Effects of Ultraviolet Radiation and Visible Light on the Development of Encapsulated Molluscan Embryos
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
E Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary
!e Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary Jessica Reeves & John Buckeridge Published by: Greypath Productions Marine Care Ricketts Point PO Box 7356, Beaumaris 3193 Copyright © 2012 Marine Care Ricketts Point !is work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission of the publisher. Photographs remain copyright of the individual photographers listed. ISBN 978-0-9804483-5-1 Designed and typeset by Anthony Bright Edited by Alison Vaughan Printed by Hawker Brownlow Education Cheltenham, Victoria Cover photo: Rocky reef habitat at Ricketts Point Marine Sanctuary, David Reinhard Contents Introduction v Visiting the Sanctuary vii How to use this book viii Warning viii Habitat ix Depth x Distribution x Abundance xi Reference xi A note on nomenclature xii Acknowledgements xii Species descriptions 1 Algal key 116 Marine invertebrate key 116 Glossary 118 Further reading 120 Index 122 iii Figure 1: Ricketts Point Marine Sanctuary. !e intertidal zone rocky shore platform dominated by the brown alga Hormosira banksii. Photograph: John Buckeridge. iv Introduction Most Australians live near the sea – it is part of our national psyche. We exercise in it, explore it, relax by it, "sh in it – some even paint it – but most of us simply enjoy its changing modes and its fascinating beauty. Ricketts Point Marine Sanctuary comprises 115 hectares of protected marine environment, located o# Beaumaris in Melbourne’s southeast ("gs 1–2). !e sanctuary includes the coastal waters from Table Rock Point to Quiet Corner, from the high tide mark to approximately 400 metres o#shore. -
Evidence for the Validity of Protatlanta Sculpta (Gastropoda: Pterotracheoidea)
Contributions to Zoology, 85 (4) 423-435 (2016) Evidence for the validity of Protatlanta sculpta (Gastropoda: Pterotracheoidea) Deborah Wall-Palmer1, 2, 6, Alice K. Burridge2, 3, Katja T.C.A. Peijnenburg2, 3, Arie Janssen2, Erica Goetze4, Richard Kirby5, Malcolm B. Hart1, Christopher W. Smart1 1 School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, United Kingdom 2 Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands 3 Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, the Netherlands 4 Department of Oceanography, University of Hawai‘i at Mānoa, 1000 Pope Road, Honolulu, HI 96822, USA 5 Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, United Kingdom 6 E-mail: [email protected] Key words: Atlantic Ocean, biogeography, DNA barcoding, morphometrics, Protatlanta, shelled heteropod Abstract Introduction The genus Protatlanta is thought to be monotypic and is part of The genus Protatlanta Tesch, 1908 is one of three the Atlantidae, a family of shelled heteropods. These micro- shelled heteropod genera within the family Atlantidae. scopic planktonic gastropods are poorly known, although re- search on their ecology is now increasing in response to con- All members of the Atlantidae are microscopic (<12 cerns about the effects of ocean acidification on calcareous mm), holoplanktonic gastropods that have a foot mod- plankton. A correctly implemented taxonomy of the Atlantidae ified for swimming, a long proboscis, large, complex is fundamental to this progressing field of research and it re- eyes and flattened shells with keels. Defining charac- quires much attention, particularly using integrated molecular teristics of the three genera within the Atlantidae are and morphological techniques. -
Download Full Article 1.6MB .Pdf File
Memoirs of the National Museum of Victoria https://doi.org/10.24199/j.mmv.1962.25.10 ADDITIONS TO MARINE MOLLUSCA 177 1 May 1962 ADDITIONS TO THE MARINE MOLLUSCAN FAUNA OF SOUTH EASTERN AUSTRALIA INCLUDING DESCRIPTIONS OF NEW GENUS PILLARGINELLA, SIX NEW SPECIES AND TWO SUBSPECIES. Charles J. Gabriel, Honorary Associate in Gonchology, National Museum of Victoria. Introduction. It has always been my conviction that the spasmodic and haphazard collecting so far undertaken has not exhausted the molluscan species to be found in the deeper waters of South- eastern Australia. Only two large single collections have been made; first by the vessel " Challenger " in 1874 at Station 162 off East Moncoeur Island in 38 fathoms. These collections were described in the " Challenger " reports by Rev. Boog. Watson (Gastropoda) and E. A. Smith (Pelecypoda). In the latter was included a description of a shell Thracia watsoni not since taken in Victoria though dredged by Mr. David Howlett off St. Francis Island, South Australia. In 1910 the F. I. S. " Endeavour " made a number of hauls both north and south of Gabo Island and off Cape Everard. The u results of this collecting can be found in the Endeavour " reports. T. Iredale, 1924, published the results of shore and dredging collections made by Roy Bell. Since this time continued haphazard collecting has been carried out mostly as a hobby by trawler fishermen either for their own interest or on behalf of interested friends. Although some of this material has reached the hands of competent workers, over the years the recording of new species has probably been delayed. -
Zoology Honours 2009: Research Projects
Zoology Honours 2009: Research Projects Below are a number of research projects suggested by Animal Biology staff members. This is not the definitive list, and students are encouraged to approach appropriate academic staff within the School of Animal Biology if they have ideas for a research project, or if they want to discuss the possibility of a project within a particular subject area. Staff interests and contact links can be found on the web site [http://www.animals.uwa.edu.au/home/research]. Interested students should contact the Zoology Hons Coordinator [[email protected]] for more details. Conservation genetics: measuring genetic mixing in a translocated population of marine snail Jason Kennington & Mike Johnson [contact [email protected]] Translocation is a management tool that is often used to combat the loss of genetic diversity within small and fragmented populations of rare species (Allendorf & Luikart 2006; Frankham et al. 2002). It involves the movement of individuals between populations with the aim of increasing genetic variation within populations by artificially enhancing gene flow (Storfer 1999; Frankham et al. 2002). In support of this concept, several studies have shown that genetic diversity within small and inbred populations can be restored by natural migration and intentional translocation programs (see Frankham 2005). However, relatively few studies have undertaken post-release monitoring of translocated populations to see if the variation introduced by translocation is maintained over many generations. The aim of this project is to examine the extent of genetic mixing in artificial hybrid populations of the intertidal snail Bembicium vittatum, established in 1993 (Parsons 1997). -
Systematics and Phylogenetic Species Delimitation Within Polinices S.L. (Caenogastropoda: Naticidae) Based on Molecular Data and Shell Morphology
Org Divers Evol (2012) 12:349–375 DOI 10.1007/s13127-012-0111-5 ORIGINAL ARTICLE Systematics and phylogenetic species delimitation within Polinices s.l. (Caenogastropoda: Naticidae) based on molecular data and shell morphology Thomas Huelsken & Daniel Tapken & Tim Dahlmann & Heike Wägele & Cynthia Riginos & Michael Hollmann Received: 13 April 2011 /Accepted: 10 September 2012 /Published online: 19 October 2012 # Gesellschaft für Biologische Systematik 2012 Abstract Here, we present the first phylogenetic analysis of callus) to be informative, while many characters show a a group of species taxonomically assigned to Polinices high degree of homoplasy (e.g. umbilicus, shell form). sensu latu (Naticidae, Gastropoda) based on molecular data Among the species arranged in the genus Polinices s.s., four sets. Polinices s.l. represents a speciose group of the infau- conchologically very similar taxa often subsumed under the nal gastropod family Naticidae, including species that have common Indo-Pacific species P. mammilla are separated often been assigned to subgenera of Polinices [e.g. P. distinctly in phylogenetic analyses. Despite their striking (Neverita), P. (Euspira), P.(Conuber) and P. (Mammilla)] conchological similarities, none of these four taxa are relat- based on conchological data. The results of our molecular ed directly to each other. Additional conchological analyses phylogenetic analysis confirm the validity of five genera, of available name-bearing type specimens and type figures Conuber, Polinices, Mammilla, Euspira and Neverita, in- reveal the four “mammilla”-like white Polinices species to cluding four that have been used previously mainly as sub- include true P. mammilla and three additional species, which genera of Polinices s.l. -
Caenogastropoda
13 Caenogastropoda Winston F. Ponder, Donald J. Colgan, John M. Healy, Alexander Nützel, Luiz R. L. Simone, and Ellen E. Strong Caenogastropods comprise about 60% of living Many caenogastropods are well-known gastropod species and include a large number marine snails and include the Littorinidae (peri- of ecologically and commercially important winkles), Cypraeidae (cowries), Cerithiidae (creep- marine families. They have undergone an ers), Calyptraeidae (slipper limpets), Tonnidae extraordinary adaptive radiation, resulting in (tuns), Cassidae (helmet shells), Ranellidae (tri- considerable morphological, ecological, physi- tons), Strombidae (strombs), Naticidae (moon ological, and behavioral diversity. There is a snails), Muricidae (rock shells, oyster drills, etc.), wide array of often convergent shell morpholo- Volutidae (balers, etc.), Mitridae (miters), Buccin- gies (Figure 13.1), with the typically coiled shell idae (whelks), Terebridae (augers), and Conidae being tall-spired to globose or fl attened, with (cones). There are also well-known freshwater some uncoiled or limpet-like and others with families such as the Viviparidae, Thiaridae, and the shells reduced or, rarely, lost. There are Hydrobiidae and a few terrestrial groups, nota- also considerable modifi cations to the head- bly the Cyclophoroidea. foot and mantle through the group (Figure 13.2) Although there are no reliable estimates and major dietary specializations. It is our aim of named species, living caenogastropods are in this chapter to review the phylogeny of this one of the most diverse metazoan clades. Most group, with emphasis on the areas of expertise families are marine, and many (e.g., Strombidae, of the authors. Cypraeidae, Ovulidae, Cerithiopsidae, Triphori- The fi rst records of undisputed caenogastro- dae, Olividae, Mitridae, Costellariidae, Tereb- pods are from the middle and upper Paleozoic, ridae, Turridae, Conidae) have large numbers and there were signifi cant radiations during the of tropical taxa. -
An Integrative Approach Using Biochemical, Life History and Transcriptomic Markers to Develop a Mechanistic Understanding of Response
The response of Isidorella newcombi to copper exposure: An integrative approach using biochemical, life history and transcriptomic markers to develop a mechanistic understanding of response Rodney P. Ubrihien This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy July 2018 Institute for Applied Ecology University of Canberra Australia Acknowledgements Acknowledgements I would like to thank my supervisors Bill Maher, Anne Taylor, Tariq Ezaz and Mark Stevens for their guidance through this project. Throughout the process they have provided support, inspiration, knowledge and experience. To other people who have helped me with academic, administrative and technical assistance throughout the project thank you. These include; Simon Foster for advice and analysis of samples, Frank Krikowa for analysis of samples, the ESTeM faculty technical staff who have always gone out of their way to help (especially Pat Ceeney and Tom Long), and the IAE admin team for excellent support (especially Barbara Harriss). The Institute for Applied Ecology supported me through a top-up scholarship during my candidature making it possible for me to undertake the project. For assistance with maintaining of my sanity through the PhD process I would like to thank the Dungeon crew, current and past, including Teresa, Yaz, Jill, Eman, Chamani and Rajani as well as other PhD students including Jonas, Margi, Al, Sal, Adrian and Andrew. To Jen, my partner in life, I thank you for persisting and supporting me through the PhD journey. Without your support in so many ways this project would not have been possible. iii Abstract Abstract The widespread extraction, processing and use of Cu in modern society has caused Cu concentrations to become elevated in the environment. -
A Perspective from Embryology
The Proceedings of the International Conference on Creationism Volume 3 Print Reference: Pages 547-560 Article 46 1994 The Genesis Kinds: A Perspective from Embryology Sheena E.B. Tyler Follow this and additional works at: https://digitalcommons.cedarville.edu/icc_proceedings DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Tyler, Sheena E.B. (1994) "The Genesis Kinds: A Perspective from Embryology," The Proceedings of the International Conference on Creationism: Vol. 3 , Article 46. Available at: https://digitalcommons.cedarville.edu/icc_proceedings/vol3/iss1/46 THE GENESIS KINDS: A PERSPECTIVE FROM EMBRYOLOGY SHEENA E.B. TYLER, PhD, BSc. c/o PO Box 22, Rugby, Warwickshire, CV22 7SY, England. ABSTRACT From the days of greatest antiquity. mankind has recognised the distinctive common attributes shared by living things, and has attempted to relate these groups together by devising classification systems - the science of taxonomy or systematics. Much contemporary systematics invokes continuity in order to construct continuous transformational series. By contrast, the taxic or typological paradigm, which can be traced to the pre-Darwinian era, has gained preference over the transformational one in some secular circles [10; reviewed in 42). -
Indole Derivatives from the Egg Masses of Muricid Molluscs
Molecules 2001, 6, 70–78 molecules ISSN 1420-3049 © 2001 by MDPI http://www.mdpi.org Indole Derivatives from the Egg Masses of Muricid Molluscs Kirsten Benkendorff 1,2,*, John B. Bremner1 and Andrew R. Davis2 1 Department of Chemistry and 2 Department of Biological Sciences, University of Wollongong, NSW, 2522, Australia. Tel.: (61)-242-215996, Fax: (61)-242-214135. *Author to whom correspondence should be addressed. E-mail: [email protected] Received: 26 July 2000 / Accepted: 1 October 2000 / Published: 16 January 2001 Abstract: A range of brominated indole derivatives were found in the egg masses of six species of muricid molluscs. Several non-brominated indoles were also present in the eggs of two Mediterranean Muricidae, although these were not found in the Australian species. Tyrindoleninone (3), was the only compound found in all six species and is likely to be responsible for the observed antimicrobial activity of these muricid egg masses [1,2]. These bioactive indoles appear to be characteristic of muricid egg masses and were not found in the egg masses from 17 species in different families of marine molluscs. Keywords: Indole, antimicrobial, Muricidae, mollusc. Introduction Three compounds with antimicrobial activity have been isolated from the egg masses of the Australian muricid Dicathais orbita [2]. These were identified as tyrindoleninone (3) and tyriverdin (4), precursors of the ancient dye Tyrian Purple (6,6’-dibromoindigotin, 5), as well as the oxidative artifact, 6-bromoisatin (6; Scheme 1). The production of Tyrian Purple from precursors in the hypobranchial gland of the adult mollusc has been demonstrated from a number of other species of muricids [3-5]. -
Evolutionary Dynamics in the Southwest Indian Ocean Marine Biodiversity Hotspot: a Perspective from the Rocky Shore Gastropod Genus Nerita Bautisse Postaire, J
Evolutionary Dynamics in the Southwest Indian Ocean Marine Biodiversity Hotspot: A Perspective from the Rocky Shore Gastropod Genus Nerita Bautisse Postaire, J. Henrich Bruggemann, Hélène Magalon, Jean-Baptiste Faure To cite this version: Bautisse Postaire, J. Henrich Bruggemann, Hélène Magalon, Jean-Baptiste Faure. Evolutionary Dy- namics in the Southwest Indian Ocean Marine Biodiversity Hotspot: A Perspective from the Rocky Shore Gastropod Genus Nerita. PLoS ONE, Public Library of Science, 2014, 9 (4), pp.e95040. 10.1371/journal.pone.0095040. hal-01185713 HAL Id: hal-01185713 https://hal.archives-ouvertes.fr/hal-01185713 Submitted on 21 Aug 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Evolutionary Dynamics in the Southwest Indian Ocean Marine Biodiversity Hotspot: A Perspective from the Rocky Shore Gastropod Genus Nerita Bautisse Postaire1,2*, J. Henrich Bruggemann1,2, He´le`ne Magalon1,2, Baptiste Faure1,3 1 Laboratoire d’ECOlogie MARine, Universite´ de la Re´union, FRE3560 INEE-CNRS, Saint Denis, La Re´union, France, 2 Labex CORAIL, Perpignan, France, 3 Biotope, Service Recherche et De´veloppement, Me`ze, France Abstract The Southwest Indian Ocean (SWIO) is a striking marine biodiversity hotspot. -
The Coastal Marine Mollusc Fauna of King Island, Tasmania
Papers and Proceedings of the Royal Society of Tasmania, Volume 148, 2014 17 THE COASTAL MARINE MOLLUSC FAUNA OF KING ISLAND, TASMANIA by Simon Grove and Robert de Little (with one text-figure, one plate, one table and an appendix) Grove, S & de Little, R. 2014 (19:xii: The coastal marine mollusc fauna of King Island, Tasmania.Papers and Proceedings of the Royal Society of Tasmania 148: 17–42. https://doi.org/10.26749/rstpp.148.17 ISSN 0080-4703. Rosny Collections and Research Facility, Tasmanian Museum and Art Gallery, GPO Box 1164, Hobart Tasmania 7001 (SG*); PO Box 683, Port Arthur Tasmania 7182 (RdL). *Author for correspondence. Email: [email protected] The findings of a week-long survey of coastal marine molluscs around King Island are documented. In total, 408 species were recorded, 78 for the first time. King Island appears to be the only Tasmanian outpost for 44 species. Only two non-native species were found. A number of usually distinct species-pairs or groups appear to form intergrades around King Island. Along the island’s east coast, beached shells belonging to Quaternary-era sub-fossils were found, not all of which are represented in the contemporary local fauna. Following critical examination of published sources and museum specimens, a checklist of King Island’s coastal marine mollusc fauna is presented, comprising 619 species. It is likely that many more local species await discovery and documentation. Key Words: Mollusca, King Island, Tasmania INTRODUCTION METHODS King Island sits in western Bass Strait at around 40°S and Field surveys and follow-up identification 144°E, and is a geographical outlier relative to the rest of Tasmania: it includes the westernmost shorelines in Tasmania, Twenty-one discrete localities were surveyed during 13–19 as well as some of the northernmost. -
Systematic Revision of Palaeocene Brackish Water Gastropoda from Mons, Belgium, Based on Their Early Ontogenetic Shells
BULLETIN DE L’INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE SCIENCES DE LA TERRE. 72: 111-134, 2002 BULLETIN VAN HET KONINKLIJK BELGISCH INSTITUUT VOOR NATUURWETENSCHAPPEN AARDWETENSCHAPPEN, 72: 111-134, 2002 Systematic revision of Palaeocene brackish water Gastropoda from Mons, Belgium, based on their early ontogenetic shells by Thorsten KOWALKE Kowalke, T.. 2002. - Systematic revision of Palaeocene brackish Introduction water Gastropoda from Mons, Belgium, based on their early ontoge netic shells. Bulletin de l'Institut royal des Sciences naturelles de Belgique, Sciences de la Terre, 72: 111-134, 4 pis., Bruxelles-Brussel, The Early Mid-Palaeocene sediments of Mons, Southeast March 31, 2002. - ISSN 0374-6291 Belgium, were brought to the attention of geologists, when the mining engineers F.L. Cornet and A. Briart recognised a section within a domestic well on the Gof- fint property in 1865. In 1874, the Geological Society of Abstract France initiated a second pit a few metres to the west on The systematic position of Early Mid-Palaeocene brackish water Gas the Coppée estate. These original sinkings were termi tropoda from the Dano-Montian of Mons, South-east Belgium, is nated at a depth of about 20 m, when the ground water revised. Representatives of the subclasses Neritimorpha (with the floor was reached. In 1969 another boring was initiated new genus Monsneritina- Neritoidea, Neritidae), Caenogastropoda (with the new genus Monspotamides - Cerithioidea, Potamididae) by the Belgian Geological Survey, located 10 m south of and Heterostropha are characterised with regard to their paleoecology. the Gofflnt pit. The sections - detailed descriptions of the Three different modes of early ontogenetic development are recognised stratigraphy and sketches of the locality were given by and paleoecological inferences are discussed.