Characterization of Tgfβ-Associated Molecular Features and Drug

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Tgfβ-Associated Molecular Features and Drug Zhang et al. BMC Gastroenterol (2021) 21:284 https://doi.org/10.1186/s12876-021-01869-4 RESEARCH Open Access Characterization of TGFβ-associated molecular features and drug responses in gastrointestinal adenocarcinoma Qiaofeng Zhang1,2,3†, Furong Liu1,2,3†, Lu Qin4, Zhibin Liao1,2,3, Jia Song1,2,3, Huifang Liang1,2,3, Xiaoping Chen1,2,3, Zhanguo Zhang1,2,3* and Bixiang Zhang1,2,3* Abstract Background: Gastrointestinal adenocarcinoma (GIAD) has caused a serious disease burden globally. Targeted ther- apy for the transforming growth factor beta (TGF-β) signaling pathway is becoming a reality. However, the molecular characterization of TGF-β associated signatures in GIAD requires further exploration. Methods: Multi-omics data were collected from TCGA and GEO database. A pivotal unsupervised clustering for TGF-β level was performed by distinguish status of TGF-β associated genes. We analyzed diferential mRNAs, miRNAs, proteins gene mutations and copy number variations in both clusters for comparison. Enrichment of pathways and gene sets were identifed in each type of GIAD. Then we performed diferential mRNA related drug response by col- lecting data from GDSC. At last, a summarized deep neural network for TGF-β status and GIADs was constracted. Results: The TGF-βhigh group had a worse prognosis in overall GIAD patients, and had a worse prognosis trend in gastric cancer and colon cancer specifcally. Signatures (including mRNA and proteins) of the TGF-βhigh group is highly correlated with EMT. According to miRNA analysis, miR-215-3p, miR-378a-5p, and miR-194-3p may block the efect of TGF-β. Further genomic analysis showed that TGF-βlow group had more genomic changes in gastric cancer, such as TP53 mutation, EGFR amplifcation, and SMAD4 deletion. And drug response dataset revealed tumor-sensitive or tumor-resistant drugs corresponding to TGF-β associated mRNAs. Finally, the DNN model showed an excellent predic- tive efect in predicting TGF-β status in diferent GIAD datasets. Conclusions: We provide molecular signatures associated with diferent levels of TGF-β to deepen the understand- ing of the role of TGF-β in GIAD and provide potential drug possibilities for therapeutic targets in diferent levels of TGF-β in GIAD. Keywords: Gastrointestinal adenocarcinoma, Transforming growth factor beta, Multi-omics signatures, Drug susceptibility, Deep neural network Introduction Cancer of the digestive tract share a large quantity of global cancer incidences. gastrointestinal adenocarci- *Correspondence: [email protected]; [email protected] nomas (GIADs), including esophageal adenocarcinoma †Qiaofeng Zhang and Furong Liu contributed equally to this work 1 Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, (ESAD), stomach adenocarcinoma (STAD), colon adeno- Huazhong University of Science and Technology, Hubei Province carcinoma (COAD), rectum adenocarcinoma (READ), for the Clinical Medicine Research Center of Hepatic Surgery, 1095 Jiefang revealed a nonnegligible global health burden in recent Avenue, Wuhan 430030, China Full list of author information is available at the end of the article years [1]. Previous studies have established that all types © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Zhang et al. BMC Gastroenterol (2021) 21:284 Page 2 of 15 of GIADs share the same features of DNA hypermethyla- of 4 type of gastrointestinal adenocarcinoma (ESAD, tion, mRNA expression and protein biomarkers, which STAD, COAD, READ) from Xena Hub. Genes with aver- confrmed GIAD in possession of exclusive character- age expression of less than 1 in RNA-seq and miRNA-seq istics [2, 3]. Apart from traditional histologic classifca- as well as synonymous mutations in the mutation data tion, an increasing number of molecular signatures were were fltered. Level 4 Copy number variation (CNV) data found across cancer. Models and clinical cohort were processed by GISTIC2.0 was obtained from Firehouse. built to identify the function of molecular biomarkers. Additional sequencing data for gastrointestinal adeno- Tus, a dramatic increasing number of potential bio- carcinoma were downloaded from NCBI GEO, including markers were found and reported, which made clinical GSE19417, GSE62254, GSE17536, GSE45404, along with diagnosis, prognostic and immunotherapy more efective GSE62254 and GSE17536 contained survival data. and reliable. Transforming growth factor beta (TGF-β) family Classifcation of TGF‑β status in GIAD consists great many of activation and inhibition fac- 39 core TGF-β associated genes were selected as TGF-β tors which participate in a variety of cellular biological gene expression signatures, including TGF-β ligands, processes [4]. As a prototypical factor in TGF-β fam- receptors, receptor substrates, Co-SMAD, inhibitory ily proteins, encoded by 33 genes in mammals, TGF-β Smads, adaptors, and Smad chaperones. Te specifc is a multifunctional regulator involved in cell prolifera- details are as follows: 43 TGF-β core genes were selected tion and diferentiation [5], even in immune suppression from previous study [11], and the genes with low expres- within tumor microenvironment [6]. Some cell-surface sion level were further removed from the expression data transmembrane receptors with serine or threonine of TCGA’s gastrointestinal adenocarcinoma (average kinase activity can interact with activated TGF-βs, fol- count value less than 1), and 39 TGF-β core genes were lowing phosphorylation of SMAD proteins, which then fnally obtained. In order to evaluate diferent TGF-β regulate the expression of TGF-β target genes [7]. Addi- levels, two evaluation methods were used: (1) Unsuper- tionally, the activation of TGF-β signaling pathways can vised K-means clustering analysis based on the 39 mRNA be negatively correlated with the development of COAD of TGF-β-related signatures for each sample in GIAD; in multiple mechanisms [8]. And target genes of TGF-β (2) Gene set variation analysis based on single sample are upregulated in ESAD samples while tumor progres- gene-set enrichment analysis (ssGSEA) method was used sion is suppressed by TGF-β knockdown [9]. to calculate the TGF-β score of each sample in GIAD. With the TGF-β signal transduction cascades being Unsupervised clustering was performed by R package able to promote the growth and diferentiation of tumor ‘ConsensuClusterPlus’ [12], which is repeated 1000 times cells, and to inhibit cell proliferation in diferent tumor to ensure the stability of the results as in previous report stages [4, 7, 10], it is still difcult to defne the function [13]. of TGF-β signaling pathways in digestive tract adenocar- cinomas. Moreover, TGF-β signaling targeted drugs have Analysis of alterations between diferent TGF‑β status bright prospect in clinical application. Hence, more pro- For the mRNA, miRNA, and RPPA data in TGF-βhigh and spective research for TGF-β associated molecular signa- TGF-βlow group in each GIAD, we used the permuta- tures and possibility of targeted therapy in GIADs are in tion test for diferential analysis as previously described need. [14]. For RNA-seq, we further screened mRNAs with the We focused on multi-omics study across 4 cancer types absolute value of logFC (log 2 (Fold change) = mean value in Te Cancer Genome Atlas (TCGA) to elaborate dif- in TGF-βhigh / mean value in TGF-βlow) > 1; for miRNA, ferent molecular pattern between TGF-β high expres- we set the absolute value of logFC > 0.5 as the threshold; sion (TGF-βhigh) and low expression (TGF-βlow) cluster. for RPPA data, we set the diference greater than 0.2 as An array of transcription, post-modifcation, proteomic the signifcantly changed proteins. For the mutation data, change, gene mutation, genomic alteration and what reg- we selected high frequency mutations of more than 10% ulating function they induced were analyzed in cancers. in the TGF-βhigh or TGF-βlow group for analysis. Also, for And the potential efects of anticancer drugs targeted on CNV data, amplifcation or deletion regions exceeding TGF-β signaling were assessed. 10% in the TGF-βhigh or TGF-βlow group were selected for analysis. Fisher’s exact test was used to evaluate signif- Methods and materials cantly mutated genes, amplifed and deleted chromosomal TCGA and GEO data collection and processing regions. We used FDR correction for all multiple tests, We collected multi-omics data (including count data of with FDR < 0.05 set as the threshold. Additionally, miRNA- RNA-seq and miRNA-seq, Reverse phase protein lysate targeted
Recommended publications
  • Bone Morphogenetic Protein Antagonist Gremlin-1 Regulates Colon Cancer Progression
    Biol. Chem. 2015; 396(2): 163–183 George S. Karagiannis, Natasha Musrap, Punit Saraon, Ann Treacy, David F. Schaeffer, Richard Kirsch, Robert H. Riddell and Eleftherios P. Diamandis* Bone morphogenetic protein antagonist gremlin-1 regulates colon cancer progression Abstract: Bone morphogenetic proteins (BMP) are phylo- E-cadherin-upregulation of N-cadherin) and overexpres- genetically conserved signaling molecules of the trans- sion of Snail. Collectively, our data support that GREM1 forming growth factor-beta (TGF-beta) superfamily of promotes the loss of cancer cell differentiation at the can- proteins, involved in developmental and (patho)physi- cer invasion front, a mechanism that may facilitate tumor ological processes, including cancer. BMP signaling has progression. been regarded as tumor-suppressive in colorectal cancer (CRC) by reducing cancer cell proliferation and invasion, Keywords: angiogenesis; bone morphogenetic protein; and by impairing epithelial-to-mesenchymal transition cancer-associated fibroblasts; colorectal cancer; epithe- (EMT). Here, we mined existing proteomic repositories lial-to-mesenchymal transition; gremlin-1; stroma; tumor to explore the expression of BMPs in CRC. We found that microenvironment. the BMP antagonist gremlin-1 (GREM1) is secreted from heterotypic tumor-host cell interactions. We then sought DOI 10.1515/hsz-2014-0221 to investigate whether GREM1 is contextually and mecha- Received June 26, 2014; accepted August 1, 2014; previously nistically associated with EMT in CRC. Using immunohis- published
    [Show full text]
  • Dynamic Regulation of FGF23 by Fam20c Phosphorylation, Galnac-T3 Glycosylation, and Furin Proteolysis
    Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis Vincent S. Tagliabraccia, James L. Engela,1, Sandra E. Wileya, Junyu Xiaoa, David J. Gonzaleza,b, Hitesh Nidumanda Appaiahc, Antonius Kollerd, Victor Nizetb,e, Kenneth E. Whitec, and Jack E. Dixona,f,g,2 Departments of aPharmacology, bPediatrics, fCellular and Molecular Medicine, and gChemistry and Biochemistry and eSkaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093; cDepartment of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202; and dStony Brook University Proteomics Center, School of Medicine, Stony Brook University, Stony Brook, NY 11794 Contributed by Jack E. Dixon, February 8, 2014 (sent for review January 23, 2014) The family with sequence similarity 20, member C (Fam20C) has life. Nonlethal cases have also been reported, and these patients recently been identified as the Golgi casein kinase. Fam20C phosphor- develop hypophosphatemia as a result of elevated levels of the ylates secreted proteins on Ser-x-Glu/pSer motifs and loss-of-function phosphate-regulating hormone fibroblast growth factor 23 (FGF23) mutations in the kinase cause Raine syndrome, an often-fatal osteo- (12). Additionally, Fam20C knockout (KO) mice develop renal sclerotic bone dysplasia. Fam20C is potentially an upstream regulator phosphate wasting due to an increase in circulating bioactive of the phosphate-regulating hormone fibroblast growth factor 23 FGF23 as well as severe hypophosphatemic rickets (13, 14). (FGF23), because humans with FAM20C mutations and Fam20C KO Thus, Fam20C has been proposed to be a regulator of FGF23; mice develop hypophosphatemia due to an increase in full-length, bi- however, the molecular mechanisms underlying the control of ologically active FGF23.
    [Show full text]
  • ACVR1 Antibody Cat
    ACVR1 Antibody Cat. No.: 4791 Western blot analysis of ACVR1 in A549 cell lysate with ACVR1 antibody at 1 μg/mL in (A) the absence and (B) the presence of blocking peptide. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human, Mouse HOMOLOGY: Predicted species reactivity based on immunogen sequence: Bovine: (100%), Rat: (93%) ACVR1 antibody was raised against a 14 amino acid synthetic peptide near the amino terminus of the human ACVR1. IMMUNOGEN: The immunogen is located within the first 50 amino acids of ACVR1. TESTED APPLICATIONS: ELISA, WB ACVR1 antibody can be used for detection of ACVR1 by Western blot at 1 μg/mL. APPLICATIONS: Antibody validated: Western Blot in human samples. All other applications and species not yet tested. At least four isoforms of ACVR1 are known to exist. This antibody is predicted to have no SPECIFICITY: cross-reactivity to ACVR1B or ACVR1C. POSITIVE CONTROL: 1) Cat. No. 1203 - A549 Cell Lysate Properties October 1, 2021 1 https://www.prosci-inc.com/acvr1-antibody-4791.html PURIFICATION: ACVR1 Antibody is affinity chromatography purified via peptide column. CLONALITY: Polyclonal ISOTYPE: IgG CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: ACVR1 Antibody is supplied in PBS containing 0.02% sodium azide. CONCENTRATION: 1 mg/mL ACVR1 antibody can be stored at 4˚C for three months and -20˚C, stable for up to one STORAGE CONDITIONS: year. As with all antibodies care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures. Additional Info OFFICIAL SYMBOL: ACVR1 ACVR1 Antibody: FOP, ALK2, SKR1, TSRI, ACTRI, ACVR1A, ACVRLK2, Activin receptor type-1, ALTERNATE NAMES: Activin receptor type I, ACTR-I ACCESSION NO.: NP_001096 PROTEIN GI NO.: 4501895 GENE ID: 90 USER NOTE: Optimal dilutions for each application to be determined by the researcher.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Gremlin1 Preferentially Binds to Bone Morphogenetic Protein-2 (BMP-2) and BMP-4 Over BMP-7
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queen's University Research Portal Gremlin1 preferentially binds to Bone Morphogenetic Protein-2 (BMP-2) and BMP-4 over BMP-7 Church, R. H., Krishnakumar, A., Urbanek, A., Geschwinder, S., Meneely, J., Bianchi, A., ... Brazil, D. P. (2015). Gremlin1 preferentially binds to Bone Morphogenetic Protein-2 (BMP-2) and BMP-4 over BMP-7. Biochemical Journal, 466(1), 55-68. DOI: 10.1042/BJ20140771 Published in: Biochemical Journal Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights The final version of record is available at http://www.biochemj.org/bj/imps/abs/BJ20140771.htm General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:15. Feb. 2017 Differential Gremlin1 binding to Bone Morphogenetic Proteins Gremlin1 preferentially binds to Bone Morphogenetic Protein-2 (BMP-2) and BMP-4 over BMP-7 Rachel H.
    [Show full text]
  • Tumor Promoting Effect of BMP Signaling in Endometrial Cancer
    International Journal of Molecular Sciences Article Tumor Promoting Effect of BMP Signaling in Endometrial Cancer Tomohiko Fukuda 1,* , Risa Fukuda 1, Kohei Miyazono 1,2,† and Carl-Henrik Heldin 1,*,† 1 Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden; [email protected] (R.F.); [email protected] (K.M.) 2 Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan * Correspondence: [email protected] (T.F.); [email protected] (C.-H.H.); Tel.: +46-18-4714738 (T.F.); +46-18-4714738 (C.-H.H.) † These authors contributed equally to this work. Abstract: The effects of bone morphogenetic proteins (BMPs), members of the transforming growth factor-β (TGF-β) family, in endometrial cancer (EC) have yet to be determined. In this study, we analyzed the TCGA and MSK-IMPACT datasets and investigated the effects of BMP2 and of TWSG1, a BMP antagonist, on Ishikawa EC cells. Frequent ACVR1 mutations and high mRNA expressions of BMP ligands and receptors were observed in EC patients of the TCGA and MSK-IMPACT datasets. Ishikawa cells secreted higher amounts of BMP2 compared with ovarian cancer cell lines. Exogenous BMP2 stimulation enhanced EC cell sphere formation via c-KIT induction. BMP2 also induced EMT of EC cells, and promoted migration by induction of SLUG. The BMP receptor kinase inhibitor LDN193189 augmented the growth inhibitory effects of carboplatin. Analyses of mRNAs of several BMP antagonists revealed that TWSG1 mRNA was abundantly expressed in Ishikawa cells.
    [Show full text]
  • Saracatinib Is an Efficacious Clinical Candidate for Fibrodysplasia Ossificans Progressiva
    RESEARCH ARTICLE Saracatinib is an efficacious clinical candidate for fibrodysplasia ossificans progressiva Eleanor Williams,1 Jana Bagarova,2 Georgina Kerr,1 Dong-Dong Xia,2 Elsie S. Place,3 Devaveena Dey,2 Yue Shen,2 Geoffrey A. Bocobo,2 Agustin H. Mohedas,2 Xiuli Huang,4 Philip E. Sanderson,4 Arthur Lee,4 Wei Zheng,4 Aris N. Economides,5 James C. Smith,3 Paul B. Yu,2 and Alex N. Bullock1 1Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom. 2Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. 3Developmental Biology Laboratory, Francis Crick Institute, London, United Kingdom. 4National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland, USA. 5Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA. Currently, no effective therapies exist for fibrodysplasia ossificans progressiva (FOP), a rare congenital syndrome in which heterotopic bone is formed in soft tissues owing to dysregulated activity of the bone morphogenetic protein (BMP) receptor kinase ALK2 (also known as ACVR1). From a screen of known biologically active compounds, we identified saracatinib as a potent ALK2 kinase inhibitor. In enzymatic and cell-based assays, saracatinib preferentially inhibited ALK2, compared with other receptors of the BMP/TGF-β signaling pathway, and induced dorsalization in zebrafish embryos consistent with BMP antagonism. We further tested the efficacy of saracatinib using an inducible ACVR1Q207D-transgenic mouse line, which provides a model of heterotopic ossification (HO), as well as an inducible ACVR1R206H-knockin mouse, which serves as a genetically and physiologically faithful FOP model. In both models, saracatinib was well tolerated and potently inhibited the development of HO, even when administered transiently following soft tissue injury.
    [Show full text]
  • The Novel Cer-Like Protein Caronte Mediates the Establishment of Embryonic Left±Right Asymmetry
    articles The novel Cer-like protein Caronte mediates the establishment of embryonic left±right asymmetry ConcepcioÂn RodrõÂguez Esteban*², Javier Capdevila*², Aris N. Economides³, Jaime Pascual§,AÂ ngel Ortiz§ & Juan Carlos IzpisuÂa Belmonte* * The Salk Institute for Biological Studies, Gene Expression Laboratory, 10010 North Torrey Pines Road, La Jolla, California 92037, USA ³ Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, USA § Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA ² These authors contributed equally to this work ............................................................................................................................................................................................................................................................................ In the chick embryo, left±right asymmetric patterns of gene expression in the lateral plate mesoderm are initiated by signals located in and around Hensen's node. Here we show that Caronte (Car), a secreted protein encoded by a member of the Cerberus/ Dan gene family, mediates the Sonic hedgehog (Shh)-dependent induction of left-speci®c genes in the lateral plate mesoderm. Car is induced by Shh and repressed by ®broblast growth factor-8 (FGF-8). Car activates the expression of Nodal by antagonizing a repressive activity of bone morphogenic proteins (BMPs). Our results de®ne a complex network of antagonistic molecular interactions between Activin, FGF-8, Lefty-1, Nodal, BMPs and Car that cooperate to control left±right asymmetry in the chick embryo. Many of the cellular and molecular events involved in the establish- If the initial establishment of asymmetric gene expression in the ment of left±right asymmetry in vertebrates are now understood. LPM is essential for proper development, it is equally important to Following the discovery of the ®rst genes asymmetrically expressed ensure that asymmetry is maintained throughout embryogenesis.
    [Show full text]
  • ACVR1C Antibody Cat
    ACVR1C Antibody Cat. No.: 4795 ACVR1C Antibody Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human, Mouse, Rat ACVR1C antibody was raised against a 15 amino acid synthetic peptide near the amino terminus of the human ACVR1C. IMMUNOGEN: The immunogen is located within amino acids 130 - 180 of ACVR1C. TESTED APPLICATIONS: ELISA, WB ACVR1C antibody can be used for detection of ACVR1C by Western blot at 1 and 2 μg/mL. APPLICATIONS: Antibody validated: Western Blot in human samples. All other applications and species not yet tested. SPECIFICITY: This antibody is predicted to have no cross-reactivity to ACVR1 or ACVR1B. POSITIVE CONTROL: 1) Cat. No. 1309 - Human Placenta Tissue Lysate Properties PURIFICATION: ACVR1C Antibody is affinity chromatography purified via peptide column. CLONALITY: Polyclonal September 25, 2021 1 https://www.prosci-inc.com/acvr1c-antibody-4795.html ISOTYPE: IgG CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: ACVR1C Antibody is supplied in PBS containing 0.02% sodium azide. CONCENTRATION: 1 mg/mL ACVR1C antibody can be stored at 4˚C for three months and -20˚C, stable for up to one STORAGE CONDITIONS: year. As with all antibodies care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures. Additional Info OFFICIAL SYMBOL: ACVR1 ACVR1C Antibody: FOP, ALK2, SKR1, TSRI, ACTRI, ACVR1A, ACVRLK2, Activin receptor ALTERNATE NAMES: type-1, Activin receptor type I, ACTR-I ACCESSION NO.: Q8NER5 PROTEIN GI NO.: 4501895 GENE ID: 90 USER NOTE: Optimal dilutions for each application to be determined by the researcher. Background and References ACVR1C Antibody: Activins are dimeric growth and differentiation factors which belong to the transforming growth factor-beta (TGF-beta) superfamily of structurally related signaling proteins.
    [Show full text]
  • Human ALK-7 / ACVR1C Protein (ECD, Fc Tag)
    Human ALK-7 / ACVR1C Protein (ECD, Fc Tag) Catalog Number: 10869-H02H General Information SDS-PAGE: Gene Name Synonym: ACVRLK7; ALK7 Protein Construction: A DNA sequence encoding the human ACVR1C (NP_660302.2) (Met1- Glu113) was expressed with the Fc region of human IgG1 at the C- terminus. Source: Human Expression Host: HEK293 Cells QC Testing Purity: > 95 % as determined by SDS-PAGE. Endotoxin: Protein Description < 1.0 EU per μg protein as determined by the LAL method. ALK-7, also known as ALK7 and ACVR1C, belongs to the ALK family. It is a type I receptor for the TGFB family of signaling molecules. TGF-β is the Stability: prototype of a protein superfamily which, in humans, contains at least 35 members, including activins, inhibins, bone morphogenetic proteins, Samples are stable for up to twelve months from date of receipt at -70 ℃ growth/differentiation factors, and Müllerian inhibiting substance. ALK-7 is a serine-threonine kinase that can cause the activation of one of the SMAD Predicted N terminal: Leu 22 signal transducers, SMAD2. ALK-7 has a ligand known as Nodal. Nodal Molecular Mass: stimulates the secretion of TIMP-1 and inhibits matrix metalloproteinases MMP-2 and MMP-9 activity. The overexpression of Nodal or constitutively The recombinant human ACVR1C consists 330 amino acids and predicts active ALK-7 decreases cell migration and invasion, whereas knock-down a molecular mass of 36.6 kDa. of Nodal and ALK-7 has the opposite effects. Formulation: References Lyophilized from sterile PBS, pH 7.4. 1.Lin YY, et al. (2012) Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK.
    [Show full text]
  • ACVR2B Recombinant Protein Cat
    ACVR2B Recombinant Protein Cat. No.: 96-009 ACVR2B Recombinant Protein Specifications SPECIES: Human SOURCE SPECIES: HEK293 cells SEQUENCE: Ser 19 - Thr 137 FUSION TAG: C-His Tag TESTED APPLICATIONS: WB APPLICATIONS: This recombinant protein can be used for WB. For research use only. PREDICTED MOLECULAR 14.5 kDa WEIGHT: Properties PURITY: >97% as determined by SDS-PAGE. PHYSICAL STATE: Lyophilized BUFFER: PBS, pH7.4 Lyophilized Protein should be stored at -20˚C or lower for long term storage. Upon STORAGE CONDITIONS: reconstitution, working aliquots should be stored at -20˚C or -70˚C. Avoid repeated freeze-thaw cycles. September 27, 2021 1 https://www.prosci-inc.com/acvr2b-recombinant-protein-96-009.html Additional Info OFFICIAL SYMBOL: ACVR2B ALTERNATE NAMES: ACVR2B, ACTRIIB, MGC116908 ACCESSION NO.: NP_001097 GENE ID: 93 Background and References Activin receptor type-2B (ACVR2B) is also known as ActR-IIB and MGC116908, ACVR2B is an activin type 2 receptor. Activins are dimeric growth and differentiation factors which belong to the transforming growth factor-beta (TGF-beta) superfamily of structurally related signaling proteins. Activins signal through a heteromeric complex of receptor serine kinases which include at least two type I (I and IB) and two type II (II and IIB) receptors. These receptors are all transmembrane proteins, composed of a ligand-binding extracellular domain with cysteine-rich region, a transmembrane domain, and a BACKGROUND: cytoplasmic domain with predicted serine/threonine specificity. Type I receptors are essential for signaling; and type II receptors are required for binding ligands and for expression of type I receptors. Type I and II receptors form a stable complex after ligand binding, resulting in phosphorylation of type I receptors by type II receptors.
    [Show full text]
  • Identification of Tgfβ-Related Genes Regulated in Murine Osteoarthritis and Chondrocyte Hypertrophy by Comparison of Multiple Microarray Datasets
    http://hdl.handle.net/1765/109466 Identification of TGFβ-related genes regulated in murine osteoarthritis and chondrocyte hypertrophy by comparison of multiple microarray datasets Laurie M.G. de Kroon1,2,&, Guus G.H. van den Akker1,&, Bent Brachvogel3,4, Roberto Narcisi2, Daniele Belluoccio5, Florien Jenner6, John F. Bateman5, Christopher B. Little7, Pieter Brama8, Esmeralda N. Blaney Davidson1, Peter M. van der Kraan1, Gerjo J.V.M. van Osch2,9* 1Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands 2Department of Orthopedics, Erasmus MC University Medical Center, Rotterdam, the Netherlands 3Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany 4Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty, University of Cologne, Cologne, Germany 5Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia 6Equine University Hospital, University of Veterinary Medicine, Vienna, Austria 7Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, University of Sydney, St Leonards, New South Wales, Australia 8Veterinary Clinical Sciences, School of Veterinary Medicine, University College Dublin, Dublin, Ireland 9Department of Otorhinolaryngology, Erasmus MC University Medical Center, Rotterdam, the Netherlands &Both authors contributed equally *Corresponding author: Gerjo van Osch ([email protected]) Address for correspondence: Erasmus MC, Departments
    [Show full text]