Wireless Communication Systems,Fountain Codes, Tornado

Total Page:16

File Type:pdf, Size:1020Kb

Wireless Communication Systems,Fountain Codes, Tornado Journal of Wireless Networking and Communications 2016, 6(1): 10-20 DOI: 10.5923/j.jwnc.20160601.02 Performance Evaluation of Various Erasures Coding Techniques in Digital Communication N. M. El-Gohary1,*, M. A. M. El-Bendary2, F. E. Abd El-Samie3, M. M. Fouad1 1Department of Electonics and Communication, Faculty of Engineering, Zagazig University, Egypt 2Department of Communication Technology, Faculty of Industrial Education, Helwan University, Egypt 3Department of Electonics and Communication, Faculty of Electonics Engineering, Menofia University, Egypt Abstract Reducing error in wireless, satellite, and space communication systems is critical. In the wireless communication system, various coding methods are employed on the data transferred to induce high bit error rates. High speed wireless networks, in order to address the large latency and degraded network throughput due to the retransmission triggered by frame loss, the purpose of this paper is to study and investigate the performance of fountain codes that is used to encode and decode the data stream in digital communication. This is an intelligent solution that encodes a number of redundant frames from the original frames upon link loss rate so that a receiver can effectively recover lost original frames without significant retransmissions. Since then, many digital Fountain coding methods have been invented such as Tornado codes, Luby transforms (LT) codes and Raptor codes. Keywords Wireless communication systems, Fountain codes, Tornado codes, Luby transforms and Raptor codes ensures reliability by essentially retransmitting packets 1. Introduction within a transmission window whose reception has not been acknowledged by the receiver. It is known that such In civil and military applications, wireless networking protocols exhibit poor behavior in many cases, such as the technologies have been widely deployed such as 3G/4G and transmission of data over heavily disabled channels or IEEE 802.11 WLAN networks. However, wireless transmission of data from one server to multiple receivers or, communication suffers from frame losses due to shadowing, such as poor wireless or satellite links. Moreover, ack-based mobility, channel fading, and interferences. Frame loss protocols such as TCP perform poorly when the distance significantly undermines wireless network performance in between the sender and the receiver is long, since large that latency is enlarged and throughput is degraded. The distances lead to idle times during which the sender waits for large latency is induced by the retransmission of lost frames an acknowledgment and cannot send data. For these reasons, in the MAC layer [6]. other transmission solutions have been proposed. One class On the Internet, data is transmitted in the form of packets. of such solutions is based on coding. The original data is Each packet is armed with a header that describes the source encoded using some linear erasure correcting code. If during and the destination of the packet, and often also a sequence the transmission some part of the data is lost, then it is number describing the absolute or relative position of the possible to recover the lost data using erasure correcting packet in a given stream. These packets are routed in the algorithms. For applications it is critical that the codes used network from the source to the destination [16]. Due to are able to correct as many erasures as possible, and it is also various reasons, for example, buffer overflows at the critical that the encoding and decoding algorithms for these intermediate routers; some packets may get lost and never codes are very fast. Reed–Solomon codes can be used to reach their destination, other packets may be announced as partially recover for the inefficiency of random codes. lost if the internal check of the packet does not match. Reed–Solomon codes can be decoded from a block with the Therefore, the Internet is a very good real-world pattern of maximum possible number of erasures in time quadratic in the BEC. the dimension. There are faster algorithms based on fast Reliable transmission of data over the Internet has been polynomial arithmetic, but these algorithms are often too the subject of much research. Reliability is ensured by the complicated in practice. However, quadratic running times use of suitable protocols. For example, the present TCP/IP are still too large for many applications. Other codes are constructed with linear time encoding and * Corresponding author: [email protected] (N. M. El-Gohary) decoding algorithms that can come arbitrarily close to the Published online at http://journal.sapub.org/jwnc capacity of the BEC [16, 18]. These codes, called Tornado Copyright © 2016 Scientific & Academic Publishing. All Rights Reserved codes, are very similar to Gallager’s low-density Journal of Wireless Networking and Communications 2016, 6(1): 10-20 11 parity-check (LDPC) codes [19], but they use a highly the data using an error-correcting code (ECC) before unequal weight distribution for the implied graphs. transmission. The receiver used the additional In computer networks, fountain codes are ideally suited redundancy added the code to recover the original data. for transmitting information. A server sending data to many • Automatic repeat request (ARQ): (referred also to as recipients can perform Fountain code for a given piece of backward error correction): Every block of data data to generate an infinite stream of packets. As soon as a received is checked using the error detection code used, receiver requests data, the packets are copied and forwarded and if the check fails, retransmission of the data is to the receiver. In a broadcast transmission model, there is no requested – this may be done repeatedly, until the data need for copying the data since any outgoing packet is can be executed. This is an error control technique received by all the receivers. In other types of networks, the whereby an error detection scheme is combined with copying can be done actively by the sender, or it can be done requests for retransmission of incorrect data. by the network. An example, if multicast is enabled; the FEC and ARQ may be combined, this is called hybrid recipient collects the output symbols, and leaves the automatic repeat-request (HARQ), such that minor errors transmission as soon as it has been received by them. That are corrected without retransmission, and major errors are time, it uses the decoding algorithm to recover the original corrected via a request for retransmission. There are many symbols. That, the number is the same regardless of the different families of error-correcting codes of major channel characteristics between the sender and the receiver. importance for recording applications is the family of More loss of symbols just translates to a longer waiting time Reed-Solomon (RS) codes. to receive the packets. This paper surveys the channel coding methods in the 2.2. Binary Erasure Channel physical layer and Digital Fountain code proposals in the The Binary Erasure Channel (BEC) is a channel model application layer. The following paper is arranged as follows. where the receiver either receives the transmitted bit or is Section 2 presents the RS codes architectures, applications informed with the erasure of the bit, that is, the bit was not and limitations. Section 3 discusses the fountain codes received or erased. Therefore, the receiver has no idea about properties, the related erasure channel and construction. the transmitted bit with a certain probability p, and is exactly Section 4 Recent advances have produced powerful fountain sure about the transmitted bit with a certain probability 1-p. codes, such as Tornado codes, Luby Transform (LT) codes According to Shannon, the capacity of BEC is 1-p, which and Raptor codes. Finally, section 5 discusses the advantages means that for the alphabet size of 2k, where k is the number of fountain code over Reed Solomon code. Finally section 6 of bits in the alphabet, no more than (1− p) k bits/symbol can presents the conclusion. be reliably communicated over the binary erasure channel [20]. Feedback from the receiver to the transmitter will not 2. Developing Background Related increase the capacity of the channel and reliable Work and Motivations communication should be possible at this rate. Automatic Repeat Request (ARQ) schemes have so long been used as a 2.1. Error Correction Control (ECC) classical approach to solve the reliable communication In information and coding theory with applications in problem. However, redundant number of feedbacks used in computer science and telecommunication system, error the case of erasures causes improvident usage of bandwidth, detection and correction are techniques that enables reliable network overloads and impossible delays. Also known as and efficient delivery of digital data over communication rateless erasure codes are a class of erasure codes with the channels. Many communication channels are subject to property that a potentially limitless sequence of encoding channel noise, and thus errors may be inserted during symbols can be generated from a given set of source symbols transmission from the source to a receiver. Error detection such that the original source symbols can ideally be techniques permit detecting such errors, while error recovered from any subset of the encoding symbols of size correction enables regeneration of the original data in many equal to or only slightly larger than the number of source cases. symbols. The term fountain or rateless refers to the fact that Error correction control is accomplished by adding these codes do not exhibit a fixed code rate. redundant symbols to the message. These redundant symbols make it possible for the receiver to detect and /or 2.3. Reed-Solomon Code correct some of the errors that may occur in the received Reed-Solomon (RS) code is a forward error-correcting message. The main challenge is to ensure the required code first invented in 1960 by Irving Reed and Solomon [1].
Recommended publications
  • Raptor Codes Amin Shokrollahi, Senior Member, IEEE
    IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006 2551 Raptor Codes Amin Shokrollahi, Senior Member, IEEE Abstract—LT-codes are a new class of codes introduced by Luby such as poor wireless or satellite links. Moreover, ack-based for the purpose of scalable and fault-tolerant distribution of data protocols such as TCP perform poorly when the distance be- over computer networks. In this paper, we introduce Raptor codes, tween the sender and the receiver is long, since large distances an extension of LT-codes with linear time encoding and decoding. We will exhibit a class of universal Raptor codes: for a given in- lead to idle times during which the sender waits for an acknowl- teger and any real , Raptor codes in this class produce a edgment and cannot send data. potentially infinite stream of symbols such that any subset of sym- For these reasons, other transmission solutions have been pro- bols of size is sufficient to recover the original sym- posed. One class of such solutions is based on coding. The orig- bols with high probability. Each output symbol is generated using inal data is encoded using some linear erasure correcting code. operations, and the original symbols are recovered from the collected ones with operations. If during the transmission some part of the data is lost, then it We will also introduce novel techniques for the analysis of the is possible to recover the lost data using erasure correcting al- error probability of the decoder for finite length Raptor codes. gorithms. For applications it is crucial that the codes used are Moreover, we will introduce and analyze systematic versions of capable of correcting as many erasures as possible, and it is Raptor codes, i.e., versions in which the first output elements of also crucial that the encoding and decoding algorithms for these the coding system coincide with the original elements.
    [Show full text]
  • A Digital Fountain Retrospective
    A Digital Fountain Retrospective John W. Byers Michael Luby Michael Mitzenmacher Boston University ICSI, Berkeley, CA Harvard University This article is an editorial note submitted to CCR. It has NOT been peer reviewed. The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online. ABSTRACT decoding can not occur and the receiver falls back to retransmission We introduced the concept of a digital fountain as a scalable approach based protocols. to reliable multicast, realized with fast and practical erasure codes, More fundamentally, in a multicast setting where concurrent in a paper published in ACM SIGCOMM ’98. This invited editorial, receivers experience different packet loss patterns, efficiently or- on the occasion of the 50th anniversary of the SIG, reflects on the chestrating transmissions from a fixed amount of encoding (see, trajectory of work leading up to our approach, and the numerous e.g., [31]), becomes unwieldy at best, and runs into significant scal- developments in the field in the subsequent 21 years. We discuss ing issues as the number of receivers grows. advances in rateless codes, efficient implementations, applications The research described in [6], [7] (awarded the ACM SIGCOMM of digital fountains in distributed storage systems, and connections Test of Time award) introduced the concept of an erasure code to invertible Bloom lookup tables. without a predetermined code rate. Instead, as much encoded data as needed could be generated efficiently from source data on the CCS CONCEPTS fly. Such an erasure code was called a digital fountain in [6], [7], which also described a number of compelling use cases.
    [Show full text]
  • Raptor Codes Full Text Available At
    Full text available at: http://dx.doi.org/10.1561/0100000060 Raptor Codes Full text available at: http://dx.doi.org/10.1561/0100000060 Raptor Codes Amin Shokrollahi EPFL Station 14 Lausanne 1015 Switzerland amin.shokrollahi@epfl.ch Michael Luby Qualcomm, Inc. 3195 Kifer Road Santa Clara, CA 95051 USA [email protected] Boston { Delft Full text available at: http://dx.doi.org/10.1561/0100000060 Foundations and Trends R in Communications and Information Theory Published, sold and distributed by: now Publishers Inc. PO Box 1024 Hanover, MA 02339 USA Tel. +1-781-985-4510 www.nowpublishers.com [email protected] Outside North America: now Publishers Inc. PO Box 179 2600 AD Delft The Netherlands Tel. +31-6-51115274 The preferred citation for this publication is A. Shokrollahi and M. Luby, Rap- tor Codes, Foundations and Trends R in Communications and Information Theory, vol 6, nos 3{4, pp 213{322, 2009 ISBN: 978-1-60198-446-3 c 2011 A. Shokrollahi and M. Luby All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers. Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen- ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The `services' for users can be found on the internet at: www.copyright.com For those organizations that have been granted a photocopy license, a separate system of payment has been arranged.
    [Show full text]
  • Fountain Codes
    6.972 PRINCIPLES OF DIGITAL COMMUNICATION II Fountain Codes Gauri Joshi, Joong Bum Rhim, John Sun, Da Wang December 8, 2010 Contents 1 Digital Fountain Ideal3 2 Preliminaries 4 2.1 Binary Erasure Channel...................................4 2.2 Edge Degree Distributions..................................4 3 Tornado Codes 5 3.1 Code Construction......................................5 3.2 Optimal Degree Sequences..................................7 3.3 Practical Considerations...................................9 3.3.1 Matlab Implementation...............................9 4 LT Codes 9 4.1 Code Construction...................................... 10 4.1.1 Encoding Process................................... 10 4.1.2 Decoding Process................................... 10 4.2 Degree Distribution...................................... 11 4.2.1 The Ideal Soliton Distribution............................ 12 4.2.2 The Robust Soliton Distribution.......................... 13 4.3 Performance Analysis.................................... 14 4.3.1 Degree Distribution................................. 15 4.3.2 Density Evolution.................................. 15 4.4 Implementation........................................ 17 5 Raptor Codes 17 5.1 Code Construction...................................... 18 5.2 Error Analysis......................................... 19 5.3 Practical Considerations................................... 19 5.3.1 Finite-length Raptor Codes............................. 20 5.3.2 Systematic Raptor Codes.............................. 20 5.3.3
    [Show full text]
  • Investigation on Digital Fountain Codes Over Erasure Channels and Additive White
    Investigation on Digital Fountain Codes over Erasure Channels and Additive White Gaussian Noise Channels A dissertation presented to the faculty of the Russ College of Engineering and Technology of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Weizheng Huang June 2012 © 2012 Weizheng Huang. All Rights Reserved. 2 This dissertation titled Investigation on Digital Fountain Codes over Erasure Channels and Additive White Gaussian Noise Channels by WEIZHENG HUANG has been approved for the School of Electrical Engineering and Computer Science and the Russ College of Engineering and Technology by Jeffrey Dill Professor of Electrical Engineering and Computer Science Dennis Irwin Dean, Russ College of Engineering and Technology 3 ABSTRACT HUANG, WEIZHENG, Ph.D., June 2012, Electrical Engineering Investigation on Digital Fountain Codes over Erasure Channels and Additive White Gaussian Noise Channels Director of Dissertation: Jeffrey Dill As newly invented packet erasure codes, digital fountain codes (LT codes and Raptor codes) under iterative message passing decoding can work very efficiently in computer networks for large scale data distribution (e.g., greater than 6.4×104 bits) without knowledge of the states of individual lossy channels, regardless of the propagation modes. Some researchers have moved further and found that fountain codes can achieve near capacity performance over AWGN channels. However, little literature on the research of a fountain code’s decoding overhead had been obtained, especially for short and moderate-length data (e.g., smaller than 1×104 bits). We are interested in the overheads of fountain codes of different kinds or designs because a harsh communication condition can hurt some decoding schemes by limiting the number of received encoded symbols.
    [Show full text]
  • Application Layer Forward Error Correction for Mobile Multimedia Broadcasting Case Study
    5775 Morehouse Drive San Diego, CA 92121 (858) 587-1121 Application Layer Forward Error Correction for Mobile Multimedia Broadcasting Case Study 80-D9741-1 Rev. A © Copyright l200 data9 may be subject to the International Traffic in Arms Regulations (ITAR) U.S. Dept. of State) and/or the Export Administration Regulations (EAR) Digital Fountain(U.S. Incorporated, Dept. of Commerce) a Qualcomm. This Company technical data may not be exported, re-exported, released, or disclosed inside or outside the U.S. without first All rights reservedcomplying with the requirements of U.S. export law. Application Layer Forward Error Correction for Mobile Multimedia 1 Broadcasting Thomas Stockhammer, Amin Shokrollahi, Mark Watson, Michael Luby, Tiago Gasiba Abstract Application Layer Forward Error Correction (AL-FEC) is an innovative way to provide reliability in mobile broadcast systems. Conventional data such as multimedia files or multimedia streams are extended with repair information which can be used to recover lost data at the receiver. AL-FEC is integrated into content delivery protocols (CDPs) to support reliable delivery. Several standardization committees such as 3GPP and DVB have recognized the importance of AL-FEC and have standardized Raptor codes as the most powerful AL-FEC codes to be used for such applications. The major characteristics of Raptor codes are channel efficiency, low-complexity, and flexibility. An important consideration when using AL-FEC is system integration. With the right system design including AL-FEC, the efficiency and/or quality of delivery services can be significantly enhanced. This work shows these benefits in selected use cases, specifically focusing on 3G based multimedia broadcasting within the MBMS standard.
    [Show full text]
  • Coding Theory for Scalable Media Delivery (Slides)
    1 Coding theory for scalable media delivery Michael Luby RaptorQ is a product of Qualcomm Technologies, Inc. Application layer erasure coding complements traditional error coding Forward Error Correction Technology “Error Coding” “Erasure Coding” Protects against Protects against Data Lost Data Corruption in Transmission • Vast majority of current use of FEC • Commercial application relatively new • Probably what you’re familiar with • Applied above layer 2 • Typically applied at layers 1 or 2 • Complement to Error Coding • Usually performed in hardware • Typically performed in software • PHY-FEC (physical layer FEC) • AL-FEC (application layer FEC) 3 Packet transmission Packet payload Packet header Stream of packets Received corrupted packet is discarded Can identify received packet payloads from packet headers 4 Application Layer erasure codes Source data Erasure encode Packetize Transmit Depacketize Erasure decode Source data 5 AL-FEC and PHY-FEC are complementary AL-FEC Packet loss protection over small to large block Flexible time diversity Flexible amount of protection Flexible time diversity – from sub-second to hours Time Fixed time diversity – e.g., < 1 second PHY-FEC Correct or discard corrupted packet data over small block Fixed time diversity Fixed amount of protection 6 AL-FEC and PHY-FEC working together PHY-FEC corrects noise and interference AL-FEC “interleaves” and corrects erasures − Longer block length (“interleavers”) è better performance AL-FEC CR = 0.8 Source block 4.3 Mbit/s p=0% AL-FEC Decoding PHY-FEC works Source
    [Show full text]
  • Low-Density Parity-Check Codes and Their Rateless Relatives Nicholas Bonello, Sheng Chen, and Lajos Hanzo
    IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 13, NO. 1, FIRST QUARTER 2011 3 Low-Density Parity-Check Codes and Their Rateless Relatives Nicholas Bonello, Sheng Chen, and Lajos Hanzo Abstract—This survey guides the reader through the extensive achieving it. This triggered widespread research efforts result- open literature that is covering the family of low-density parity- ing in diverse extensions, deeper interpretations and practical check (LDPC) codes and their rateless relatives. In doing so, we realizations of Shannon’s original work, which reached its will identify the most important milestones that have occurred since their conception until the current era and elucidate the pinnacle in the definition of LDPC and turbo codes. related design problems and their respective solutions. Index Terms—Low-density parity-check (LDPC) codes, rate- A. Fixed-rate Versus Rateless Forward Error Correction less codes and codes-on-graph. In the majority of the research literature, fixed-rate and rate- less codes are generally treated separately and hence the reader I. INTRODUCTION inevitably gets the impression that these channel codes are OOKING back over the last six decades or so, one can strikingly dissimilar or even perhaps unrelated. By contrast, in L reasonably surmise that the family of low-density parity- this survey we will be treating them jointly and thus endeavor check codes (LDPC) [1] and that of turbo codes [2], constitute to portray both the differences and the similarities of fixed-rate the two most practical realizations of Shannon’s theory [3], and rateless codes. which have revolutionized the field of error correction cod- Let us commence by outlining the differences.
    [Show full text]
  • HW/SW Co-Design and Implementation of a Fountain Code for an FPGA System-On-Chip
    Master Thesis HW/SW Co-design and Implementation of a Fountain Code for an FPGA System-on-Chip Khurram Ashraf [email protected] Supervisors: Prof. Dr. Klaus Schneider Prof. Dr.-Ing. Norbert Wehn M. tech. Tripti Jain Dr. -Ing. Christian Weis Declaration This work is the result of my own effort, and has been completed without any external help other than mentioned in this project report. References and literature that I have used are fully listed without emission in the literature list of my project. Khurram Ashraf TU Kaiserslautern 29 September, 2016. i Acknowledgment In doing this thesis work, I was blessed to work with some truly remarkable people. First of all, I would like to express my sincere gratitude to Miss Tripti Jain, Dr.-Ing. Christian Weis and Dipl.-Ing. Stefan Scholl for their supervision and support during the entire period of this thesis. I am really thankful to Prof.Dr. Klaus Schneider and Prof. Dr.-Ing. Norbert Wehn for their support by providing me an opportunity to work in their research group of Embedded Systems and Microelectronic Systems De- sign at Technical University of Kaiserslatuern. Furthermore, the knowledge I acquired by taking courses under their supervision helped me in building in-depth understanding for this thesis. Lastly, but most importantly, I would like to express my gratitude to my parents and brother for helping me during my studies. ii Abstract Wireless communication traffic has increased significantly over the past few decades. Communication via noisy and unreliable channel can lead to data loss or erroneous data information.
    [Show full text]