Microcontact Printing of Sams

Total Page:16

File Type:pdf, Size:1020Kb

Microcontact Printing of Sams THIN FILMS. VOLLJME 24 MicrocontactPrinting of SAMs JoE TrsN, YoUNRN XIA, AND GgoRce M. WHITeSIDES Departntent of Chemistry' and Chenical Biologt. Han,ard lJniversiD', Cantbridge. Massat ltusetts 8.1 Introduction.. 228 8.2Microcontact Printint.. ............. 130 8.3 PatternedHydrophobic SAMs as Ultrathin Resists . 240 8.4 Two-ComponentPatterned SAMs as Templates. )11 8.5 Conclusions.. 250 THIN FILMS Copyright q' l99tt by Academic Press Vol. 24 All rights of reproduction in any form reserved rsBN 0-t2-533024-3 ISSN 1079-4050198$25.00 JOE TIEN. YOUNAN XIA. AND GEORGE M. WHITESIDES 8.1 Introduction Self-assembledmonolayers (SAMs) are used in many fields that require homogeneoussurface modification,e.g., control of wetting,lr control clf bio-compatibility,-s-7lubti.ution.s corrosion inhibition,e'10metal refining.rr adhesion,l2'13and passivation.raThe utility of SAMs is based on their ls 2l characteristics: 1. They areeasy to prepareand form quicklyfrom solutionsof theassembling molecules. 2. They aremolecularly ordered and are robust under many conditions of use. 3. They are thermodynamicminimum structures;thus they form sponta- neouslyand tendto rejectdefects. 4. They permit controlof film thicknessto within - 0.1 nm by varyingthe lengthof their constituentmolecules. 5. They allow surfaceproperties to be controlledthrough tailoring of exposed surfacefunctional groups. Many typesof function.however. r'equire puttt't'ned surl'accs. In microelec- tronics,metal_patterns are neededto clelineatetransistors ancl other electronic components:--in microelectromechanicalsystems (MEMS). siliconand glass patternsfbrm free-stanclingmicrostructures sensitive to electricalor envirot.t- mental actuation:'''ancl in optics.relief f'eaturesgenerate diffraction gnttinss. waveguides.and microlensarrays.t* In eachof thesetechnologies. the general trendhas been toward smaller devices because a microscopicdevice is usuallv less expensive,more accurate.and more sensitivethan its macroscopic equivalent.Since SAMs are nanometer-sizedelements in one dimension (perpendicularto the plane of the surface).patterning o1'SAMs ancl the subsequentdevelopment of thesepatterns into usefuldevices has the potentialto increasethe performanceof certaindevices. Patterning of SAMs is. then.the lirst steptoward the realization of devicesthat involve this class of nanostructurcsin l-ubrication.processing. or use. Table I lists the techniquesfor patterningSAMs currentlyin use anclthcir resolutions:the mostwiclely used are microcontact printing (lrCP)2s'16 ancl ['\1 lithography.ttTh" latteris primarilya historicalartifact. as UV lithographris thc basisfor photolithographyand is thuswidely farniliarto microfabricators.ln this l" technique.UV radiationand an amplitudephotomask are usedto activatc.l- damage,3('orcross-linkrl'r2 a SAM selectivelyin the illuminatedregions: thc illuminationtherefore generates a patternof SAMs that replicatesthat of the mask.However, patterning of SAMs with UV radiationhas severaldrawbacks. MICROCONTACTPRINTING OF SAMS 22.9 TABLE I TecuNrques or PATTERNTNcSAMs, THErnDEnroNsrR,crEo LerEnel RESOLL]I.IONS.AND AREAS THATCAN eE PATTERNEDIN A SINCI-ESTEp Technique Lateral Resolution(nm) PattemeclArea (cmr) Microcontactprinting'rs -s00 -50 UV lithographyr0 -s00 -50 E-beamlithography+t' l0 10 I tl Scanningprobe lithographya I t0 Focuseclion heamlithographyrr l0 l0 l( Micromachininga3 I (X) l0 Neutral metastableatom lithography 1o I First.its resolutionis not high.The minimum demonstratedlinewidth is 0.5 1rm. and the achievableedge resolution appears to be modest.Seconcl. this "brute force" method destroysmost of the exquisitesurface chemistry that SAMs introduce.The chemistryof UV photopatterningappears to be photooxiclationof the sulfur (when patterningalkanethiolates) unless photolabile groups have intentionallybeen included in the SAM. Thusthe surf-acethat is producedis not well-definedchemically. Third, like mostphotolithographic procedures. it is not applicableto curvedsurfaces. Finally, it is relativelyslow. Microcontactprinting (lrCP). one of thenon-photolithographic techniques that makeup "soft litho-uraphy".tt36 provicles an alternativeto I-JVphotolithography that is chemicallymore versatileand allows certaintypes of patterningto be carriedout more easily.In trrCP.an elastomericpolydimethylsiloxane (PDMS) stampwith a surfacerelief patternis "inked" with a molecularprecursor of a SAM-typically an alkanethiolHS(CH:),,x -and printedto generatea SAM on the stampedregions. With this rlethod, only the regionsthat come into contact with the stampare covered with a (near)monolayer of SAM: unstampedregions remainbare. Because trrCP is inherentlyan additiveprocess. it is compatiblewith a wide rangeof surfacefunctional groups, including,the structurally complex and fragile groupstound in biology and biochemistry."Microcontact printing is a patterningtechnique that can be performedeasily in laboratoriesthat do not have routine accessto photolithographicequipment. and becausetrrCP is a parallel methodof patterning.f'eatures are printedelficiently in a sin-elestep. Moreover. sincePDMS is an elastomer,trrCP can easilybe adaptedto curvedsubstrates.'r7 The smallestfeatures routinely generated with lrCP are 30O-nm-widelines, and 50-nm-widelines may be achievedwith caretul planningof the stamp geo- ltt lL)' metrv.-"'' Alternativesto lrCPand UV lithographyfor patterningSAMs includee-beam lithography,o0scanning probe lithography,t'focused ion beam lithography,a2 JOE TIEN. YOUNAN XIA. AND GEORGE M. WHITESIDES micromachining,a3and neutral metastableatom lithography.**While the first three of thesetechniques have demonstratedvery high resolutions( < 50 nm). they require specialized equipment and-as with all serial lithographic techniques-are relatively slow. Micromachining(i.e.. scratchingthe SAM with a probe)and neutralatom lithographyhave alsobeen used to producehigh- resolutionpatterns, but substantialdevelopment needs to be done before their capabilitiescan match that of pCP. This chapterdescribes microcontact printing and its usesin microfabrication. The first sectiondetails how to carry out microcontactprinting: Fabricationof PDMS stampsand the various configurationsof pCP are described.The next sectionreviews the use of hydrophobicSAMs patternedwith trrCPas nm-thick resists.The final sectiondescribes the useof two-componentpatterned SAMs as templatesfor generatingpatterned materials such as polymers. crystals. ancl bioloeicalcells. 8.2 MicrocontactPrinting Microcontactprinting (pCP) extendsconventional pattern printinu to the ,rrm- scale dimension.In conventionalprinting. stampin-gwith a raised surface transfersan ink, usuallya viscoussuspension of a dye or carbonparticles. to the printedsurface: the stampcan be fabricatedby. a rangeof techniques.including polymerreplica molding and manualscribing."' Only the raisedportions of the stamp come into contact with the stampedsurf-ace; the raiseclpattern of the stampis thereforereplicated on the stampedsurface. In pCP.stamps are molded from much more preciselypatterned masters, and the ink is a SAM precursor. The key diff'erenceis that in 1rCP,the ink solvent is forced to evaporatebefore stamping;assuming a precursorconcentration of - 1 mM andan ink volumeof -0.1 mL, only - 1016molecules or l0 monolayersare distributedonto the stamp.This amountis more than enoughto delivera monolayerto the surface. yet is tiny enoughthat excessink doesnot "squirt" out the sidesof the stamp when printing.Thus. with 1rCP,far smallerfeatures can be generatedthan is possiblewith conventionalprinting. We havebeen able to stamp300 nm lines and spacesof SAM over N 50 cm2 areas.*oand it is possibleto print -50nni featuresover - 10 pm2 areas.tt Microcontactprinting consistsof two principalsteps: f-abrication of stampsancl printing.These steps are outlinedschematically in Figs. 1 and 2, respecti'n,ely'. Most stampsused in lrCP are castfrom photolithographicallygenerated resist patterns26(as theseprovide excellentresolution) but stampsmay also be cast from other types of masters,such as TEM grids.l6 commerciallyavailable diffractiongratings,33 etched metal or siliconpattems,4s commercially available MICROCONTACT PRINTING OF SAMS SiOz,SisN+,metals, photoresistsor wax Silanize;pour PDMS prepolymer overthe master PDMS Cure,peel off PDMS PDMS t, ->l I l+ +l d 1+ T, FIG, 1 Schematicdiagram of fabricationof PDMS stamps. polymer relief structures(such as a polyurethanecorner cube reflector),aeand polymerbead patternr.'t' Before casting stamps from any of thesemasters, it is importantto functionalizethe masterwith silanevapor; any hydrophobicsilane such as the fluorosilaneClrSi(CH2)2(CF2).rCF:, octadecyltrichlorosilane, or hexamethyldisilazanewill do. This treatmentcaps any reactive-OH groupson the masterwith inert -CH: or -CF.r groupsso that the castpolymer doesnot adhereto the master. Once the masterhas been prepared and silanized,a stampmay be castfrom it (Fig. I ). In general,a thermosettingprepolymer is pouredover the master,cured, and then peeledoff the master(Fig. 3). If the mastercontains sub-4m-sized features.or if the prepolymeris highly viscous,removal of air bubbleswith vacuum before curing of the polymer may be necessaryto ensurefilling of the submicron-widechannels. Materials successfullyused as stamps include Novolac resin,z6polyimide, polyurethane, and polydimethylsiloxane(PDMS). and we anticipatethat otherpolymers would be suitableas well. (Even patterned Cr on glasshas been used as a stamp,although the relativesoftness of polymers
Recommended publications
  • Patterning of Quantum Dots by Dip-Pen and Polymer Pen Nanolithography
    Nanofabrication 2015; 2: 19–26 Research Article Open Access Soma Biswas*, Falko Brinkmann, Michael Hirtz, Harald Fuchs Patterning of Quantum Dots by Dip-Pen and Polymer Pen Nanolithography Abstract: We present a direct way of patterning CdSe/ lithography and photolithography, these direct techniques ZnS quantum dots by dip-pen nanolithography and do not rely on resist layers and multi-step processing, but polymer pen lithography. Mixtures of cholesterol and allow the precise deposition of ink mixtures. Spot sizes in phospholipid 1,2-dioleoyl-sn-glycero-3 phosphocholine commercially widespread inkjet printing and other related serve as biocompatible carrier inks to facilitate the transfer spotting techniques are usually in the range of 50 to 500 of quantum dots from the tips to the surface during µm [5–7], while high resolution approaches (µCP, DPN and lithography. While dip-pen nanolithography of quantum PPL) reach sub-µm features. dots can be used to achieve higher resolution and smaller Microcontact printing utilises a predesigned pattern features (approximately 1 µm), polymer pen poly(dimethylsiloxane) (PDMS) stamp that is first coated lithography is able to address intermediate pattern scales with ink and subsequently pressed onto the surface in the low micrometre range. This allows us to combine manually. A total area up to cm2 can be patterned retaining the advantages of micro contact printing in large area and a lateral resolution of approximately 100 nm [8]. Dip-pen massive parallel patterning, with the added flexibility in nanolithography (Figure 1a) employs an atomic force pattern design inherent in the DPN technique. microscopy tip (AFM) as a quill pen.
    [Show full text]
  • Microfluidic Organs-On-Chips
    PERSPECTIVE Microfluidic organs-on-chips Sangeeta N Bhatia1,2 & Donald E Ingber3–5 An organ-on-a-chip is a microfluidic cell culture device have limitations. For example, organoids are highly variable in size created with microchip manufacturing methods that contains and shape, and it is difficult to maintain cells in consistent positions continuously perfused chambers inhabited by living cells in these structures for extended analysis. Another drawback of 3D arranged to simulate tissue- and organ-level physiology. By models is that functional analysis of entrapped cells—for example, recapitulating the multicellular architectures, tissue-tissue to quantify transcellular transport, absorption or secretion—is often interfaces, physicochemical microenvironments and vascular hampered by the difficulty of sampling luminal contents, and it is perfusion of the body, these devices produce levels of tissue difficult to harvest cellular components for biochemical and genetic and organ functionality not possible with conventional 2D or analysis. In addition, many systems lack multiscale architecture and 3D culture systems. They also enable high-resolution, real- tissue-tissue interfaces, such as the interface between vascular endo- time imaging and in vitro analysis of biochemical, genetic and thelium and surrounding connective tissue and parenchymal cells, metabolic activities of living cells in a functional tissue and which are crucial to the function of nearly all organs. Furthermore, organ context. This technology has great potential to advance cells are usually not exposed to normal mechanical cues, including the study of tissue development, organ physiology and disease fluid shear stress, tension and compression, which influence organ etiology. In the context of drug discovery and development, development and function in health and disease8,9.
    [Show full text]
  • Modification of the Microcontact Printing Process for Conductive Ink Printing Adam J
    Worcester Polytechnic Institute Digital WPI Major Qualifying Projects (All Years) Major Qualifying Projects November 2017 Modification of the Microcontact Printing Process for Conductive Ink Printing Adam J. Cyran Worcester Polytechnic Institute Michaela Dowling Worcester Polytechnic Institute Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all Repository Citation Cyran, A. J., & Dowling, M. (2017). Modification of the Microcontact Printing Process for Conductive Ink Printing. Retrieved from https://digitalcommons.wpi.edu/mqp-all/2225 This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact [email protected]. Modification of the Microcontact Printing Process for Conductive Ink ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Printing A Major Qualifying Project Report ​ ​ ​ ​ ​ ​ ​ ​ submitted to the faculty of ​ ​ ​ ​ ​ ​ ​ ​ WORCESTER POLYTECHNIC INSTITUTE ​ ​ ​ ​ in partial fulfillment of the requirements for the ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Degree of Bachelor of Science ​ ​ ​ ​ ​ ​ ​ ​ NTB: Interstaatliche Hochschule fur Technik Buchs ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ (The Interstate University of Applied Sciences of Technology Buchs) ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Project Advisor: Prof. Sarah Wodin-Schwartz, WPI ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Submitted By: ​ ​ Adam Cyran & Michaela Dowling ​ ​ ​ ​ ​ ​ ​ ​ November 3, 2017 ​ ​ ​ ​ Abstract
    [Show full text]
  • Multifunctional Self-Assembled Monolayers Via Microcontact Printing and Degas-Driven Flow Guided Patterning
    www.nature.com/scientificreports OPEN Multifunctional self-assembled monolayers via microcontact printing and degas-driven fow Received: 30 April 2018 Accepted: 27 October 2018 guided patterning Published: xx xx xxxx Sang Hun Lee1, Won-Yeop Rho2, Seon Joo Park3, Jinyeong Kim3, Oh Seok Kwon3 & Bong- Hyun Jun4 Soft lithography-based patterning techniques have been developed to investigate biological and chemical phenomena. Until now, micropatterning with various materials required multiple procedural steps such as repeating layer-by-layer patterning, aligning of stamps, and incubating printed inks. Herein, we describe a facile micropatterning method for producing chemically well-defned surface architectures by combining microcontact (µCP) and microfuidic vacuum-assisted degas-driven fow guided patterning (DFGP) with a poly(dimethylsiloxane) (PDMS) stamp. To demonstrate our concept, we fabricated a bi-composite micropatterned surface with diferent functional molecular inks such as fuorescein isothiocyanate labelled bovine serum albumin (FITC-BSA) and polyethylene glycol (PEG)- silane for a biomolecule array, and 3-aminopropyltriethoxysilane (APTES) and PEG-silane pattern for a self-assembled colloid gold nanoparticle monolayer. With a certain composition of molecular inks for the patterning, bi-composite surface patterns could be produced by this µCP-DFGP approach without any supplementary process. This patterning approach can be used in microfabrication and highly applicable to biomolecules and nanoparticles that spread as a monolayer. Micropatterns are now widely used in various research felds such as tissue engineering, developing bio-chips or sensors, etc1–4. Te creation of a micropattern with a complex architecture typically requires multiple processing steps, specialized facilities, and harsh conditions, including metal deposition and dry/wet etching5.
    [Show full text]
  • Novel Microcontact Printing Technique for Multipatterning of Self-Assembled Monolayers
    Sensors and Materials,, Vol.Vol. 17,17, No.No. 22 (2005)(2005) 049– 056 49 MYU Tokyo S & M 0585 Novel Microcontact Printing Technique for Multipatterning of Self-Assembled Monolayers Janggil Kim, Nobuyuki Takama and Beomjoon Kim* CIRMM, Institute of Industrial Science, University of Tokyo 4-6-1, Komaba, Meguro, Tokyo 153-0041, Japan (Received April 10, 2004; accepted November 16, 2004) Key words: self-assembled monolayer (SAM), microcontact printing (µCP), multilayer, laminated patterning, HDT, 11-MUA, DTS, bio-MEMS In this article, we focus on the development of a laminated patterning technique for various types of self-assembled monolayer (SAM) by microcontact printing (µCP). Using this technique, three types of functional SAM with hydrophobic and hydrophilic surface properties are patterned selectively on a silicon wafer. After the line shape of hexadecanethiol (CH3(CH2)15SH(CH3), HDT) is patterned on a Au substrate by µCP, the cross line pattern of 11-mercaptoundecanoic acid (HS(CH2)10COOH, 11-MUA) is transferred to the lami- nated Au substrate. Finally, the external area of the transferred SAM pattern on the sample is coated with dodecyltrichlorosilane (C12H25Cl3Si, DTS). The surface property of each SAM is measured by lateral force microscopy (LFM). This laminated patterning technique enables the fabrication of bio-micro-electro-mechanical system (bio-MEMS) devices by µCP. 1. Introduction Since it was introduced for the first time,(1) microcontact printing of a self-assembled monolayer (SAM) has gained great interest in micro- or nano-patterning technology as an alternative technique to conventional photolithography. Its high throughput and low cost by the master & replication system shows the possibility of mass production in practical industry.
    [Show full text]
  • Stamps, Inks and Substrates: Polymers in Microcontact Printing
    REVIEW www.rsc.org/polymers | Polymer Chemistry Stamps, inks and substrates: polymers in microcontact printing Tobias Kaufmann and Bart Jan Ravoo* Received 6th October 2009, Accepted 26th November 2009 First published as an Advance Article on the web 11th January 2010 DOI: 10.1039/b9py00281b Microcontact printing (mCP) is a straightforward method for the preparation of micro- and nanostructured surfaces. The key element in mCP is a polymeric stamp with a relief pattern. This stamp is ‘‘inked’’ and put in contact with the substrate surface. Ideally, the ink is transferred from stamp to substrate only in the area of contact. This review focuses on the important role of polymers in mCP. First of all, polymers are the material of choice to make mCP stamps. Furthermore, mCP is a useful method for preparing microstructured polymer surfaces. Polymers can be applied as inks in mCP so that microstructured polymer surfaces are obtained in a single printing step. Microstructured polymer surfaces can also be obtained by mCP on polymer substrates. A wide range of inks – including polymer inks – can be patterned on polymer substrates by mCP. In short, polymers are widely used as stamps, inks and substrates in mCP and we have organized this review accordingly. 1. Introduction substrate surface. Ideally, the ink is transferred from stamp to substrate only in the area of contact. The process of mCP is Microcontact printing (mCP) is a sophisticated version of schematically depicted in Fig. 1. a simple stamping process that is familiar even to most children. mCP was developed in the early 1990s by Kumar and White- Similar to conventional printing, mCP also involves an ink, sides for the patterned transfer of thiols onto Au surfaces by a substrate and a stamp.
    [Show full text]
  • Integrated Sensors for Overcoming Organ-On-A-Chip Monitoring Challenges Ana Moya Lara
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Departamento de Microelectrónica y Sistemas Electrónicos Integrated sensors for overcoming Organ-On-a-Chip monitoring challenges Autor: Ana Moya Lara Directores: Dr. Gemma Gabriel Buguña Dr. Eloi Ramon Garcia Tutor: Dr. Jordi Aguiló Llobet Memoria de Tesis presentada para optar al título de Doctor en Ingeniería Electrónica y de Telecomunicación Septiembre 2017 INSTITUT DE MICROELECTRÒNICA DE BARCELONA CSIC Dr. Gemma Gabriel Buguña, Investigadora del Consejo Superior de Investigaciones Científicas, Dr. Eloi Ramon Garcia, Investigador del Consejo Superior de Investigaciones Científicas y Profesor Asociado del Departamento de Electrónica de la Universidad Autónoma de Barcelona, y Dr. Jordi Aguiló Llobet, Cat- edrático del Departamento de Microelectrónica y Sistemas Electrónicos de la Universidad Autónoma de Barcelona, Certifican que la Memoria de Tesis Integrated sensors for overcoming Organ-On-a-Chip monitoring chal- lenges presentada por Ana Moya Lara para optar al título de Doctor en Ingeniería Electrónica y de Teleco- municación se ha realizado bajo su dirección en el Instituto de Microelectrónica de Barcelona perteneciente al Centro Nacional de Microelectrónica del Consejo Superior de Investigaciones Científicas y ha sido tu- toritzada en el Departamento de Microelectrónica y Sistemas Electrónicos de la Universidad Autónoma de Barcelona.
    [Show full text]
  • Direct Patterning of Silver Colloids by Microcontact Printing: Possibility As SERS Substrate Array
    Vibrational Spectroscopy 29 (2002) 79±82 Direct patterning of silver colloids by microcontact printing: possibility as SERS substrate array Hyeon Suk Shin, Hyun Jung Yang, Young Mee Jung, Seung Bin Kim* Laboratory for Vibrational Spectroscopy and Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Pohang 790-784, Republic of Korea Received 31 August 2001; received in revised form 19 November 2001; accepted 30 November 2001 Abstract The present study describes an easy and clean method that makes the pattern of silver colloids by means of microcontact printing. Hydrophilic silver colloids adsorbed on a hydrophobic poly(dimethyl siloxane) (PDMS) stamp are transferred directly to the self-assembled monolayer (SAM) of 4-mercaptopyridine or aminoethanethiol (AET) on an Au-coated silicon substrate. To adsorb silver colloids on the PDMS stamp successfully, adhesion layers such as poly(vinyl pyrrolidone) and stearic acid were pre-treated onto the PDMS stamp. Finally, we obtained a surface-enhanced Raman scattering (SERS) spectrum and image of rhodamine 6G (R6G) on the patterned silver colloids. # 2002 Elsevier Science B.V. All rights reserved. Keywords: Microcontact printing; Surface-enhanced Raman scattering (SERS); Silver colloids; Self-assembled monolayer (SAM) 1. Introduction of the colloid. These problems may be solved if, in microcontact printing for patterning colloids, they are Colloidal nanoparticles should be ®xed to speci®c directly transferred to a substrate. Such method can positions for the application of electrical or optical fast and clearly obtain many patterns of the colloids. devices [1]. Several methods for patterning colloidal So far, microcontact printing has used hydrophobic nanoparticles have been developed [1±5].
    [Show full text]
  • Microcontact Printing of Antibodies in Complex with Conjugated Polyelectrolytes
    Institutionen för fysik, kemi och biologi Examensarbete Microcontact printing of antibodies in complex with conjugated polyelectrolytes Fredrik von Post Examensarbetet utfört vid forskningsgruppen för biomolekulär och organisk elektronik (Biorgel) 2007-10-22 LITH-IFM-EX--07/1872—SE Linköpings universitet Institutionen för fysik, kemi och biologi 581 83 Linköping Institutionen för fysik, kemi och biologi Microcontact printing of antibodies in complex with conjugated polyelectrolytes Fredrik von Post Examensarbetet utfört vid forskningsgruppen för biomolekulär och organisk elektronik (Biorgel) 2007-10-22 Handledare Anna Herland Jens Wigenius Examinator Olle Inganäs Table of contents 1 Abbreviations.............................................................................................................. 1 2 Introduction................................................................................................................. 3 2.1 Aim ..................................................................................................................... 4 3 Experimental techniques............................................................................................. 5 3.1 Microcontact printing.......................................................................................... 5 3.1.1 PDMS.......................................................................................................... 5 3.1.2 Replica molding and microcontact printing................................................ 5 3.2 Printing preparations..........................................................................................
    [Show full text]
  • One-Step Fabrication of an Organ-On-A-Chip with Spatial Heterogeneity Using a 3D Bioprinting Technology
    Featuring work from the group of Professor Dong-Woo Cho in As featured in: the Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), South Korea. One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology A one-step fabrication method using 3D bioprinting technology was developed for making whole organ-on-a-chip platforms, including microfl uidic systems. Heterotypic cell types and biomaterials were successfully used and positioned at the desired position for various organ-on-a-chip applications, which will promote full mimicry of organs. See Hyungseok Lee and Dong-Woo Cho, Lab Chip, 2016, 16, 2618. www.rsc.org/loc Registered charity number: 207890 Lab on a Chip View Article Online PAPER View Journal | View Issue One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting Cite this: Lab Chip,2016,16,2618 technology Hyungseok Lee and Dong-Woo Cho* Although various types of organs-on-chips have been introduced recently as tools for drug discovery, the current studies are limited in terms of fabrication methods. The fabrication methods currently available not only need a secondary cell-seeding process and result in severe protein absorption due to the material used, but also have difficulties in providing various cell types and extracellular matrix (ECM) environments for spatial heterogeneity in the organs-on-chips. Therefore, in this research, we introduce a novel 3D bio- printing method for organ-on-a-chip applications. With our novel 3D bioprinting method, it was possible to prepare an organ-on-a-chip in a simple one-step fabrication process.
    [Show full text]
  • Biocatalytic Microcontact Printing
    Biocatalytic Microcontact Printing co-workers patterned a gold surface functionalized with silyl ethers using a stamp bearing acidic moieties, in turn incorporated 4 Phillip W. Snyder,† Matthew S. Johannes,‡ onto the stamp by plasma etching. Although pattern transfer Briana N. Vogen,† Robert L. Clark,*,‡ and Eric J. Toone*,† was clear, the process effected cleavage of only 30% of the reactive moieties during 30 min of contact: the low level of Department of Chemistry, Duke UniVersity, Durham, North pattern transfer presumably occurs due either to low concentra- Carolina, 27708-0346, and The Pratt School of Engineering, V tions of acid moieties or from inhomogeneities across the surface Duke Uni ersity, Durham, North Carolina, 27708-0271 of the stamp. Protons are also promiscuous catalysts, promoting myriad transformations, and free to diffuse laterally across the [email protected]; [email protected] stamp surface, limiting the broader utility of the method. V As a class of catalysts, enzymes offer both diverse chemistry Recei ed June 7, 2007 and exquisite specificity. Several groups have exploited this specificity in dip-pen nanolithography.5 In these approaches, enzyme is either covalently bound or physisorbed on an AFM tip and used to “write” by controlled translocation of the tip across a substrate-bearing surface. Such processes are serial and not amenable to high-throughput applications. Here, we present a proof-of-concept demonstration of catalytic parallel lithogra- phy, using stamp-immobilized enzyme to transfer pattern to a cognate substrate. Because the catalyst is immobilized on the stamp surface, the diffusion limitation of traditional µCP is obviated and the lateral resolution is controlled only by the length and flexibility of the catalyst tether.
    [Show full text]
  • Microcontact Printing
    Self-assembled Monolayer Films: Dow Corning-is cast against a master whose surface has been patterned with a complementary relief Microcontact Printing structure using conventional microlithographic tech- niques such as photolithography, micromachining, or , Microcontact printing (PCP), one of the non-photo- high-resolution printing. The stamp may also be cast lithographic techniques that make up "soft lithogra- from preformed microstructures such as optical dif- phy" (Xia and Whitesides 1998), uses an elastomeric fraction gratings, metal grids for transmission electron stamp to generate two-dimensional patterns by print- microscopy (TEM), compact disks (CDs), corner cube * ing the molecules of an "ink" onto the surface of a reflectors, anti-reflection structures, and assembled solid substrate. In its most common configuration, the structures of colloidal particles. The only requirement stamp is fabricated from an elastomeric polymer, seems to be that the surface of a master does not react poly(dimethylsiloxane) (PDMS), the "ink" is an with the PDMS prepolymer to form covalent bonds. alkanethiol, and the substrate on which the printing In most cases, it is necessary to treat the master with occurs is a thin, evaporated film of gold or silver. the vapor of octadecyltrichlorosilane (or a perfluoro- Alkylsiloxanes are also printed on Si/Si02 and glass. silane such as C,FI3C2H,SiCl3) to cap any polar Microcontact printing is an experimentally simple reactive group (e.g., -OH) on the master with a methodology; the elastomeric stamp is easily fabri- chemically inert group such as -CH3 or -CF,. cated by molding a liquid prepolymer against a master Several properties of PDMS are instrumental in the that has the desired pattern in relief on its surface.
    [Show full text]