Evolutionarily Conserved TRH Neuropeptide Pathway Regulates
Evolutionarily conserved TRH neuropeptide pathway PNAS PLUS regulates growth in Caenorhabditis elegans Elien Van Sinaya, Olivier Mirabeaub, Geert Depuydta, Matthias Boris Van Hiela, Katleen Peymena, Jan Watteynea, Sven Zelsa, Liliane Schoofsa,1, and Isabel Beetsa,1 aFunctional Genomics and Proteomics Group, Department of Biology, KU Leuven, 3000 Leuven, Belgium; and bGenetics and Biology of Cancers Unit, Institut Curie, INSERM U830, Paris Sciences et Lettres Research University, Paris 75005, France Edited by Iva Greenwald, Columbia University, New York, NY, and approved April 7, 2017 (received for review October 20, 2016) In vertebrates thyrotropin-releasing hormone (TRH) is a highly con- THs likely originated early in deuterostomian evolution (15), the served neuropeptide that exerts the hormonal control of thyroid- prime role of TRH in controlling TH levels seems to have evolved stimulating hormone (TSH) levels as well as neuromodulatory more recently in vertebrates. In fish and amphibians, TRH has no or functions. However, a functional equivalent in protostomian ani- only a minor effect on the production of TSH but allows the secretion mals remains unknown, although TRH receptors are conserved in of growth hormone (GH), prolactin (PRL), and α-melanocyte– proto- and deuterostomians. Here we identify a TRH-like neuropep- stimulating hormone (α-MSH) (9, 16). In nonmammalian vertebrates tide precursor in Caenorhabditis elegans that belongs to a bilaterian corticotropin-releasing hormone (CRH), a prime regulator of stress family of TRH precursors. Using CRISPR/Cas9 and RNAi reverse genetics, responses, is a potent inducer of TSH secretion (16). These effects we show that TRH-like neuropeptides, through the activation of their raise the question as to what the ancient function of TRH might have receptor TRHR-1, promote growth in C.
[Show full text]