish and interferometric data of galaxies observed in pre- ′ vious studies, we investigate the relation between the CO (3–2) luminosity (LCO(3−2)) and the far Infrared luminosity (LFIR) in a sample of 29 early stage and 31 late stage merging galaxies, and 28 nearby isolated spiral galaxies. -
7.5 X 11.5.Threelines.P65
Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93, -
Snake River Skies the Newsletter of the Magic Valley Astronomical Society
Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting MVAS President’s Message October 2018 Saturday, October 13th 2018 7:00pm at the Routines are something we all appreciate or dislike or simply fall into. They give us Herrett Center for Arts & Science College of Southern Idaho. the little milestones for our workday or mark our calendars with holidays and planned events. The one overriding routine we all enjoy is the change of the Public Star Party follows at the seasons and the night sky. I’m musing on this as I think of the observing habits we Centennial Observatory all have, in particular the preparations for a night outside. This time of year in Idaho we would make sure we have cooler weather gear and perhaps a thermos of warm Club Officers beverage before aligning our scopes and locating our first target for the night. Here in Florida the routine is quite a bit different. Tim Frazier, President [email protected] I can’t remember ever observing in shorts, sandals and a light, short-sleeved shirt. Nor making sure I am covered with insect repellent and have a rain jacket and tarp Robert Mayer, Vice President nearby, even though the sky is clear. Standing at a telescope, feeling sand [email protected] between my toes and hearing the surf crashing were also new observing experiences. Gary Leavitt, Secretary [email protected] However, the same thrill of seeing into our universe was there, as well as the 208-731-7476 phases of the moon and Venus, the moons of Jupiter and the ruddy face of Mars. -
Meteor Csillagászati Évkönyv
Ár: 3000 Ft 2016 meteor csillagászati évkönyv csillagászati évkönyv meteor ISSN 0866- 2851 2016 9 770866 285002 meteor 2016 Távcsöves Találkozó Tarján, 2016. július 28–31. www.mcse.hu Magyar Csillagászati Egyesület Fotó: Sztankó Gerda, Tarján, 2012 METEOR CSILLAGÁSZATI ÉVKÖNYV 2016 METEOR CSILLAGÁSZATI ÉVKÖNYV 2016 MCSE – 2015. OKTÓBER–NOVEMBER METEOR CSILLAGÁSZATI ÉVKÖNYV 2016 MCSE – 2015. OKTÓBER–NOVEMBER meteor csillagászati évkönyv 2016 Szerkesztette: Benkõ József Mizser Attila Magyar Csillagászati Egyesület www.mcse.hu Budapest, 2015 METEOR CSILLAGÁSZATI ÉVKÖNYV 2016 MCSE – 2015. OKTÓBER–NOVEMBER Az évkönyv kalendárium részének összeállításában közremûködött: Bagó Balázs Kaposvári Zoltán Kiss Áron Keve Kovács József Molnár Péter Sánta Gábor Sárneczky Krisztián Szabadi Péter Szabó M. Gyula Szabó Sándor Szôllôsi Attila A kalendárium csillagtérképei az Ursa Minor szoftverrel készültek. www.ursaminor.hu Szakmailag ellenôrizte: Szabados László A kiadvány a Magyar Tudományos Akadémia támogatásával készült. További támogatóink mindazok, akik az SZJA 1%-ával támogatják a Magyar Csillagászati Egyesületet. Adószámunk: 19009162-2-43 Felelôs kiadó: Mizser Attila Nyomdai elôkészítés: Kármán Stúdió, www.karman.hu Nyomtatás, kötészet: OOK-Press Kft., www.ookpress.hu Felelôs vezetô: Szathmáry Attila Terjedelem: 23 ív fekete-fehér + 12 oldal színes melléklet 2015. november ISSN 0866-2851 METEOR CSILLAGÁSZATI ÉVKÖNYV 2016 MCSE – 2015. OKTÓBER–NOVEMBER Tartalom Bevezetô ................................................... 7 Kalendárium .............................................. -
Agns with Composite Spectra? P
Astron. Astrophys. 319, 52–66 (1997) ASTRONOMY AND ASTROPHYSICS AGNs with composite spectra? P. Veron´ 1, A.C. Gonc¸alves1;2, and M.-P. Veron-Cetty´ 1 1 Observatoire de Haute-Provence (CNRS), F-04870 Saint Michel l’Observatoire, France 2 Centro de Astrof´ısica da Universidade do Porto, Rua do Campo Alegre 823, 4150 Porto, Portugal Received 11 April 1996 / Accepted 22 July 1996 Abstract. The use of the Baldwin et al. (1981) or Veilleux & The use of Baldwin et al. (1981) or Veilleux & Oster- Osterbrock (1987) diagnostic diagrams allows the unambigu- brock (1987) diagnostic diagrams generally yields an imme- ous classification of the nuclear emission line regions of most diate classification of the nuclear emission line clouds; “transi- galaxies into one of three categories: nuclear HII regions or star- tion” objects exist however, which cannot be classified unambi- bursts, Seyfert 2 galaxies and Liners. However, a small fraction guously from their line ratios (Heckman et al., 1983; Keel, of them have a “transition” spectrum. 1984; Veilleux & Osterbrock, 1987; Ho et al., 1993a). When We present spectral observations of 15 “transition” observed with sufficient spectral resolution, such objects show 1 objects at high-dispersion (66Amm˚ − ) around the Hα, different profiles for the permitted and forbidden lines (Heck- [NII]λλ6548; 6584 and/or Hβ, [OIII]λλ4959; 5007 emission man et al., 1981; Veron´ et al., 1981a,b; Veron-Cetty´ & Veron,´ lines. We show that most of these spectra are composite, due 1985, 1986b), this being due to the superposition of several to the simultaneous presence on the slit of a Seyfert nucleus and components that have different relative line strengths and are a HII region. -
Making a Sky Atlas
Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it.