Structural Characterization of an Activin Class Ternary Receptor Complex Reveals a Third Paradigm for Receptor Specificity

Total Page:16

File Type:pdf, Size:1020Kb

Structural Characterization of an Activin Class Ternary Receptor Complex Reveals a Third Paradigm for Receptor Specificity Structural characterization of an activin class ternary receptor complex reveals a third paradigm for receptor specificity Erich J. Goebela, Richard A. Corpinab, Cynthia S. Hinckc, Magdalena Czepnika, Roselyne Castonguayd, Rosa Grenhad, Angela Boisvertd, Gabriella Miklossye, Paul T. Fullertone, Martin M. Matzuke, Vincent J. Idoneb, Aris N. Economidesb, Ravindra Kumard, Andrew P. Hinckc, and Thomas B. Thompsona,1 aDepartment of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45267; bSkeletal Diseases Therapeutic Focus Area, Regeneron Pharmaceuticals, Tarrytown, NY 10591; cDepartment of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260; dDiscovery Group, Acceleron Pharma, Cambridge, MA 02139; and eDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030 Edited by K. Christopher Garcia, Stanford University, Stanford, CA, and approved June 24, 2019 (received for review April 18, 2019) TGFβ family ligands, which include the TGFβs, BMPs, and activins, I receptors with higher affinity than TGFβ class ligands (5, 6). signal by forming a ternary complex with type I and type II recep- Structural studies describing ligand–receptor interactions have tors. For TGFβs and BMPs, structures of ternary complexes have revealed how TGFβ and BMP ligands adopt different strategies to revealed differences in receptor assembly. However, structural in- assemble receptors, accounting for the differences in type I affinity formation for how activins assemble a ternary receptor complex is (7–11). The ternary structure of BMP2 revealed independent re- lacking. We report the structure of an activin class member, ceptor binding sites, with the type II receptors binding on the GDF11, in complex with the type II receptor ActRIIB and the type convex “knuckle” region of the ligand and the type I receptors I receptor Alk5. The structure reveals that receptor positioning is binding through extensive contacts in the concave cleft formed by similar to the BMP class, with no interreceptor contacts; however, the “wrist helix” at the dimer interface (12). In stark contrast, the type I receptor interactions are shifted toward the ligand fin- receptor binding for TGFβ ligands uses a cooperative assembly gertips and away from the dimer interface. Mutational analysis mechanism that facilitates binding of the type I receptor. Here, the BIOCHEMISTRY shows that ligand type I specificity is derived from differences in type II receptor is shifted toward the ligand fingertips and comes the fingertips of the ligands that interact with an extended loop into direct contact with the type I receptor; thus, binding of the specific to Alk4 and Alk5. The study also reveals differences for type I receptor is significantly stronger when the ligand is pre- how TGFβ and GDF11 bind to the same type I receptor, Alk5. For occupied with the type II receptor (9, 10). These studies highlight GDF11, additional contacts at the fingertip region substitute that different mechanisms of ligand–receptor interactions have for the interreceptor interactions that are seen for TGFβ, indicating emerged within the TGFβ family. that Alk5 binding to GDF11 is more dependent on direct contacts. In support, we show that a single residue of Alk5 (Phe84), when mutated, abolishes GDF11 signaling, but has little impact on TGFβ Significance signaling. The structure of GDF11/ActRIIB/Alk5 shows that, across the TGFβ family, different mechanisms regulate type I receptor bind- The TGFβ family of ligands plays fundamental roles in con- ing and specificity, providing a molecular explanation for how the trolling diverse signaling events throughout multicellular or- activin class accommodates low-affinity type I interactions without ganisms. The family is divided into 3 classes: activin, BMP, and the requirement of cooperative receptor interactions. TGFβ, with each signaling through specific combinations of type I and type II receptors. We demonstrate that activin li- GDF11 | TGF-β superfamily | activin | ternary signaling complex | Alk5 gands bind receptors similarly to BMP ligands, but they utilize the ligand fingertip to make specificity-determining contacts he transforming growth factor β (TGFβ) family of ligands is with the type I receptors. We also show that different molec- β Tcomposed of more than 30 dimeric growth factors essential in ular mechanisms have emerged for how GDF11 and TGF bind the development and homeostasis of all animals (1–3). Signaling the same type I receptor, whereby GDF11 is more dependent occurs when ligands engage 2 type I and 2 type II serine/threo- on direct receptor contacts. Thus, this study provides insight at nine kinase receptors, forming a hexameric signaling complex (4, the molecular level into how the activin class ligands bind and 5). Both the type I and type II receptors consist of a small ex- assemble their type I and type II receptors. tracellular ligand-binding domain tethered to an intracellular Author contributions: E.J.G., R.A.C., V.J.I., A.N.E., and T.B.T. designed research; E.J.G., kinase domain. Upon assembly, type II receptors phosphorylate R.A.C., M.C., V.J.I., and A.N.E. performed research; C.S.H., R.C., R.G., A.B., G.M., P.T.F., and activate the type I receptors, which, in turn, phosphorylate M.M.M., R.K., and A.P.H. contributed new reagents/analytic tools; E.J.G., R.A.C., V.J.I., intracellular SMAD proteins. Signaling is then transduced into the A.N.E., and T.B.T. analyzed data; and E.J.G. and T.B.T. wrote the paper. nucleus, where activated SMADs act as transcriptional factors, Conflict of interest statement: T.B.T. is a consultant for Acceleron Pharma and Scientific enabling signaling outcomes dependent on ligand–receptor com- Founder for Eclode. R.C. and R.K. are current employees of Acceleron Pharma with ownership interest in the company. A.N.E. and V.J.I. are current employees of Regeneron Pharmaceuticals binations. Given the diversity of biological responses and pro- with ownership interest in the company. The other authors report no competing cesses controlled by the family, it is somewhat surprising that only interests. 7 type I and 5 type II receptors are found within mammals (1). This article is a PNAS Direct Submission. Based on sequence homology and receptor utilization, the Published under the PNAS license. β TGF family can be divided into 3 general classes of ligands: Data deposition: The ternary structure of GDF11 bound to ActRIIB-ECD and Alk5-ECD activins, BMPs, and TGFβs. From this, 2 general signaling par- described in this paper has been deposited to the Protein Data Bank, http://www.rcsb. adigms have emerged—the TGFβ class, which activates SMAD org/ (accession code 6MAC). 2/3; and the BMP class, which activates SMAD 1/5/8—with 1To whom correspondence may be addressed. Email: [email protected]. specificity for each paradigm dependent on the activation of This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. different type I receptors. Interestingly, ligands have different 1073/pnas.1906253116/-/DCSupplemental. affinities for type I receptors, with BMP class ligands binding type www.pnas.org/cgi/doi/10.1073/pnas.1906253116 PNAS Latest Articles | 1of9 Downloaded by guest on September 26, 2021 The activin class, which includes activin A (ActA), activin B (ActB), Growth and Differentiation Factor 8 (GDF8), and GDF11, shares aspects of both the TGFβ and BMP signaling paradigms. Similar to TGFβ, activin class ligands bind type II receptors with high affinity, including ActRIIA and ActRIIB, and type I receptors with very low affinity, to activating SMAD2/ 3 (1). However, type II receptor positioning for the activin class is similar to BMP ligands, suggesting that a cooperative mecha- nism between type I and type II receptors is not used by activin ligands to facilitate binding of the low-affinity type I receptors, as is the case for TGFβ (13, 14). Whereas TGFβ primarily signals use the type I receptor Activin receptor-like kinase 5 (Alk5), the activin class ligands are more promiscuous and can use different combinations of the type I receptors: Alk4, Alk5, and Alk7 (15– 17). For example, whereas ActA predominantly signals using Alk4, ActB can signal effectively using both Alk4 and Alk7 (5, 18, 19). GDF8 and GDF11 can both signal using Alk4 and Alk5, with GDF11 extending specificity to Alk7 (17). Although struc- tural studies have revealed how the TGFβ and the BMP ligands assemble the type I and type II receptors, the molecular details for how activin class ligands form a ternary signaling complex and account for type I receptor specificity is unknown. To ad- dress this, we sought to structurally characterize a ternary com- plex of an activin class ligand. Results and Discussion Ternary Complex Structure of GDF11/ActRIIB-ECD/Alk5-ECD. Crystals of an activin class ternary complex were generated by combining Fig. 1. Structure of GDF11/ActRIIB/Alk5 ternary complex. (A) GDF11/ActRIIB/ GDF11 and the ectodomains (ECDs) of both the high-affinity Alk5 as viewed on the membrane surface. GDF11 has 2 monomers repre- type II receptor ActRIIB and the low-affinity type I receptor sented in slate (monomer A) and cyan (monomer B). ActRIIB-ECD is repre- Alk5. Diffraction data were collected to 2.3-Å resolution, and the sented in orange, with Alk5-ECD in yellow. (B) Ninety-degree upward view structure was solved by molecular replacement using the previ- of the ternary complex. ActRIIB binds at the convex knuckle region of ously determined individual components as search models (data GDF11 whereas Alk5 binds at the concave interface of GDF11 formed be- collection and refinement statistics are provided in SI Appendix, tween the fingertip of monomer A and the wrist helix of monomer B GDF11. Table S1). Within the lattice, the asymmetric unit contains 1 GDF11 monomer bound to 1 ActRIIB-ECD and 1 Alk5-ECD with the gesting the absence of conformational changes upon receptor full complex being related through crystallographic symmetry.
Recommended publications
  • Product Data Sheet
    KAMIYA BIOMEDICAL COMPANY Rev. 082707 PRODUCT DATA SHEET Product: Bone Morphogenetic Protein Receptor Type IA (BMPR1A), (human recombinant) Cat. No.: BP-026 (10 µg) Synonyms: Reconstitution: BMPR-1A, BMP-R1A, BMPR1A, BMR1A, It is recommended to reconstitute the lyophilized CD292, CD-292, Serine/threonine-protein kinase recombinant human BMPR1A in sterile PBS at receptor R5, SKR5, Activin receptor-like kinase not less than 100 µg/mL, which can then be 3, ALK-3, ACVRLK3, EC 2.7.11.30, CD292 further diluted to other aqueous solutions. antigen. Storage: Background: Lyophilized protein is stable for at least 3 weeks The bone morphogenetic protein (BMP) at room temperature. Long term storage should receptors are a family of transmembrane be below -18 °C, desiccated. Upon serine/threonine kinases that include the type I reconstitution, human recombinant BMPR1A receptors BMPR1A and BMPR1B and the type II should be stored at 4°C between 2-7 days, and receptor BMPR2. These receptors are also for future use below -18°C. For long term closely related to the activin receptors, ACVR1 storage it is recommended to add a carrier and ACVR2. The ligands of these receptors are members of the TGF-beta superfamily. TGF- protein (0.1% HSA or BSA). Aliquot to avoid betas and activins transduce their signals freeze/thaw cycles. through the formation of heteromeric complexes with two different types of serine (threonine) Purity: kinase receptors: type I receptors of about 50-55 >90% determined by RP-HPLC, and SDS-PAGE. kDa and type II receptors of about 70-80 kDa. Type II receptors bind ligands in the absence of Biological Activity: type I receptors, but they require their respective Measured by its ability to inhibit recombinant type I receptors for signaling, whereas type I human BMP-2 induced alkaline phosphatase receptors require their respective type II production by C2C12 myogenic cells.
    [Show full text]
  • A Truncated Bone Morphogenetic Protein Receptor Affects Dorsal-Ventral Patterning in the Early Xenopus Embryo ATSUSHI SUZUKI*, R
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 10255-10259, October 1994 Developmental Biology A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo ATSUSHI SUZUKI*, R. ScoTT THIESt, NOBORU YAMAJIt*, JEFFREY J. SONGt, JOHN M. WOZNEYt, KAZUO MURAKAMI§, AND NAOTO UENO*1 *Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan; tGenetics Institute Inc., 87 Cambridge Park Drive, Cambridge, MA 02140; tYamanouchi Pharmaceutical Co., Ltd., Tokyo 103, Japan; and Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305, Japan Communicated by Igor B. Dawid, July 13, 1994 ABSTRACT Bone morphogenetic proteins (BMPs), which corresponding proteins are present in developing Xenopus are members of the trnsming growth factor 13 (TGF-I) embryos, and overexpression of BMP4 in the embryos superfamily, have been implicated in bone formation and the enhances the formation of ventral mesoderm (8-11). Animal regulation ofearly development. To better understand the roles cap ectoderm treated with a combination of BMP4 and of BMPs in Xenopus laevis embryogenesis, we have cloned a activin also results in the formation of ventral mesoderm, cDNA coding for a serine/threonine kinase receptor that binds suggesting that BMP-4 is a ventralizing factor that acts by BMP-2 and BMP-4. To analyze its function, we attempted to overriding the dorsalizing signal provided by activin (8, 9). block the BMP signaling pathway in Xenopus embryos by using Therefore, activin and BMP-4 are thought to play important a domint-negative mutant of the BMP receptor. When the roles in the dorsal-ventral patterning of embryonic meso- mutant receptor lacking the putative serine/threonine kinase derm.
    [Show full text]
  • Identification of Two Novel Mutations in the NOG Gene Associated With
    Journal of Human Genetics (2015) 60, 27–34 & 2015 The Japan Society of Human Genetics All rights reserved 1434-5161/15 www.nature.com/jhg ORIGINAL ARTICLE Identification of two novel mutations in the NOG gene associated with congenital stapes ankylosis and symphalangism Akira Ganaha1,3, Tadashi Kaname2,3, Yukinori Akazawa1,3, Teruyuki Higa1,3, Ayano Shinjou1,3, Kenji Naritomi2,3 and Mikio Suzuki1,3 In this study, we describe three unrelated Japanese patients with hearing loss and symphalangism who were diagnosed with proximal symphalangism (SYM1), atypical multiple synostosis syndrome (atypical SYNS1) and stapes ankylosis with broad thumb and toes (SABTT), respectively, based on the clinical features. Surgical findings in the middle ear were similar among the patients. By next-generation and Sanger sequencing analyses, we identified two novel mutations, c.559C4G (p.P178A) and c.682T4A (p.C228S), in the SYM1 and atypical SYNS1 families, respectively. No pathogenic changes were found in the protein-coding regions, exon–intron boundaries or promoter regions of the NOG, GDF5 or FGF9 genes in the SABTT family. Such negative molecular data suggest there may be further genetic heterogeneity underlying SYNS1, with the involvement of at least one additional gene. Stapedotomy resulted in good hearing in all patients over the long term, indicating no correlation between genotype and surgical outcome. Given the overlap of the clinical features of these syndromes in our patients and the molecular findings, the diagnostic term ‘NOG-related-symphalangism spectrum disorder (NOG-SSD)’ is advocated and an unidentified gene may be responsible for this disorder. Journal of Human Genetics (2015) 60, 27–34; doi:10.1038/jhg.2014.97; published online 13 November 2014 INTRODUCTION However, as the GDF5 protein interacts with the NOG protein,14,15 Proximal symphalangism (SYM1) with conductive hearing loss was the diagnostic category of NOG-SSD does appear to be promising.
    [Show full text]
  • Mouse GDF-5/BMP-14 Biotinylated Antibody Antigen Affinity-Purified Polyclonal Goat Igg Catalog Number: BAF853
    Mouse GDF-5/BMP-14 Biotinylated Antibody Antigen Affinity-purified Polyclonal Goat IgG Catalog Number: BAF853 DESCRIPTION Species Reactivity Mouse Specificity Detects mouse GDF­5/BMP­14 in Western blots. In Western blot, approximately 20% cross­reactivity with recombinant mouse (rm) GDF­6 is observed and less than 1% cross­reactivity with rmGDF­1, rmGDF­8, and rmGDF­9 is observed. Source Polyclonal Goat IgG Purification Antigen Affinity­purified Immunogen E. coli­derived recombinant mouse GDF­5/BMP­14 Ala376­Arg495 Accession # P43027 Formulation Lyophilized from a 0.2 μm filtered solution in PBS with BSA as a carrier protein. See Certificate of Analysis for details. APPLICATIONS Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website. Recommended Sample Concentration Western Blot 0.1 µg/mL Recombinant Mouse GDF­5 (Catalog # 853­G5) Immunohistochemistry 5­15 µg/mL Immersion fixed frozen sections of mouse embryo (E13.5­15.5) PREPARATION AND STORAGE Reconstitution Reconstitute at 0.2 mg/mL in sterile PBS. Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below. Stability & Storage Use a manual defrost freezer and avoid repeated freeze­thaw cycles. l 12 months from date of receipt, ­20 to ­70 °C as supplied. l 1 month, 2 to 8 °C under sterile conditions after reconstitution. l 6 months, ­20 to ­70 °C under sterile conditions after reconstitution. BACKGROUND Growth Differentiation Factor 5 (GDF­5), also known as cartilage­derived morphogenetic protein 1 (CDMP­1), is a member of the bone morphogenetic protein (BMP) family which belongs to the transforming growth factor β (TGF­β) superfamily.
    [Show full text]
  • ACVR2B Recombinant Protein Cat
    ACVR2B Recombinant Protein Cat. No.: 96-009 ACVR2B Recombinant Protein Specifications SPECIES: Human SOURCE SPECIES: HEK293 cells SEQUENCE: Ser 19 - Thr 137 FUSION TAG: C-His Tag TESTED APPLICATIONS: WB APPLICATIONS: This recombinant protein can be used for WB. For research use only. PREDICTED MOLECULAR 14.5 kDa WEIGHT: Properties PURITY: >97% as determined by SDS-PAGE. PHYSICAL STATE: Lyophilized BUFFER: PBS, pH7.4 Lyophilized Protein should be stored at -20˚C or lower for long term storage. Upon STORAGE CONDITIONS: reconstitution, working aliquots should be stored at -20˚C or -70˚C. Avoid repeated freeze-thaw cycles. September 27, 2021 1 https://www.prosci-inc.com/acvr2b-recombinant-protein-96-009.html Additional Info OFFICIAL SYMBOL: ACVR2B ALTERNATE NAMES: ACVR2B, ACTRIIB, MGC116908 ACCESSION NO.: NP_001097 GENE ID: 93 Background and References Activin receptor type-2B (ACVR2B) is also known as ActR-IIB and MGC116908, ACVR2B is an activin type 2 receptor. Activins are dimeric growth and differentiation factors which belong to the transforming growth factor-beta (TGF-beta) superfamily of structurally related signaling proteins. Activins signal through a heteromeric complex of receptor serine kinases which include at least two type I (I and IB) and two type II (II and IIB) receptors. These receptors are all transmembrane proteins, composed of a ligand-binding extracellular domain with cysteine-rich region, a transmembrane domain, and a BACKGROUND: cytoplasmic domain with predicted serine/threonine specificity. Type I receptors are essential for signaling; and type II receptors are required for binding ligands and for expression of type I receptors. Type I and II receptors form a stable complex after ligand binding, resulting in phosphorylation of type I receptors by type II receptors.
    [Show full text]
  • Lack of Tgfbr1 and Acvr1b Synergistically Stimulates Myofibre Hypertrophy And
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.03.433740; this version posted March 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Lack of Tgfbr1 and Acvr1b synergistically stimulates myofibre hypertrophy and accelerates muscle regeneration *M.M.G. Hillege1, *A. Shi1,2 ,3, R.C. Galli Caro1, G. Wu4, P. Bertolino5, W.M.H. Hoogaars1,6, R.T. Jaspers1 1. Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands 2. Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Sciences (AMS), Amsterdam, the Netherlands 3. Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China 4. Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), The Netherlands 5. Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052/CNRS 5286, Université de Lyon, Centre Léon Bérard, Lyon, France 6. European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands *Contributed equally to this manuscript **Correspondence: [email protected]; Tel.: +31 (0) 205988463 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.03.433740; this version posted March 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Expression of SMAD Proteins, TGF-Beta/Activin Signaling
    original article Expression of SMAD proteins, TGF-beta/activin signaling mediators, in human thyroid tissues Expressão de proteínas SMAD, mediadores da sinalização de TGF-beta/activina, em tecidos de tiroide humana Sílvia E. Matsuo1, Ana Paula Z. P. Fiore1, Simone M. Siguematu1, Kátia N. Ebina1, Celso U. M. Friguglietti1, Maria C. Ferro2, Marco A. V. Kulcsar1,3, Edna T. Kimura1 ABSTRACT Objective: To investigate the expression of SMAD proteins in human thyroid tissues since 1 Departamento de Biologia the inactivation of TGF-β/activin signaling components is reported in several types of cancer. Celular e do Desenvolvimento, Phosphorylated SMAD 2 and SMAD3 (pSMAD2/3) associated with the SMAD4 induce the signal Instituto de Ciências Biomédicas, Universidade de São Paulo (ICB- transduction generated by TGF-β and activin, while SMAD7 inhibits this intracellular signaling. USP), São Paulo, SP, Brazil Although TGF-β and activin exert antiproliferative roles in thyroid follicular cells, thyroid tumors 2 Departamento de Morfologia e express high levels of these proteins. Materials and methods: The protein expression of SMADs Patologia, Pontifícia Universidade Católica (PUC), Sorocaba, SP, Brazil was evaluated in multinodular goiter, follicular adenoma, papillary and follicular carcinomas 3 Departamento de Cirurgia by immunohistochemistry. Results: The expression of pSMAD2/3, SMAD4 and SMAD7 was de Cabeça e Pescoço, USP, observed in both benign and malignant thyroid tumors. Although pSMAD2/3, SMAD4 and São Paulo, SP, Brazil SMAD7 exhibited high cytoplasmic staining in carcinomas, the nuclear staining of pSMAD2/3 was not different between benign and malignant lesions. Conclusions: The finding of SMADs expression in thyroid cells and the presence of pSMAD2/3 and SMAD4 proteins in the nucleus of tumor cells indicates propagation of TGF-β/activin signaling.
    [Show full text]
  • An Activin Receptor IIA Ligand Trap Corrects Ineffective Erythropoiesis In
    ARTICLES An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia Michael Dussiot1–5,13, Thiago T Maciel1–5,13, Aurélie Fricot1–5, Céline Chartier1–5, Olivier Negre6,7, Joel Veiga4, Damien Grapton1–5, Etienne Paubelle1–5, Emmanuel Payen6,7, Yves Beuzard6,7, Philippe Leboulch6,7, Jean-Antoine Ribeil1–4,8, Jean-Benoit Arlet1–4, Francine Coté1–4, Geneviève Courtois1–4, Yelena Z Ginzburg9, Thomas O Daniel10, Rajesh Chopra10, Victoria Sung11, Olivier Hermine1–4,12 & Ivan C Moura1–5 The pathophysiology of ineffective erythropoiesis in b-thalassemia is poorly understood. We report that RAP-011, an activin receptor IIA (ActRIIA) ligand trap, improved ineffective erythropoiesis, corrected anemia and limited iron overload in a mouse model of b-thalassemia intermedia. Expression of growth differentiation factor 11 (GDF11), an ActRIIA ligand, was increased in splenic erythroblasts from thalassemic mice and in erythroblasts and sera from subjects with b-thalassemia. Inactivation of GDF11 decreased oxidative stress and the amount of a-globin membrane precipitates, resulting in increased terminal erythroid differentiation. Abnormal GDF11 expression was dependent on reactive oxygen species, suggesting the existence of an autocrine amplification loop in b-thalassemia. GDF11 inactivation also corrected the abnormal ratio of immature/mature erythroblasts by inducing apoptosis of immature erythroblasts through the Fas–Fas ligand pathway. Taken together, these observations suggest that ActRIIA ligand traps may have therapeutic relevance in b-thalassemia by suppressing the deleterious effects of GDF11, a cytokine which blocks terminal erythroid maturation through an autocrine amplification loop involving oxidative stress and a-globin precipitation. β-thalassemia is a common inherited hemoglobinopathy that is ­differentiation both in vitro8 and in vivo9, is involved in the regula- characterized by impaired or absent β-globin chain production and tion of stress responses in the spleen of adult mice10.
    [Show full text]
  • BMPR1A Is Necessary for Chondrogenesis and Osteogenesis
    © 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2020) 133, jcs246934. doi:10.1242/jcs.246934 RESEARCH ARTICLE BMPR1A is necessary for chondrogenesis and osteogenesis, whereas BMPR1B prevents hypertrophic differentiation Tanja Mang1,2, Kerstin Kleinschmidt-Doerr1, Frank Ploeger3, Andreas Schoenemann4, Sven Lindemann1 and Anne Gigout1,* ABSTRACT essential for osteogenesis and bone formation during this process BMP2 stimulates bone formation and signals preferably through BMP (Bandyopadhyay et al., 2006; McBride et al., 2014; Yang et al., 2013). – receptor (BMPR) 1A, whereas GDF5 is a cartilage inducer and signals Similarly, during bone fracture healing where a similar mechanism – preferably through BMPR1B. Consequently, BMPR1A and BMPR1B are takes place conditional deletion of Bmp2 in mesenchymal believed to be involved in bone and cartilage formation, respectively. progenitors or osteoprogenitors prevents fracture healing (Mi et al., However, their function is not yet fully clarified. In this study, GDF5 2013; Tsuji et al., 2006). In vitro, BMP2 provokes an induction of mutants with a decreased affinity for BMPR1A were generated. These alkaline phosphatase (ALP) activity, osteocalcin expression and matrix mutants, and wild-type GDF5 and BMP2, were tested for their ability to mineralization in pluripotent mesenchymal progenitor cells (Cheng induce dimerization of BMPR1A or BMPR1B with BMPR2, and for their et al., 2003), and also stimulates chondrogenesis or adipogenesis (Date chondrogenic, hypertrophic and osteogenic properties in chondrocytes, et al., 2004). Finally, BMP2 has been shown to promote bone repair in in the multipotent mesenchymal precursor cell line C3H10T1/2 and the animal models (Kleinschmidt et al., 2013; Wulsten et al., 2011) and in human osteosarcoma cell line Saos-2.
    [Show full text]
  • In Order to Measure the Binding Constants of ACVR1 Mabs, Mabs Were Captured with an Anti-Human Fc Antibody Immobilized on a CM5 Chip
    Supplemental Table 1: Binding constants of ACVR1 Mabs and Fabs to human ACVR1 1/2 ACVR1 Mab ka kd KD t Tested (1/Ms) (1/s) (M) (min) Mab 1 1.31E+06 1.59E-03 1.21E-09 7 Mab 2 7.18E+05 1.63E-04 2.27E-10 71 Mab 3 6.77E+05 1.76E-04 2.60E-10 65 Fab 2 5.49E+05 9.36E-05 1.70E-10 123 Fab 3 6.90E+05 1.06E-04 1.54E-10 109 hACVR1 2.30E+05 1.33E-03 5.80E-09 9 Mab In order to measure the binding constants of ACVR1 Mabs, Mabs were captured with an anti-human Fc antibody immobilized on a CM5 chip. Different concentrations of hACVR1.mmh (REGN3111) were injected over ACVR1 Mabs at 37 0C. In order to measure the binding constants of ACVR1 Fabs, hACVR1.mmh was captured with a myc antibody (REGN642) immobilized on a CM5 chip. Different concentrations of ACVR1 Fabs were injected over hACVR1.mmh at 37 0C. Binding rate constants and equilibrium dissociation rate constants were calculated by fitting data using 1:1 Langmuir binding model (Scrubber 2.0c). All 3 ACVR1 Fabs bound to monomeric human ACVR1 with binding kinetics similar (< 2.5-fold difference) to their respective Mabs. Supplemental Table 2: Binding constants of ACVR1 Mabs and Fabs to mouse ACVR1 1/2 ACVR1 Mab ka kd KD t Tested (1/Ms) (1/s) (M) (min) Mab 1 1.34E+06 1.67E-03 1.24E-09 7 Mab 2 7.13E+05 1.61E-04 2.26E-10 72 Mab 3 6.74E+05 1.81E-04 2.68E-10 64 Fab 2 5.45E+05 9.72E-05 1.78E-10 119 Fab 3 6.53E+05 1.05E-04 1.60E-10 110 hACVR1 ND ND ND ND Mab In order to measure the binding constants of ACVR1 Mabs, Mabs were captured with an anti-human Fc antibody immobilized on a CM5 chip.
    [Show full text]
  • Alterations in TGF-Β Signaling Leads to High HMGA2 Levels Potentially Through Modulation of PJA1/SMAD3 in HCC Cells
    www.Genes&Cancer.com Genes & Cancer, Vol. 11 (1-2), 2020 Alterations in TGF-β signaling leads to high HMGA2 levels potentially through modulation of PJA1/SMAD3 in HCC cells Kazufumi Ohshiro1, Jian Chen2, Jigisha Srivastav3, Lopa Mishra1,4 and Bibhuti Mishra1 1 Department of Surgery, Center for Translational Medicine, George Washington University, Washington DC, USA 2 Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 3 University of Toledo College of Medicine, Toledo, OH, USA 4 Department of Gastroenterology and Hepatology, VA Medical Center, Washington DC, USA Correspondence to: Lopa Mishra, email: [email protected] Keywords: TGF-β pathway, HMGA2, PJA1, hepatocellular carcinoma Received: October 07, 2019 Accepted: January 06, 2020 Published: January 22, 2020 Copyright: © 2020 Ohshiro et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Recently, we observed that the TGF-β pathway is altered in 39% of HCCs. The alterations are correlated with a raised HMGA2 level. Therefore, we compared genetic alterations of HMGA2 and 43 TGF-β pathway core genes in HCC patients from TCGA database. Genetic alterations of 15 genes, including INHBE, INHBC, GDF11, ACVRL and TGFB2 out of 43 core genes, highly-moderately matched that of HMGA2. Co- occurrences of mutation amplification, gains, deletions and high/low mRNA of HMGA2 with those of the core genes were highly significant in INHBE, INHBC, ACVR1B, ACVRL and GDF11.
    [Show full text]
  • Targeting Myostatin/Activin a Protects Against Skeletal Muscle and Bone Loss During Spaceflight
    Targeting myostatin/activin A protects against skeletal muscle and bone loss during spaceflight Se-Jin Leea,b,1, Adam Lehara, Jessica U. Meirc, Christina Kochc, Andrew Morganc, Lara E. Warrend, Renata Rydzike, Daniel W. Youngstrome, Harshpreet Chandoka, Joshy Georgea, Joseph Gogainf, Michael Michauda, Thomas A. Stoklaseka, Yewei Liua, and Emily L. Germain-Leeg,h aThe Jackson Laboratory for Genomic Medicine, Farmington, CT 06032; bDepartment of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030; cThe National Aeronautics and Space Administration, NASA Johnson Space Center, Houston, TX 77058; dCenter for the Advancement of Science in Space, Houston, TX 77058; eDepartment of Orthopaedic Surgery, University of Connecticut School of Medicine, Farmington, CT 06030; fSomaLogic, Inc., Boulder, CO 80301; gDepartment of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06030; and hConnecticut Children’s Center for Rare Bone Disorders, Farmington, CT 06032 Contributed by Se-Jin Lee, August 4, 2020 (sent for review July 14, 2020; reviewed by Shalender Bhasin and Paul Gregorevic) Among the physiological consequences of extended spaceflight signaling and, as a result, can induce significant muscle growth are loss of skeletal muscle and bone mass. One signaling pathway when given systemically to wild type mice (13). Indeed, by that plays an important role in maintaining muscle and bone blocking both ligands, this decoy receptor can induce signifi- homeostasis is that regulated by the secreted signaling proteins, cantly more muscle growth than other MSTN inhibitors, and at myostatin (MSTN) and activin A. Here, we used both genetic and high doses, ACVR2B/Fc can induce over 50% muscle growth in pharmacological approaches to investigate the effect of targeting just 2 wk.
    [Show full text]