Antibody Glycosylation and Inflammation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lactoferrin and Its Detection Methods: a Review
nutrients Review Lactoferrin and Its Detection Methods: A Review Yingqi Zhang, Chao Lu and Jin Zhang * Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada; [email protected] (Y.Z.); [email protected] (C.L.) * Correspondence: [email protected] Abstract: Lactoferrin (LF) is one of the major functional proteins in maintaining human health due to its antioxidant, antibacterial, antiviral, and anti-inflammatory activities. Abnormal levels of LF in the human body are related to some serious diseases, such as inflammatory bowel disease, Alzheimer’s disease and dry eye disease. Recent studies indicate that LF can be used as a biomarker for diagnosis of these diseases. Many methods have been developed to detect the level of LF. In this review, the biofunctions of LF and its potential to work as a biomarker are introduced. In addition, the current methods of detecting lactoferrin have been presented and discussed. We hope that this review will inspire efforts in the development of new sensing systems for LF detection. Keywords: lactoferrin; biomarkers; immunoassay; instrumental analysis; sensor 1. Introduction Lactoferrin (known as lactotransferrin, LF), with a molecular weight of about 80 kDa, is a functional glycoprotein, which contains about 690 amino acid residues. It was first isolated from bovine milk by Sorensen in 1939 and was first isolated from human milk by Citation: Zhang, Y.; Lu, C.; Zhang, J. Johanson in 1960 [1,2]. The three-dimensional structure of LF has been unveiled by high Lactoferrin and Its Detection resolution X-ray crystallographic analysis, and it consists of two homologous globular lobes Methods: A Review. -
Immunoglobulin G Is a Platelet Alpha Granule-Secreted Protein
Immunoglobulin G is a platelet alpha granule-secreted protein. J N George, … , L K Knieriem, D F Bainton J Clin Invest. 1985;76(5):2020-2025. https://doi.org/10.1172/JCI112203. Research Article It has been known for 27 yr that blood platelets contain IgG, yet its subcellular location and significance have never been clearly determined. In these studies, the location of IgG within human platelets was investigated by immunocytochemical techniques and by the response of platelet IgG to agents that cause platelet secretion. Using frozen thin-sections of platelets and an immunogold probe, IgG was located within the alpha-granules. Thrombin stimulation caused parallel secretion of platelet IgG and two known alpha-granule proteins, platelet factor 4 and beta-thromboglobulin, beginning at 0.02 U/ml and reaching 100% at 0.5 U/ml. Thrombin-induced secretion of all three proteins was inhibited by prostaglandin E1 and dibutyryl-cyclic AMP. Calcium ionophore A23187 also caused parallel secretion of all three proteins, whereas ADP caused virtually no secretion of any of the three. From these data and a review of the literature, we hypothesize that plasma IgG is taken up by megakaryocytes and delivered to the alpha-granules, where it is stored for later secretion by mature platelets. Find the latest version: https://jci.me/112203/pdf Rapid Publication Immunoglobulin G Is a Platelet Alpha Granule-secreted Protein James N. George, Sherry Saucerman, Shirley P. Levine, and Linda K. Knieriem Division ofHematology, Department ofMedicine, University of Texas Health Science Center, and Audie L. Murphy Veterans Hospital, San Antonio, Texas 78284 Dorothy F. -
What Are Immunoglobulins? by Michelle Greer, RN
CLINICAL BRIEF What Are Immunoglobulins? By Michelle Greer, RN THE IMMUNE SYSTEM is a complex the body such as bacteria or a virus, or in antigen, it gives rise to many large cells network of cells, tissues and organs that cases of transplant, another person’s known as plasma cells. Every plasma cell protect the body from bacteria, virus, organ, tissue or cells. Antigens are identi - is essentially a factory for producing an fungi and other foreign organisms. The fied by the immune system by a marker antibody. 1 Antibodies are also known as primary functions of the immune system molecule, which enables the immune immunoglobulins. Antibodies, or immuno- are to recognize self (the body’s own system to differentiate self from nonself. globulins, are glycoproteins made up of healthy cells) from nonself (anything Lymphocytes (natural killer cells, T cells light chains and heavy chains shaped like foreign), keep self healthy and destroy and B cells) are one of the subtypes of a Y (Figure 1). The different areas on and eliminate nonself. Immunoglobulins white blood cells in the immune system. these chains have different functions and take the lead in this process. B cells secrete antibodies that attach to roles in an immune response. antigens to mark them for destruction. A Review of Terminology Antibodies are antigen-specific, meaning Types of Immunoglobulins Understanding a few related terms and one antibody works against a specific There are several types of immunoglob - their function can provide a better appre - type of bacteria, virus or other foreign ulins and each has a different role in an ciation of immunoglobulins and how substance. -
Levels, B-1 and B-2 Cells, and Antibody Responses Ir Allotype Heterozygous F1 Mice ANN MARIE HAMILTON and JOHN F
Developmental Immunology, 1994, Vol 4, pp. 27-41 (C) 1994 Harwood Academic Publishers GmbH Reprints available directly from the publisher Printed in Singapore Photocopying permitted by license only Effects of IgM Allotype Suppression on Serum IgM Levels, B-1 and B-2 Cells, and Antibody Responses ir Allotype Heterozygous F1 Mice ANN MARIE HAMILTON and JOHN F. KEARNEY" Division of Developmental and Clinical Immunology, Department of Microbiology, University of Alabama, Birmingham, Alabama 35294 IgM allotype heterozygous F1 mice were independently suppressed for Igh6a or Igh6b to evaluate the contribution of B-1 and B-2 cells to natural serum IgM levels and Ab responses. B-2 B cells expressing IgM of the suppressed allotype were evident in the spleens of suppressed mice 4 to 6 weeks after cessation of the suppression regimen, whereas B-1 B cells of the suppressed allotype were undetectable for up to 9 months. Although serum IgM of the suppressed allotype was initially depleted in mice suppressed for either allotype, by 7 months of age, there were detectable levels of IgM of the suppressed allotype in the serum; however, the levels were significantly below that found in nonsuppressed mice. When mice were immunized with either the T-independent or T-dependent form of phosphorylcholine, those suppressed for either allotype, and consequently depleted of B-1 B cells of that allotype, did not respond with phosphorylcholine-specific IgM of the suppressed allotype. In contrast, when mice were immunized with 1-3 dextran, the Igh6a allotype-suppressed mice were able to produce dextran-specific IgM of that allotype. -
Role of Igg3 in Infectious Diseases
Review Role of IgG3 in Infectious Diseases 1 2 1 1, Timon Damelang, Stephen J. Rogerson, Stephen J. Kent, and Amy W. Chung * IgG3 comprises only a minor fraction of IgG and has remained relatively under- Highlights studied until recent years. Key physiochemical characteristics of IgG3 include IgG3 has been associated with enhanced control or protection against an elongated hinge region, greater molecular flexibility, extensive polymor- a range of intracellular bacteria, para- phisms, and additional glycosylation sites not present on other IgG subclasses. sites, and viruses. These characteristics make IgG3 a uniquely potent immunoglobulin, with the IgG3 Abs are potent mediators of potential for triggering effector functions including complement activation, effector functions, including enhanced antibody (Ab)-mediated phagocytosis, or Ab-mediated cellular cytotoxicity ADCC, opsonophagocytosis, comple- ment activation, and neutralization, (ADCC). Recent studies underscore the importance of IgG3 effector functions compared with other IgG subclasses. against a range of pathogens and have provided approaches to overcome IgG3-associated limitations, such as allotype-dependent short Ab half-life, and Future Ab-based therapeutics and vaccines should consider utilizing excessive proinflammatory activation. Understanding the molecular and func- IgG3, based on features of enhanced tional properties of IgG3 may facilitate the development of improved Ab-based functional capacity. immunotherapies and vaccines against infectious diseases. Investigating the impact of glycosyla- tion patterns and allotypes on IgG3 Human IgG3 an Understudied but Highly Potent Immunoglobulin function may expand our understand- Antibodies (Abs) play a major role in protection against infections by binding to and inactivating ing of IgG3 responses and their ther- apeutic potential. invading pathogens. -
The Immunoglobulin G Subclass Composition of Immune Complexes in Cystic Fibrosis
The immunoglobulin G subclass composition of immune complexes in cystic fibrosis. Implications for the pathogenesis of the Pseudomonas lung lesion. D B Hornick, R B Fick Jr J Clin Invest. 1990;86(4):1285-1292. https://doi.org/10.1172/JCI114836. Research Article It has been shown that pulmonary macrophage (PM) phagocytosis of Pseudomonas aeruginosa (PA) is inhibited in the presence of serum from cystic fibrosis (CF) patients colonized by Pseudomonas, and that these sera contain high concentrations of IgG2 antibodies. The goal of these studies was to investigate the role that IgG2-containing immune complexes (IC) play in this inhibition of both PM and neutrophil phagocytosis. We found that serum IgG2 concentrations were elevated significantly in CF patients with chronic PA colonization and that in selected sera from CF patients with chronic PA colonization (CF + IC, n = 10), the mean IC level was significantly elevated (2.90 +/- 0.22 mg/dl [SEM]). IgG2 comprised 74.5% of IgG precipitated in IC from CF + IC sera. An invitro phagocytic assay of [14C]PA uptake using CF + IC whole-sera opsonins confirmed that endocytosis by normal PM and neutrophils was significantly depressed. Removal of IC from CF + IC sera resulted in significantly decreased serum IgG2 concentrations without a significant change in the other subclass concentrations, and enhanced [14C]PA uptake by PM (26.6% uptake increased to 47.3%) and neutrophils (16.9% increased to 52.6%). Return of the soluble IgG2 IC to the original CF sera supernatants and the positive control sera resulted in return of the inhibitory capacity of the CF + IC sera. -
Epitopes, Isotypes, Allotypes, Idiotypes
Epitope • Epitope or antigenic determinant- is a portion of a foreign protein, or antigen, that is capable of stimulating an immune response. • An epitope is the part of the antigen that binds to a specific antigen receptor on the surface of a B cell (BCR). • Binding between the receptor and epitope occurs only if their structures are complementary. • If they are, epitope and receptor fit together like lock and key. This binding is necessary to activate B-cell for the production of antibodies. • The antibodies produced by B cells are targeted specifically to the epitopes that bind to the cells’ antigen receptors. • Thus, the epitope also is the region of the antigen that is recognized by specific antibodies, which bind to and remove the antigen from the body. Isotype • Each antibody has only one type of (γ, or α, or μ, or ε, or δ) heavy chain and one type of (k or λ) light chain. • The structural differences in the constant region of a heavy chain or light chain determine immunoglobulin (Ig) class and sub- class, types and subtypes within a species. • These constant region determinants are called isotypic determinants or isotypes. Allotype • Based on the genetic difference among individuals. • Although all members of a species inherit the same set of isotype genes, multiple alleles exist for some of the genes. • These alleles encode minor amino acid differences, known as allotypic determinants. • Occurs in some but not all members of a species. • The sum of the individual allotypic determinants displayed by an antibody determines its allotype. Allotypic determinants Idiotype • VH and VL domains of an antibody constitute an antigen-binding site. -
Monoclonal Antibody Playbook
Federal Response to COVID-19: Monoclonal Antibody Clinical Implementation Guide Outpatient administration guide for healthcare providers 2 SEPTEMBER 2021 1 Introduction to COVID-19 Monoclonal Antibody Therapy 2 Overview of Emergency Use Authorizations 3 Site and Patient Logistics Site preparation Patient pathways to monoclonal administration 4 Team Roles and Responsibilities Leadership Administrative Clinical Table of 5 Monoclonal Antibody Indications and Administration Indications Contents Preparation Administration Response to adverse events 6 Supplies and Resources Infrastructure Administrative Patient Intake Administration 7 Examples: Sites of Administration and Staffing Patterns 8 Additional Resources 1 1. Introduction to Monoclonal Therapy 2 As of 08/13/21 Summary of COVID-19 Therapeutics 1 • No Illness . Health, no infections • Exposed Asymptomatic Infected . Scope of this Implementation Guide . Not hospitalized, no limitations . Monoclonal Antibodies for post-exposure prophylaxis (Casirivimab + Imdevimab (RGN)) – EUA Issued. • Early Symptomatic . Scope of this Implementation Guide . Not hospitalized, with limitations . Monoclonal Antibodies for treatment (EUA issued): Bamlanivimab + Etesevimab1 (Lilly) Casirivimab + Imdevimab (RGN) Sotrovimab (GSK/Vir) • Hospital Adminission. Treated with Remdesivir (FDA Approved) or Tocilizumab (EUA Issued) . Hospitalized, no acute medical problems . Hospitalized, not on oxygen . Hospitlaized, on oxygen • ICU Admission . Hospitalized, high flow oxygen, non-invasive ventilation -
Multiple Myeloma Baseline Immunoglobulin G Level and Pneumococcal Vaccination Antibody Response
Journal of Patient-Centered Research and Reviews Volume 4 Issue 3 Article 5 8-10-2017 Multiple Myeloma Baseline Immunoglobulin G Level and Pneumococcal Vaccination Antibody Response Michael A. Thompson Martin K. Oaks Maharaj Singh Karen M. Michel Michael P. Mullane Husam S. Tarawneh Angi Kraut Kayla J. Hamm Follow this and additional works at: https://aurora.org/jpcrr Part of the Immune System Diseases Commons, Medical Immunology Commons, Neoplasms Commons, Oncology Commons, Public Health Education and Promotion Commons, and the Respiratory Tract Diseases Commons Recommended Citation Thompson MA, Oaks MK, Singh M, Michel KM, Mullane MP, Tarawneh HS, Kraut A, Hamm KJ. Multiple myeloma baseline immunoglobulin G level and pneumococcal vaccination antibody response. J Patient Cent Res Rev. 2017;4:131-5. doi: 10.17294/2330-0698.1453 Published quarterly by Midwest-based health system Advocate Aurora Health and indexed in PubMed Central, the Journal of Patient-Centered Research and Reviews (JPCRR) is an open access, peer-reviewed medical journal focused on disseminating scholarly works devoted to improving patient-centered care practices, health outcomes, and the patient experience. BRIEF REPORT Multiple Myeloma Baseline Immunoglobulin G Level and Pneumococcal Vaccination Antibody Response Michael A. Thompson, MD, PhD,1,3 Martin K. Oaks, PhD,2 Maharaj Singh, PhD,1 Karen M. Michel, BS,1 Michael P. Mullane,3 MD, Husam S. Tarawneh, MD,3 Angi Kraut, RN, BSN, OCN,1 Kayla J. Hamm, BSN3 1Aurora Research Institute, Aurora Health Care, Milwaukee, WI; 2Transplant Research Laboratory, Aurora St. Luke’s Medical Center, Aurora Health Care, Milwaukee, WI; 3Aurora Cancer Care, Aurora Health Care, Milwaukee, WI Abstract Infections are a major cause of morbidity and mortality in multiple myeloma (MM), a cancer of the immune system. -
Ab200015 Human Lactoferrin Simplestep ELISA® Kit
Version 1 Last updated 28 August 2019 ab200015 Human Lactoferrin SimpleStep ELISA® Kit For the quantitative measurement of Lactoferrin in human serum, plasma, milk, urine, saliva, and cell culture supernatants. This product is for research use only and is not intended for diagnostic use. Copyright © 2018 Abcam. All rights reserved Table of Contents 1. Overview 1 2. Protocol Summary 2 3. Precautions 3 4. Storage and Stability 3 5. Limitations 4 6. Materials Supplied 4 7. Materials Required, Not Supplied 5 8. Technical Hints 5 9. Reagent Preparation 7 10. Standard Preparation 8 11. Sample Preparation 9 12. Plate Preparation 11 13. Assay Procedure 12 14. Calculations 14 15. Typical Data 15 16. Typical Sample Values 16 17. Assay Specificity 23 18. Species Reactivity 23 19. Troubleshooting 24 20. Notes 25 Technical Support 26 Copyright © 2018 Abcam. All rights reserved 1. Overview Lactoferrin in vitro SimpleStep ELISA® (Enzyme-Linked Immunosorbent Assay) kit is designed for the quantitative measurement of Lactoferrin protein in humanserum, plasma, milk, urine, saliva, and cell culture supernatants. The SimpleStep ELISA® employs an affinity tag labeled capture antibody and a reporter conjugated detector antibody which immunocapture the sample analyte in solution. This entire complex (capture antibody/analyte/detector antibody) is in turn immobilized via immunoaffinity of an anti-tag antibody coating the well. To perform the assay, samples or standards are added to the wells, followed by the antibody mix. After incubation, the wells are washed to remove unbound material. TMB Development Solution is added and during incubation is catalyzed by HRP, generating blue coloration. This reaction is then stopped by addition of Stop Solution completing any color change from blue to yellow. -
Tests for Autoimmune Diseases Test Codes 249, 16814, 19946
Tests for Autoimmune Diseases Test Codes 249, 16814, 19946 Frequently Asked Questions Panel components may be ordered separately. Please see the Quest Diagnostics Test Center for ordering information. 1. Q: What are autoimmune diseases? A: “Autoimmune disease” refers to a diverse group of disorders that involve almost every one of the body’s organs and systems. It encompasses diseases of the nervous, gastrointestinal, and endocrine systems, as well as skin and other connective tissues, eyes, blood, and blood vessels. In all of these autoimmune diseases, the underlying problem is “autoimmunity”—the body’s immune system becomes misdirected and attacks the very organs it was designed to protect. 2. Q: Why are autoimmune diseases challenging to diagnose? A: Diagnosis is challenging for several reasons: 1. Patients initially present with nonspecific symptoms such as fatigue, joint and muscle pain, fever, and/or weight change. 2. Symptoms often flare and remit. 3. Patients frequently have more than 1 autoimmune disease. According to a survey by the Autoimmune Diseases Association, it takes up to 4.6 years and nearly 5 doctors for a patient to receive a proper autoimmune disease diagnosis.1 3. Q: How common are autoimmune diseases? A: At least 30 million Americans suffer from 1 or more of the 80 plus autoimmune diseases. On average, autoimmune diseases strike three times more women than men. Certain ones have an even higher female:male ratio. Autoimmune diseases are one of the top 10 leading causes of death among women age 65 and under2 and represent the fourth-largest cause of disability among women in the United States.3 Women’s enhanced immune system increases resistance to infection, but also puts them at greater risk of developing autoimmune disease than men. -
Understanding the Immune System: How It Works
Understanding the Immune System How It Works U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH National Institute of Allergy and Infectious Diseases National Cancer Institute Understanding the Immune System How It Works U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH National Institute of Allergy and Infectious Diseases National Cancer Institute NIH Publication No. 03-5423 September 2003 www.niaid.nih.gov www.nci.nih.gov Contents 1 Introduction 2 Self and Nonself 3 The Structure of the Immune System 7 Immune Cells and Their Products 19 Mounting an Immune Response 24 Immunity: Natural and Acquired 28 Disorders of the Immune System 34 Immunology and Transplants 36 Immunity and Cancer 39 The Immune System and the Nervous System 40 Frontiers in Immunology 45 Summary 47 Glossary Introduction he immune system is a network of Tcells, tissues*, and organs that work together to defend the body against attacks by “foreign” invaders. These are primarily microbes (germs)—tiny, infection-causing Bacteria: organisms such as bacteria, viruses, streptococci parasites, and fungi. Because the human body provides an ideal environment for many microbes, they try to break in. It is the immune system’s job to keep them out or, failing that, to seek out and destroy them. Virus: When the immune system hits the wrong herpes virus target or is crippled, however, it can unleash a torrent of diseases, including allergy, arthritis, or AIDS. The immune system is amazingly complex. It can recognize and remember millions of Parasite: different enemies, and it can produce schistosome secretions and cells to match up with and wipe out each one of them.