The Prehistoric Fishery of San Clemente Island

Total Page:16

File Type:pdf, Size:1020Kb

The Prehistoric Fishery of San Clemente Island 7 The Prehistoric Fishery of San Clemente Island Roy A. Salls Introduction habitat analysis and, based upon the empirical identification of the piscine remains, proposes the San Clemente Island is the southernmost of the probable fishing technologies which were employed. California Channel Islands and has been divided into The methodology of this research incorporates the six topographic or geomorphic zones (Yatsko Chapter many selective processes responsible for these fishing 3). Two of these zones were selected for ichthyofaunal methods and provides a view of local restrictions for analysis due to the abundance of fish elements and the fishery. fishing artifacts observed during the surface surveys and preliminary testing. The analyzed sites are located In developing an interpretive framework based on the on the Coastal Terrace and the Plateau. ecofact, artifact, and habitat analysis, the proverbial argument “what is a sufficient sample?” must be The Eel Point Sites SCLI-43B and C, although addressed. Archaeology itself is a sampling procedure situated on the Coastal Terrace, are within a sand and a complete recovery of any cultural or biological dune. Big Dog Cave (SCLI-119) is located on the sample from the past is impossible. In part, this debate Coastal Terrace but within a quarter km from a sandy stems from the fact that a fossil fauna assemblage beach and accompanying dune area. The Columbus passes through several stages before it reaches the Site (SCLI-1492) is located on the northern section of analyst (Klein and Cruz-Uribe 1984:3): the island’s Upland Plateau and the Nursery Site 1) The life assemblage: the community of live (SCLI-1215) is at the head of a fault valley which animals in their “natural proportions.” provides easy access to the well-protected landing at 2) The death assemblage: the carcasses that are Wilson Cove on the northeast shore (Figure 7.1). available for collection by people, carnivores, or any other agent of bone accumulation. The objective of this study is to develop an interpretive 3) The deposited assemblage: the carcasses or framework for the reconstruction of prehistoric portions of carcasses that come to rest at a fisheries on San Clemente Island. This model includes site. the biological and physical conditions of the marine 4) The fossil assemblage: the animal parts that environment which impose adaptive constraints on survive in a site until excavation or collection. fishing cultures. No attempt is made to reconstruct the 5) The sample assemblage: the part of the fossil prehistoric diet of the island’s marine-adapted popula- assemblage that is excavated or collected. tion. This survey of aboriginal fishing regimen investigates the native fisheries through site marine Pacific Coast Archaeological Society Quarterly, Volume 36, Numbers 1 & 2, Winter & Spring, 2000 The Prehistoric Fishery of San Clemente Island 53 Fig. 7.1 San Clemente island. The faunal sample from each of the five sites varied in fauna. These column samples were processed through relation to the total volume of the excavation. Large a series of U. S. Standard Laboratory screens in an fish faunal assemblages, such as Eel Point (with over a effort to recover the elements of the smaller species million elements) and the Nursery Site, were analyzed such as sardines (Sardinops sagax) and anchovies through a randomly selected, reduced sample. The (Engralus mordax). The column samples yielded the faunal collections from the smaller excavation volume same species that had been recovered by standard sites, such as Columbus and Big Dog Cave, were screening to 1/8 inch. analyzed from the total midden volume excavated, thereby processing the complete ichthyofaunal The bones were analyzed, whenever possible, by using assemblage. Column samples (15x15 cm) were taken a comparative collection of fish skeletons which had from the sidewalls of each unit analyzed for ichthyo- been acquired from the offshore area adjacent to the PCAS Quarterly, 36(1), Winter 2000 54 Salls site being investigated. The comparative collection identified with the assistance of ichthyologists at the was procured by underwater spearfishing, trawl nets, Natural History Museum of Los Angeles County. seine nets, and rod-and-reel fishing. This reference collection was obtained during different seasons of the Island Resource Zones year in order to provide osteological seasonality infor- mation for the site species. Additional comparative Ichthyofaunal communities (life assemblages) require material was borrowed from the Ichthyology Section certain types of habitats (Allen 1985). Allen’s habitat of the Natural History Museum of Los Angeles types are grouped under two major categories based County. on their fish assemblages: those zones associated with soft substrate and those associated with rocky sub- The archaeological skeletal remains were compared to strate. These defined habitats have been employed for the osteological characteristics displayed by contem- this study and include the rocky substrate habitats of: porary related genera and species. If a specimen’s Kelp Bed (KB); Shallow Rocky Reef (SRRF); Deep bony attributes, characteristic of a taxonomic family, Rocky Reef (RRF) and Intertidal (IT). The soft could not be identified to the level of species, it was substrate habitats include: Bay and Estuary (BE); catalogued to a family. An unidentified surfperch Open Coast Sandy Beach (OC); Harbor/ Nearshore element, for example, was recorded taxonomically to Soft Bottom (H/NSB); Nearshore Midwater (MW); its family Embiotocidae only after all available com- and Offshore Soft Bottom (SB) (Figure 7.2). parative species of surfperches had been eliminated. If an unknown element failed to match any species Allen has plotted the ten most numerous species, or within the total comparative collection, or if the life assemblages, for each type of southern California element was so poorly preserved as to preclude any nearshore habitat. “The resultant curves served to type of order or genera classification, it was then illustrate relative dominance and equitability within catalogued as an unknown Osteichthyes (bony fish) or the ichthyofauna of the various habitat types” (Allen unknown Elasmobranchi (shark or ray). Unusual 1985:136). The nearshore environment has been elements or specimens from anomalous species were divided into nine major habitats (above) which are occupied by 17 piscine groups or life assemblages. These assemblages are derived through cluster Table 7.1. Ichthyofaunal abundance by resource area habitat. analysis utilizing the Bray-Curtis index of dissimilar- ity (Allen 1985, Fig. 4). The presence of particular life Resource Total Elements per assemblages of ichthyofauna within an archaeological Site Area Elements cubic meter site matrix reflects the past fish communities, as well Columbus K9B/SRRF 798 22 as their habitats. (SClI-1492) Nursery K3B/SRRF 1127 77. The ecological resource zones of San Clemente Island (SClI-1215) available to the occupants of the sites analyzed for this Big Dog Cave K4B/SRRF 847 36 (SClI-119) report apparently did not change to any great degree as Eel Point B the species cluster index is almost identical from Eel K7B/SRRF 1357 20 (SClI-43B) Point B, dated at 9775 ±165 BP, to the historic Eel Point C KB/SRRF/ 270679 1087. occupation at Big Dog Cave (Table 7.1). There was, (SClI-43C RRF however, an expansion into different nearshore marine T2otal: 25192 Avg: 392. habitats at the end of Eel Point B time. These changes PCAS Quarterly, 36(1), Winter 2000 The Prehistoric Fishery of San Clemente Island 55 Fig. 7.2. Nearshore marine habitats of Southern California. correspond to the appearance of the single-piece shell logical samples were then analyzed and the prehistoric fishhook and the exploitation of deeper water (RRF) habitats were defined (cf. Allen 1985:137). Habitat environments for rockfish (Sebastes sp.). changes between the contemporary site resource zones and those indicated by the archaeological sample were The determination of the resource zone for each site recorded. The final determination of the prehistoric required the consideration of several factors. First, the site resource area was refined from the total evidence underwater habitats within the site resource zone were provided by the ichthyofaunal sample as well as other investigated. The resource zone was delineated by artifactual, ecological, and geological data from the using Vita-Finzi and Higgs’ (1970) method for scaling site. zones within the zone in terms of their relative importance. The value of a habitat is weighed in Factors In Aboriginal Fishing relation to its distance from the site. For example, a reef located within one kilometer of the site may have The analysis of a site’s environmental resources is an a weight of 100 per cent, whereas a reef ranging 15 essential aspect to be considered in the study of km away may have a weight of only 10 per cent. aboriginal fishing adaptations. A resource area Associated factors involving the richness of underwa- incorporates the dynamics of distance and energy ter habitats, canoe speeds, and wind and water expenditure and usually represents the resource zone currents were combined to establish a marine resource situated within reasonable walking or canoe time, zone for each site. Fish specimens were captured, rather than distance from the site (Flannery 1976:92; when possible, from each site’s resource area, as Vita-Finzi and Higgs 1970). This definition of site reference species for comparison studies. The archaeo-
Recommended publications
  • Field Guide to the Nonindigenous Marine Fishes of Florida
    Field Guide to the Nonindigenous Marine Fishes of Florida Schofield, P. J., J. A. Morris, Jr. and L. Akins Mention of trade names or commercial products does not constitute endorsement or recommendation for their use by the United States goverment. Pamela J. Schofield, Ph.D. U.S. Geological Survey Florida Integrated Science Center 7920 NW 71st Street Gainesville, FL 32653 [email protected] James A. Morris, Jr., Ph.D. National Oceanic and Atmospheric Administration National Ocean Service National Centers for Coastal Ocean Science Center for Coastal Fisheries and Habitat Research 101 Pivers Island Road Beaufort, NC 28516 [email protected] Lad Akins Reef Environmental Education Foundation (REEF) 98300 Overseas Highway Key Largo, FL 33037 [email protected] Suggested Citation: Schofield, P. J., J. A. Morris, Jr. and L. Akins. 2009. Field Guide to Nonindigenous Marine Fishes of Florida. NOAA Technical Memorandum NOS NCCOS 92. Field Guide to Nonindigenous Marine Fishes of Florida Pamela J. Schofield, Ph.D. James A. Morris, Jr., Ph.D. Lad Akins NOAA, National Ocean Service National Centers for Coastal Ocean Science NOAA Technical Memorandum NOS NCCOS 92. September 2009 United States Department of National Oceanic and National Ocean Service Commerce Atmospheric Administration Gary F. Locke Jane Lubchenco John H. Dunnigan Secretary Administrator Assistant Administrator Table of Contents Introduction ................................................................................................ i Methods .....................................................................................................ii
    [Show full text]
  • Sharks for the Aquarium and Considerations for Their Selection1 Alexis L
    FA179 Sharks for the Aquarium and Considerations for Their Selection1 Alexis L. Morris, Elisa J. Livengood, and Frank A. Chapman2 Introduction The Lore of the Shark Sharks are magnificent animals and an exciting group Though it has been some 35 years since the shark in Steven of fishes. As a group, sharks, rays, and skates belong to Spielberg’s Jaws bit into its first unsuspecting ocean swim- the biological taxonomic class called Chondrichthyes, or mer and despite the fact that the risk of shark-bite is very cartilaginous fishes (elasmobranchs). The entire supporting small, fear of sharks still makes some people afraid to swim structure of these fish is composed primarily of cartilage in the ocean. (The chance of being struck by lightning is rather than bone. There are some 400 described species of greater than the chance of shark attack.) The most en- sharks, which come in all different sizes from the 40-foot- grained shark image that comes to a person’s mind is a giant long whale shark (Rhincodon typus) to the 2-foot-long conical snout lined with multiple rows of teeth efficient at marble catshark (Atelomycterus macleayi). tearing, chomping, or crushing prey, and those lifeless and staring eyes. The very adaptations that make sharks such Although sharks have been kept in public aquariums successful predators also make some people unnecessarily since the 1860s, advances in marine aquarium systems frightened of them. This is unfortunate, since sharks are technology and increased understanding of shark biology interesting creatures and much more than ill-perceived and husbandry now allow hobbyists to maintain and enjoy mindless eating machines.
    [Show full text]
  • California Saltwater Sport Fishing Regulations
    2017–2018 CALIFORNIA SALTWATER SPORT FISHING REGULATIONS For Ocean Sport Fishing in California Effective March 1, 2017 through February 28, 2018 13 2017–2018 CALIFORNIA SALTWATER SPORT FISHING REGULATIONS Groundfish Regulation Tables Contents What’s New for 2017? ............................................................. 4 24 License Information ................................................................ 5 Sport Fishing License Fees ..................................................... 8 Keeping Up With In-Season Groundfish Regulation Changes .... 11 Map of Groundfish Management Areas ...................................12 Summaries of Recreational Groundfish Regulations ..................13 General Provisions and Definitions ......................................... 20 General Ocean Fishing Regulations ��������������������������������������� 24 Fin Fish — General ................................................................ 24 General Ocean Fishing Fin Fish — Minimum Size Limits, Bag and Possession Limits, and Seasons ......................................................... 24 Fin Fish—Gear Restrictions ................................................... 33 Invertebrates ........................................................................ 34 34 Mollusks ............................................................................34 Crustaceans .......................................................................36 Non-commercial Use of Marine Plants .................................... 38 Marine Protected Areas and Other
    [Show full text]
  • CHECKLIST and BIOGEOGRAPHY of FISHES from GUADALUPE ISLAND, WESTERN MEXICO Héctor Reyes-Bonilla, Arturo Ayala-Bocos, Luis E
    ReyeS-BONIllA eT Al: CheCklIST AND BIOgeOgRAphy Of fISheS fROm gUADAlUpe ISlAND CalCOfI Rep., Vol. 51, 2010 CHECKLIST AND BIOGEOGRAPHY OF FISHES FROM GUADALUPE ISLAND, WESTERN MEXICO Héctor REyES-BONILLA, Arturo AyALA-BOCOS, LUIS E. Calderon-AGUILERA SAúL GONzáLEz-Romero, ISRAEL SáNCHEz-ALCántara Centro de Investigación Científica y de Educación Superior de Ensenada AND MARIANA Walther MENDOzA Carretera Tijuana - Ensenada # 3918, zona Playitas, C.P. 22860 Universidad Autónoma de Baja California Sur Ensenada, B.C., México Departamento de Biología Marina Tel: +52 646 1750500, ext. 25257; Fax: +52 646 Apartado postal 19-B, CP 23080 [email protected] La Paz, B.C.S., México. Tel: (612) 123-8800, ext. 4160; Fax: (612) 123-8819 NADIA C. Olivares-BAñUELOS [email protected] Reserva de la Biosfera Isla Guadalupe Comisión Nacional de áreas Naturales Protegidas yULIANA R. BEDOLLA-GUzMáN AND Avenida del Puerto 375, local 30 Arturo RAMíREz-VALDEz Fraccionamiento Playas de Ensenada, C.P. 22880 Universidad Autónoma de Baja California Ensenada, B.C., México Facultad de Ciencias Marinas, Instituto de Investigaciones Oceanológicas Universidad Autónoma de Baja California, Carr. Tijuana-Ensenada km. 107, Apartado postal 453, C.P. 22890 Ensenada, B.C., México ABSTRACT recognized the biological and ecological significance of Guadalupe Island, off Baja California, México, is Guadalupe Island, and declared it a Biosphere Reserve an important fishing area which also harbors high (SEMARNAT 2005). marine biodiversity. Based on field data, literature Guadalupe Island is isolated, far away from the main- reviews, and scientific collection records, we pres- land and has limited logistic facilities to conduct scien- ent a comprehensive checklist of the local fish fauna, tific studies.
    [Show full text]
  • Nocturnal Feeding of Pacific Hake and Jack Mackerel Off the Mouth of the Columbia River, 1998-2004: Implications for Juvenile Salmon Predation Robert L
    This article was downloaded by: [Oregon State University] On: 16 August 2011, At: 13:01 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Transactions of the American Fisheries Society Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/utaf20 Nocturnal Feeding of Pacific Hake and Jack Mackerel off the Mouth of the Columbia River, 1998-2004: Implications for Juvenile Salmon Predation Robert L. Emmett a & Gregory K. Krutzikowsky b a Northwest Fisheries Science Center, NOAA Fisheries, 2030 South Marine Science Drive, Newport, Oregon, 97365, USA b Cooperative Institute of Marine Resource Studies, Oregon State University, 2030 South Marine Science Drive, Newport, Oregon, 97365, USA Available online: 09 Jan 2011 To cite this article: Robert L. Emmett & Gregory K. Krutzikowsky (2008): Nocturnal Feeding of Pacific Hake and Jack Mackerel off the Mouth of the Columbia River, 1998-2004: Implications for Juvenile Salmon Predation, Transactions of the American Fisheries Society, 137:3, 657-676 To link to this article: http://dx.doi.org/10.1577/T06-058.1 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and- conditions This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan, sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date.
    [Show full text]
  • Environmental DNA Reveals the Fine-Grained and Hierarchical
    www.nature.com/scientificreports OPEN Environmental DNA reveals the fne‑grained and hierarchical spatial structure of kelp forest fsh communities Thomas Lamy 1,2*, Kathleen J. Pitz 3, Francisco P. Chavez3, Christie E. Yorke1 & Robert J. Miller1 Biodiversity is changing at an accelerating rate at both local and regional scales. Beta diversity, which quantifes species turnover between these two scales, is emerging as a key driver of ecosystem function that can inform spatial conservation. Yet measuring biodiversity remains a major challenge, especially in aquatic ecosystems. Decoding environmental DNA (eDNA) left behind by organisms ofers the possibility of detecting species sans direct observation, a Rosetta Stone for biodiversity. While eDNA has proven useful to illuminate diversity in aquatic ecosystems, its utility for measuring beta diversity over spatial scales small enough to be relevant to conservation purposes is poorly known. Here we tested how eDNA performs relative to underwater visual census (UVC) to evaluate beta diversity of marine communities. We paired UVC with 12S eDNA metabarcoding and used a spatially structured hierarchical sampling design to assess key spatial metrics of fsh communities on temperate rocky reefs in southern California. eDNA provided a more‑detailed picture of the main sources of spatial variation in both taxonomic richness and community turnover, which primarily arose due to strong species fltering within and among rocky reefs. As expected, eDNA detected more taxa at the regional scale (69 vs. 38) which accumulated quickly with space and plateaued at only ~ 11 samples. Conversely, the discovery rate of new taxa was slower with no sign of saturation for UVC.
    [Show full text]
  • US Fish & Wildlife Service Seabird Conservation Plan—Pacific Region
    U.S. Fish & Wildlife Service Seabird Conservation Plan Conservation Seabird Pacific Region U.S. Fish & Wildlife Service Seabird Conservation Plan—Pacific Region 120 0’0"E 140 0’0"E 160 0’0"E 180 0’0" 160 0’0"W 140 0’0"W 120 0’0"W 100 0’0"W RUSSIA CANADA 0’0"N 0’0"N 50 50 WA CHINA US Fish and Wildlife Service Pacific Region OR ID AN NV JAP CA H A 0’0"N I W 0’0"N 30 S A 30 N L I ort I Main Hawaiian Islands Commonwealth of the hwe A stern A (see inset below) Northern Mariana Islands Haw N aiian Isla D N nds S P a c i f i c Wake Atoll S ND ANA O c e a n LA RI IS Johnston Atoll MA Guam L I 0’0"N 0’0"N N 10 10 Kingman Reef E Palmyra Atoll I S 160 0’0"W 158 0’0"W 156 0’0"W L Howland Island Equator A M a i n H a w a i i a n I s l a n d s Baker Island Jarvis N P H O E N I X D IN D Island Kauai S 0’0"N ONE 0’0"N I S L A N D S 22 SI 22 A PAPUA NEW Niihau Oahu GUINEA Molokai Maui 0’0"S Lanai 0’0"S 10 AMERICAN P a c i f i c 10 Kahoolawe SAMOA O c e a n Hawaii 0’0"N 0’0"N 20 FIJI 20 AUSTRALIA 0 200 Miles 0 2,000 ES - OTS/FR Miles September 2003 160 0’0"W 158 0’0"W 156 0’0"W (800) 244-WILD http://www.fws.gov Information U.S.
    [Show full text]
  • Paralabrax, Pisces, Serranidae)
    BUTLER ET AL.: DEVELOPMENTAL STAGES OF THREE SEA BASSES CalCOFI Rep., Vol. XXm, 1982 DEVELOPMENTAL STAGES OF THREE CALIFORNIA SEA BASSES (PARALABRAX, PISCES, SERRANIDAE) JOHN L BUTLER, H. GEOFFREY MOSER, GREGORY S. HAGEMAN. AND LAYNE E. NORDGREN National Oceanic and Atmospheric Administraticm Depaltrnent of Biological Suencas National Marine Fisheries Service Universiiy of Southern CaMornia thnhwest Fishecies Center universily Park La Jdla, California 92038 Lw Angeles, California 90007 ABSTRACT was known from Cedros Island south to Cab San Eggs, larvae, and juveniles of kelp bass, Parala- Lucas and the Gulf of California (Fitch and Shultz bra clathratus, barred sand bass, P. nebulifer, and 1978). Larvae of Paralabrax sp. have been illustrated spotted sand bass, P. rnaculatofasciatus, are described by Kendall (1979) from CalCOFI specimens, which from specimens reared in the laboratory and from we have identified as P. clathratus. All three species specimens collected in the field. Eggs of spotted sand are found in nearshore areas from the surface to about bass'are 0.80-0.89 mm in diameter; eggs of kelp bass 600 feet (Miller and Lea 1972). and barred sand bass are 0.94-0.97 mm in diameter. The kelp and sand basses combined rank second in Larvae and juveniles of the three species may be dis- the California sport fish catch (Oliphant 1979). Iden- tinguished by differences in pigmentation during most tifying these three species in ichthyoplankton collec- stages of development. Larvae of the two species of tions may be important in monitoring population sand bass are indistinguishable during notochord changes and assessing the impact of human activities flexion.
    [Show full text]
  • Distribution, Abundance, and Biomass of Giant Sea Bass (Stereolepis Gigas) Off Santa Catalina Island, California, 2014-2015
    Bull. Southern California Acad. Sci. 115(1), 2016, pp. 1–14 E Southern California Academy of Sciences, 2016 The Return of the King of the Kelp Forest: Distribution, Abundance, and Biomass of Giant Sea Bass (Stereolepis gigas) off Santa Catalina Island, California, 2014-2015 Parker H. House*, Brian L.F. Clark, and Larry G. Allen California State University, Northridge, Department of Biology, 18111 Nordhoff St., Northridge, CA, 91330 Abstract.—It is rare to find evidence of top predators recovering after being negatively affected by overfishing. However, recent findings suggest a nascent return of the critically endangered giant sea bass (Stereolepis gigas) to southern California. To provide the first population assessment of giant sea bass, surveys were conducted during the 2014/2015 summers off Santa Catalina Island, CA. Eight sites were surveyed on both the windward and leeward side of Santa Catalina Island every two weeks from June through August. Of the eight sites, three aggregations were identified at Goat Harbor, The V’s, and Little Harbor, CA. These three aggregation sites, the largest containing 24 individuals, contained a mean stock biomass of 19.6 kg/1000 m2 over both summers. Over the course of both summers the giant sea bass population was primarily made up of 1.2 - 1.3 m TL individuals with several small and newly mature fish observed in aggregations. Comparison to historical data for the island suggests giant sea bass are recovering, but have not reached pre-exploitation levels. The giant sea bass (Stereolepis gigas) is the largest teleost to inhabit nearshore rocky reefs and kelp forests in the northeastern Pacific (Hawk and Allen 2014).
    [Show full text]
  • And Red Sea Urchins
    NEGATIVELY CORRELATED ABUNDANCE SUGGESTS COMPETITION BETWEEN RED ABALONE (Haliotis rufescens) AND RED SEA URCHINS (Mesocentrotus franciscanus) INSIDE AND OUTSIDE ESTABLISHED MPAs CLOSED TO COMMERCIAL SEA URCHIN HARVEST IN NORTHERN CALIFORNIA By Johnathan Centoni A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Biology Committee Membership Dr. Sean Craig, Committee Chair Dr. Brian Tissot, Committee Member Dr. Paul Bourdeau, Committee Member Dr. Joe Tyburczy, Committee Member Dr. Erik Jules, Program Graduate Coordinator May 2018 ABSTRACT NEGATIVELY CORRELATED ABUNDANCE SUGGESTS COMPETITION BETWEEN RED ABALONE (Haliotis rufescens) AND RED SEA URCHINS (Mesocentrotus franciscanus) INSIDE AND OUTSIDE ESTABLISHED MPAs CLOSED TO COMMERCIAL SEA URCHIN HARVEST IN NORTHERN CALIFORNIA Johnathan Centoni Red abalone and sea urchins are both important herbivores that potentially compete with each other for resources like food and space along the California coast. Red abalone supported a socioeconomically important recreational fishery during this study (which was closed in 2018) and red sea urchins support an important commercial fishery. Both red sea urchins and red abalone feed on the same macroalgae (including Pterygophora californica, Laminaria setchellii, Stephanocystis osmundacea, Costaria costata, Alaria marginata, Nereocystis leutkeana), and a low abundance of this food source during the period of this project may have created a highly competitive environment for urchins and abalone. Evidence that suggests competition between red abalone and red sea urchins can be seen within data collected during the years of this study (2014-2016): a significantly higher red sea urchin density, concomitant with a significantly lower red abalone density, was observed within areas closed to commercial sea urchin harvest (in MPAs) compared to nearby reference areas open to sea urchin harvest.
    [Show full text]
  • Yellowfin Trawling Fish Images 2013 09 16
    Fishes captured aboard the RV Yellowfin in otter trawls: September 2013 Order: Aulopiformes Family: Synodontidae Species: Synodus lucioceps common name: California lizardfish Order: Gadiformes Family: Merlucciidae Species: Merluccius productus common name: Pacific hake Order: Ophidiiformes Family: Ophidiidae Species: Chilara taylori common name: spotted cusk-eel plainfin specklefin Order: Batrachoidiformes Family: Batrachoididae Species: Porichthys notatus & P. myriaster common name: plainfin & specklefin midshipman plainfin specklefin Order: Batrachoidiformes Family: Batrachoididae Species: Porichthys notatus & P. myriaster common name: plainfin & specklefin midshipman plainfin specklefin Order: Batrachoidiformes Family: Batrachoididae Species: Porichthys notatus & P. myriaster common name: plainfin & specklefin midshipman Order: Gasterosteiformes Family: Syngnathidae Species: Syngnathus leptorynchus common name: bay pipefish Order: Scorpaeniformes Family: Scorpaenidae Species: Sebastes semicinctus common name: halfbanded rockfish Order: Scorpaeniformes Family: Scorpaenidae Species: Sebastes dalli common name: calico rockfish Order: Scorpaeniformes Family: Scorpaenidae Species: Sebastes saxicola common name: stripetail rockfish Order: Scorpaeniformes Family: Scorpaenidae Species: Sebastes diploproa common name: splitnose rockfish Order: Scorpaeniformes Family: Scorpaenidae Species: Sebastes rosenblatti common name: greenblotched rockfish juvenile Order: Scorpaeniformes Family: Scorpaenidae Species: Sebastes levis common name: cowcod Order:
    [Show full text]
  • Trait Decoupling Promotes Evolutionary Diversification of The
    Trait decoupling promotes evolutionary diversification of the trophic and acoustic system of damselfishes rspb.royalsocietypublishing.org Bruno Fre´de´rich1, Damien Olivier1, Glenn Litsios2,3, Michael E. Alfaro4 and Eric Parmentier1 1Laboratoire de Morphologie Fonctionnelle et Evolutive, Applied and Fundamental Fish Research Center, Universite´ de Lie`ge, 4000 Lie`ge, Belgium 2Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland Research 3Swiss Institute of Bioinformatics, Ge´nopode, Quartier Sorge, 1015 Lausanne, Switzerland 4Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA Cite this article: Fre´de´rich B, Olivier D, Litsios G, Alfaro ME, Parmentier E. 2014 Trait decou- Trait decoupling, wherein evolutionary release of constraints permits special- pling promotes evolutionary diversification of ization of formerly integrated structures, represents a major conceptual the trophic and acoustic system of damsel- framework for interpreting patterns of organismal diversity. However, few fishes. Proc. R. Soc. B 281: 20141047. empirical tests of this hypothesis exist. A central prediction, that the tempo of morphological evolution and ecological diversification should increase http://dx.doi.org/10.1098/rspb.2014.1047 following decoupling events, remains inadequately tested. In damselfishes (Pomacentridae), a ceratomandibular ligament links the hyoid bar and lower jaws, coupling two main morphofunctional units directly involved in both feeding and sound production. Here, we test the decoupling hypothesis Received: 2 May 2014 by examining the evolutionary consequences of the loss of the ceratomandib- Accepted: 9 June 2014 ular ligament in multiple damselfish lineages. As predicted, we find that rates of morphological evolution of trophic structures increased following the loss of the ligament.
    [Show full text]