Fountain Codes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Raptor Codes Amin Shokrollahi, Senior Member, IEEE
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006 2551 Raptor Codes Amin Shokrollahi, Senior Member, IEEE Abstract—LT-codes are a new class of codes introduced by Luby such as poor wireless or satellite links. Moreover, ack-based for the purpose of scalable and fault-tolerant distribution of data protocols such as TCP perform poorly when the distance be- over computer networks. In this paper, we introduce Raptor codes, tween the sender and the receiver is long, since large distances an extension of LT-codes with linear time encoding and decoding. We will exhibit a class of universal Raptor codes: for a given in- lead to idle times during which the sender waits for an acknowl- teger and any real , Raptor codes in this class produce a edgment and cannot send data. potentially infinite stream of symbols such that any subset of sym- For these reasons, other transmission solutions have been pro- bols of size is sufficient to recover the original sym- posed. One class of such solutions is based on coding. The orig- bols with high probability. Each output symbol is generated using inal data is encoded using some linear erasure correcting code. operations, and the original symbols are recovered from the collected ones with operations. If during the transmission some part of the data is lost, then it We will also introduce novel techniques for the analysis of the is possible to recover the lost data using erasure correcting al- error probability of the decoder for finite length Raptor codes. gorithms. For applications it is crucial that the codes used are Moreover, we will introduce and analyze systematic versions of capable of correcting as many erasures as possible, and it is Raptor codes, i.e., versions in which the first output elements of also crucial that the encoding and decoding algorithms for these the coding system coincide with the original elements. -
Theory and Modelling of Single-Electronic Systems
Theory and Modelling of Single-Electronic Systems Sharief Fadul Babikir October 1993 A Thesis presented to the University of Glasgow Department of Electronics and Electrical Engineering for the degree of Doctor of Philosophy © Sharief Fadul Babikir, 1993 ProQuest Number: 13833803 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13833803 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 GLASGOW university irm&RY _ 4S .1 "I3 G ( i ) Abstract In this thesis a theoretical study is made of the behaviour of single- electronic devices and systems. It is argued that the properties of single- electronic systems can be determined if the densities of the legal soliton states are known. The dynamics of the tunnelling electrons in such systems are modelled as a traffic process. An exact analytical technique based on the conventional Traffic Theory is formulated in the thesis. This new technique is compared with the traditional Monte-Carlo method and is shown to be superior, both in accuracy and speed. An algorithm that correctly and efficiently determines the set of active soliton states and the relationship between the states is also described. -
A Digital Fountain Retrospective
A Digital Fountain Retrospective John W. Byers Michael Luby Michael Mitzenmacher Boston University ICSI, Berkeley, CA Harvard University This article is an editorial note submitted to CCR. It has NOT been peer reviewed. The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online. ABSTRACT decoding can not occur and the receiver falls back to retransmission We introduced the concept of a digital fountain as a scalable approach based protocols. to reliable multicast, realized with fast and practical erasure codes, More fundamentally, in a multicast setting where concurrent in a paper published in ACM SIGCOMM ’98. This invited editorial, receivers experience different packet loss patterns, efficiently or- on the occasion of the 50th anniversary of the SIG, reflects on the chestrating transmissions from a fixed amount of encoding (see, trajectory of work leading up to our approach, and the numerous e.g., [31]), becomes unwieldy at best, and runs into significant scal- developments in the field in the subsequent 21 years. We discuss ing issues as the number of receivers grows. advances in rateless codes, efficient implementations, applications The research described in [6], [7] (awarded the ACM SIGCOMM of digital fountains in distributed storage systems, and connections Test of Time award) introduced the concept of an erasure code to invertible Bloom lookup tables. without a predetermined code rate. Instead, as much encoded data as needed could be generated efficiently from source data on the CCS CONCEPTS fly. Such an erasure code was called a digital fountain in [6], [7], which also described a number of compelling use cases. -
Raptor Codes Full Text Available At
Full text available at: http://dx.doi.org/10.1561/0100000060 Raptor Codes Full text available at: http://dx.doi.org/10.1561/0100000060 Raptor Codes Amin Shokrollahi EPFL Station 14 Lausanne 1015 Switzerland amin.shokrollahi@epfl.ch Michael Luby Qualcomm, Inc. 3195 Kifer Road Santa Clara, CA 95051 USA [email protected] Boston { Delft Full text available at: http://dx.doi.org/10.1561/0100000060 Foundations and Trends R in Communications and Information Theory Published, sold and distributed by: now Publishers Inc. PO Box 1024 Hanover, MA 02339 USA Tel. +1-781-985-4510 www.nowpublishers.com [email protected] Outside North America: now Publishers Inc. PO Box 179 2600 AD Delft The Netherlands Tel. +31-6-51115274 The preferred citation for this publication is A. Shokrollahi and M. Luby, Rap- tor Codes, Foundations and Trends R in Communications and Information Theory, vol 6, nos 3{4, pp 213{322, 2009 ISBN: 978-1-60198-446-3 c 2011 A. Shokrollahi and M. Luby All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers. Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen- ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The `services' for users can be found on the internet at: www.copyright.com For those organizations that have been granted a photocopy license, a separate system of payment has been arranged. -
Network Coding Protocols with Delay and Energy Constraints
Maricica Nistor Network Coding Protocols with Delay and Energy Constraints MAP-tele Doctoral Programme em Telecommunications Departamento de Engenharia Eletrot´ecnica e de Computadores Faculdade de Engenharia da Universidade do Porto May 2014 Maricica Nistor Network Coding Protocols with Delay and Energy Constraints Tese submetida `aFaculdade de Engenharia da Universidade do Porto para obten¸c˜ao do grau de Doutor em Telecomunica¸c˜oes Orientadores: Professor Doutor Jo˜ao Barros, Universidade do Porto, Portugal Professor Doutor Daniel E. Lucani, Aalborg University, Denmark May 2014 2 Acknowledgements I would like to thank my advisor, Professor Jo˜ao Barros, for his support, en- couragement, and guidance throughout my PhD. I would also like to thank my co-advisor, Professor Daniel E. Lucani, for his help and patience, and the way he really made my life more enjoyable during these last years. I thank my colleagues from IT Porto for the good moments we spent to- gether and all research collaborators I worked with during my PhD. A special thank goes to my family for the unconditional support, trust, and because they never stop to believe in me. I would also like to thank my friends for the encouragements, advises, and for being always close to me. Finally, I would like to thank Luis Monteiro, for his love, patience, and support. I dedicate this work to Luis Monteiro! This work was partially funded by the Funda¸c˜ao Calouste Gulbenkian un- der grant 103905 and by Funda¸c˜ao para a Ciˆencia e Tecnologia (Portuguese Foundation for Science and Technology) under grant SFRH-BD-61953-2009. -
Investigation on Digital Fountain Codes Over Erasure Channels and Additive White
Investigation on Digital Fountain Codes over Erasure Channels and Additive White Gaussian Noise Channels A dissertation presented to the faculty of the Russ College of Engineering and Technology of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Weizheng Huang June 2012 © 2012 Weizheng Huang. All Rights Reserved. 2 This dissertation titled Investigation on Digital Fountain Codes over Erasure Channels and Additive White Gaussian Noise Channels by WEIZHENG HUANG has been approved for the School of Electrical Engineering and Computer Science and the Russ College of Engineering and Technology by Jeffrey Dill Professor of Electrical Engineering and Computer Science Dennis Irwin Dean, Russ College of Engineering and Technology 3 ABSTRACT HUANG, WEIZHENG, Ph.D., June 2012, Electrical Engineering Investigation on Digital Fountain Codes over Erasure Channels and Additive White Gaussian Noise Channels Director of Dissertation: Jeffrey Dill As newly invented packet erasure codes, digital fountain codes (LT codes and Raptor codes) under iterative message passing decoding can work very efficiently in computer networks for large scale data distribution (e.g., greater than 6.4×104 bits) without knowledge of the states of individual lossy channels, regardless of the propagation modes. Some researchers have moved further and found that fountain codes can achieve near capacity performance over AWGN channels. However, little literature on the research of a fountain code’s decoding overhead had been obtained, especially for short and moderate-length data (e.g., smaller than 1×104 bits). We are interested in the overheads of fountain codes of different kinds or designs because a harsh communication condition can hurt some decoding schemes by limiting the number of received encoded symbols. -
Wireless Communication Systems,Fountain Codes, Tornado
Journal of Wireless Networking and Communications 2016, 6(1): 10-20 DOI: 10.5923/j.jwnc.20160601.02 Performance Evaluation of Various Erasures Coding Techniques in Digital Communication N. M. El-Gohary1,*, M. A. M. El-Bendary2, F. E. Abd El-Samie3, M. M. Fouad1 1Department of Electonics and Communication, Faculty of Engineering, Zagazig University, Egypt 2Department of Communication Technology, Faculty of Industrial Education, Helwan University, Egypt 3Department of Electonics and Communication, Faculty of Electonics Engineering, Menofia University, Egypt Abstract Reducing error in wireless, satellite, and space communication systems is critical. In the wireless communication system, various coding methods are employed on the data transferred to induce high bit error rates. High speed wireless networks, in order to address the large latency and degraded network throughput due to the retransmission triggered by frame loss, the purpose of this paper is to study and investigate the performance of fountain codes that is used to encode and decode the data stream in digital communication. This is an intelligent solution that encodes a number of redundant frames from the original frames upon link loss rate so that a receiver can effectively recover lost original frames without significant retransmissions. Since then, many digital Fountain coding methods have been invented such as Tornado codes, Luby transforms (LT) codes and Raptor codes. Keywords Wireless communication systems, Fountain codes, Tornado codes, Luby transforms and Raptor codes ensures reliability by essentially retransmitting packets 1. Introduction within a transmission window whose reception has not been acknowledged by the receiver. It is known that such In civil and military applications, wireless networking protocols exhibit poor behavior in many cases, such as the technologies have been widely deployed such as 3G/4G and transmission of data over heavily disabled channels or IEEE 802.11 WLAN networks. -
Application Layer Forward Error Correction for Mobile Multimedia Broadcasting Case Study
5775 Morehouse Drive San Diego, CA 92121 (858) 587-1121 Application Layer Forward Error Correction for Mobile Multimedia Broadcasting Case Study 80-D9741-1 Rev. A © Copyright l200 data9 may be subject to the International Traffic in Arms Regulations (ITAR) U.S. Dept. of State) and/or the Export Administration Regulations (EAR) Digital Fountain(U.S. Incorporated, Dept. of Commerce) a Qualcomm. This Company technical data may not be exported, re-exported, released, or disclosed inside or outside the U.S. without first All rights reservedcomplying with the requirements of U.S. export law. Application Layer Forward Error Correction for Mobile Multimedia 1 Broadcasting Thomas Stockhammer, Amin Shokrollahi, Mark Watson, Michael Luby, Tiago Gasiba Abstract Application Layer Forward Error Correction (AL-FEC) is an innovative way to provide reliability in mobile broadcast systems. Conventional data such as multimedia files or multimedia streams are extended with repair information which can be used to recover lost data at the receiver. AL-FEC is integrated into content delivery protocols (CDPs) to support reliable delivery. Several standardization committees such as 3GPP and DVB have recognized the importance of AL-FEC and have standardized Raptor codes as the most powerful AL-FEC codes to be used for such applications. The major characteristics of Raptor codes are channel efficiency, low-complexity, and flexibility. An important consideration when using AL-FEC is system integration. With the right system design including AL-FEC, the efficiency and/or quality of delivery services can be significantly enhanced. This work shows these benefits in selected use cases, specifically focusing on 3G based multimedia broadcasting within the MBMS standard. -
Design of High Performance Low Latency Rateless Codes
DESIGN OF HIGH PERFORMANCE LOW LATENCY RATELESS CODES A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF ÇANKAYA UNIVERSITY BY NADHIR IBRAHIM ABDULKHALEQ IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF PHILOSOPHY OF DOCTORATE IN THE DEPARTMENT OF ELECTRONIC AND COMMUNICATION ENGINEERING SEPTEMBER 2017 ABSTRACT DESIGN OF HIGH PERFORMANCE LOW LATENCY RATELESS CODES ABDULKHALEQ, Nadhir Ibrahim Ph.D., Electronic and Communication Engineering Department Supervisor: Assoc. Prof. Dr. Orhan GAZI September 2017, 109 pages Luby Transform (LT) codes are one of the best rateless codes mainly designed for binary erasure channel. The characteristics of such codes perfectly performing when used with bulk data files, however a performance degradation has been observed when using them with short length messages. In this thesis, we present a new design for rateless codes, particularly an efficient LT codes using robust soliton distribution (RSD) as a degree generation method and tested in both binary erasure channel (BEC) and noisy channels like the additive white Gaussian noise (AWGN) channel. First, a new proposed decoding technique is defined as belief propagation-pattern recognition (BP-PR) is implemented to enhance the decoding ability of the conventional (BP) algorithm to overcome the problem of losing degree-one coded symbols which caused early decoding termination. The simulation results approve the improvement of the BP-PR when used with LT-RSD and outperforms the bit error rate (BER) records for the state of art techniques like memory-based robust Soliton distribution using conventional BP (LT-MBRSD-BP) or the Gaussian elimination assisted belief iv propagation (LT-RSD-BP-GE) and improve the records for the BER when used with MBRSD, ISD and optimal degree distribution (ODD), to form the new code called (LT-MBRSD-BP-PR),(LT-ISD-BP-PR) and (LT-ODD-BP-PR) respectively. -
Coding Theory for Scalable Media Delivery (Slides)
1 Coding theory for scalable media delivery Michael Luby RaptorQ is a product of Qualcomm Technologies, Inc. Application layer erasure coding complements traditional error coding Forward Error Correction Technology “Error Coding” “Erasure Coding” Protects against Protects against Data Lost Data Corruption in Transmission • Vast majority of current use of FEC • Commercial application relatively new • Probably what you’re familiar with • Applied above layer 2 • Typically applied at layers 1 or 2 • Complement to Error Coding • Usually performed in hardware • Typically performed in software • PHY-FEC (physical layer FEC) • AL-FEC (application layer FEC) 3 Packet transmission Packet payload Packet header Stream of packets Received corrupted packet is discarded Can identify received packet payloads from packet headers 4 Application Layer erasure codes Source data Erasure encode Packetize Transmit Depacketize Erasure decode Source data 5 AL-FEC and PHY-FEC are complementary AL-FEC Packet loss protection over small to large block Flexible time diversity Flexible amount of protection Flexible time diversity – from sub-second to hours Time Fixed time diversity – e.g., < 1 second PHY-FEC Correct or discard corrupted packet data over small block Fixed time diversity Fixed amount of protection 6 AL-FEC and PHY-FEC working together PHY-FEC corrects noise and interference AL-FEC “interleaves” and corrects erasures − Longer block length (“interleavers”) è better performance AL-FEC CR = 0.8 Source block 4.3 Mbit/s p=0% AL-FEC Decoding PHY-FEC works Source -
An ECSO-Based Approach for Optimizing Degree Distribution of Short-Length LT Codes Peng Luo1*, Hui Fan1, Weiguang Shi2, Xiaoli Qi2, Yuhao Zhao1 and Xueqing Zhou1
Luo et al. EURASIP Journal on Wireless Communications and Networking (2019) 2019:76 https://doi.org/10.1186/s13638-019-1376-6 RESEARCH Open Access An ECSO-based approach for optimizing degree distribution of short-length LT codes Peng Luo1*, Hui Fan1, Weiguang Shi2, Xiaoli Qi2, Yuhao Zhao1 and Xueqing Zhou1 Abstract Degree distribution plays a great role in the performance of Luby transform codes. Typical degree distributions such as ideal soliton distribution and robust soliton distribution are easy to implement and widely used. Nevertheless, their adaptabilities are not always outstanding in various code lengths, especially in the case of short length. In this paper, our work is to optimize degree distributions for the short-length LT codes by using swarm intelligence algorithm, considering its conceptual simplicity, high efficiency, flexibility, and robustness. An optimization problem model based on sparse degree distributions is proposed in the first place. Then, a solution on the basis of an enhanced chicken swarm optimization algorithm, termed as ECSO, is designed for the problem. In ECSO, substitution of bottom individuals, revision of chicks’ update equation, and introduction of differential evolution are designed to enhance the ability of optimization. Simulation comparisons show that the proposed solution achieves much better performance than two other swarm intelligence-based solutions. Keywords: Fountain codes, LT code, Degree distribution, Differential evolution, Chicken swarm optimization 1 Introduction leading a wider scope of application, including deep space Power line communication (PLC) is regarded as a ser- communication [8], data distribution [9], wireless sensor ious candidate for the realization of smart grid networks networks [10], and cloud storage [11]. -
Incremental Redundancy, Fountain Codes and Advanced Topics
GRAPH CODES AND THEIR APPLICATIONS 2014 DRAFT Incremental Redundancy, Fountain Codes and Advanced Topics Suayb S. Arslan 141 Innovation Dr. Irvine, CA 92617 [email protected] “All men by nature desire knowledge." Aristotle Version 0.2 – July 2014 Revision History: • Jan. 2014, First version is released. • Feb. 2014, Uploaded on arXiv.org for public access. • Jul. 2014, Version 0.2 is released. – Table of Contents is added for easy reference. – Fixes few grammatical errors, changes the organization and extends the section of systematic fountain code constructions arXiv:1402.6016v2 [cs.IT] 14 Jul 2014 1 GRAPH CODES AND THEIR APPLICATIONS 2014 DRAFT CONTENTS 1 Abstract 3 2 Introduction 4 2.1 Notation ........................................ 4 2.2 ChannelModelandLinearCodes . ..... 5 2.3 IncrementalRedundancy . ..... 6 3 Linear Fountain Codes 8 3.1 High density Fountain codes: Maximum Likelihood Decoding .......... 11 3.2 Low Density Fountain codes: BP decoding and LT Codes . .......... 14 3.3 Asymptotical performance of LT codes under BP Decoding . ........... 20 3.4 Expected Ripple size and Degree Distribution Design . ............. 23 3.5 Systematic Constructions of LT codes . ......... 26 3.6 Generalizations/Extensions of LT codes: Unequal Error Protection . 27 4 Concatenated Linear Fountain Codes 29 4.1 Asymptotically good degree distributions . ............ 30 4.2 Precoding ....................................... 32 4.2.1 TornadoCodesasPrecodes . 33 4.2.2 LDPCCodesasPrecodes . 34 4.2.3 HammingCodesasPrecodes . 36 4.2.4 Repeat and Accumulate Codes as Precodes . ...... 38 4.3 Concatenated Fountain Code Failure Probability . ............ 38 4.4 Systematic Constructions of Concantenated Fountain Codes ........... 40 5 Advanced Topics 45 5.1 Connectionstotherandomgraphtheory . ........ 46 5.2 InactivationDecoding . ...... 49 5.3 Standardized Fountain Codes for Data Streaming .