The Systematics and Ecology of the Mangrove-Dwelling Littoraria Species (Gastropoda: Littorinidae) in the Indo-Pacific

Total Page:16

File Type:pdf, Size:1020Kb

The Systematics and Ecology of the Mangrove-Dwelling Littoraria Species (Gastropoda: Littorinidae) in the Indo-Pacific ResearchOnline@JCU This file is part of the following reference: Reid, David Gordon (1984) The systematics and ecology of the mangrove-dwelling Littoraria species (Gastropoda: Littorinidae) in the Indo-Pacific. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/24120/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/24120/ THE SYSTEMATICS AND ECOLOGY OF THE MANGROVE-DWELLING LITTORARIA SPECIES (GASTROPODA: LITTORINIDAE) IN THE INDO-PACIFIC VOLUME II Thesis submitted by David Gordon REID MA (Cantab.) in May 1984 for the Degree of Doctor of Philosophy in the Department of Zoology at James Cook University of North Queensland 399 PART II: ECOLOGY CHAPTER 10: COCKLE BAY, THE PRINCIPAL STUDY AREA Magnetic Island is situated in Cleveland Bay, 7 km from the city of Townsville (Fig. 10.1). The island is approximately 5000 hectares in area and is mostly mountainous, reaching 506 m at its highest point. The geology of the island is comprised of acid plutonic rocks of late Palaeozoic age, with a narrow coastal plain of Quaternary deposits (Spenceley, 1982). The sheltered landward coast runs for 7 km in a north-westerly direction, separated from the mainland by a channel from 5 to 7 km in width. Along this coast an extensive mangrove forest has developed behind a broad mud flat with beds of sea grass, which extend to a fringing reef 1 to 1.5 km from the edge of the forest. At its widest point, the mangrove forest extends for 500 m, and adjoins a MeVaLeuca swamp or Eucalyptus woodland at the level of the highest spring tides. The floristic zones of seaward Avicennta fringe, RhtzophOra forest, Brugutera forest and Certops thickets are all represented (Section 11.2; Macnae, 1968), but the Certops zone is in some parts interrupted by a bare salt flat (Fig. 11.2). The Vegetation of the island coast has been described in detail by Macnae (1967) and Spenceley (1982). Climatic and tidal data for the Townsville area are summarized by Spenceley (1982). The rainfall is highly seasonal, 76% of the average annual total falling between January and April. An annual rainfall of 1825 mm (recorded at Picnic Bay, 1 km from the main study site) has permitted a relatively luxuriant development of mangrove vegetation on the landward side of Magnetic Island. In contrast, the mainland coast of Cleveland Bay has a lower rainfall (1163 mm at Townsville, Spenceley, 1982) and mangroves are present Fig. 10.1 Map of Magnetic Island and Cleveland Bay, Queensland. Dotted line indicates extreme low water of spring, tides. Fig. 10.2 Map of the study area at Cockle Bay, Magnetic Island, Queensland. a, line of transect represented in Fig. 11.1; b, 15 by 15 m study area in Rhtzophora grove; c and d, study areas (defoliated and normal Avtcennta bushes respectively) for investigation of frequency-dependent selection on colour forms of Ltttorarta ftLosa (Section 15.3); e, limits of experimental zone; f, sampling zone; solid asterisks, sites of five Avtcennta trees for mark and recapture study of L. phtttpptana; open asterisks, sites of two Avtcennta trees for mark and recapture study of L. ftLasa; light stipple, sclerophyll woodland; heavy stipple, mangrove forest. 146°50'E 190 10'S - c" Picnic Bay Cockle Bay CLEVELAND BAY TOWNSVILLE O 5 km • 402 mainly as narrow fringes to extensive bare salt pans (Macnae, 1967). It was for this reason that Magnetic Island was chosen as the main study area. Furthermore, the land behind the mangrove coast is virtually uninhabited, and the area should be less affected by domestic, industrial and agricultural pollution than the mainland coast. Several Ltttorarta species are scarce or absent on muddy continental coasts, and more common in narrow mangrove fringes and where the coastal water is less turbid (Section 11.4.5). Thus, while only three species were to be found in the broad and muddy forest midway along the mangrove coast of Magnetic Island (as listed, Fig. 11.2), five species were common at Cockle Bay at the southern end of the belt of forest (Fig. 11.1). Cockle Bay was therefore selected as the study site, (19° 10.5'S 146° 49.6'E; Fig. 10.2). The structure of the forest at Cockle Bay is somewhat atypical, by virtue of a long sand bar which has developed parallel to the coast, within what was once a belt of Rhtzophora forest. As a result, the typical zonation pattern of the forest has been interrupted. At the present time there are several isolated groves of Rhtzophora styLosa trees, up to 8 m in height, in front of the dune, and behind them an open area of muddy sand with a few isolated trees of Avtcennta eucaLypttfoLta and increasing numbers of colonizing Avtcennta bushes and saplings (Figs 10.3, 10.4). A transect through this area is represented in Fig. 11.1. The study area was divided into experimental, sampling and undisturbed zones (Fig. 10.2). Within the experimental zone a number of trees were selected in three areas, on the basis of the abundance of four species of Ltttorarta which were to be studied in detail. The first area comprised all the 64 Rhtzophora trees in the space of 15 m by 15 m within a Rhtzophora grove, where L. scabra, L. tntermedta and L. pht7Apptana were common. Secondly, two isolated trees of Avtcennta between the Rhtzophora grove and sand bar, were chosen because of the abundance of L. ftLosa. Thirdly, five larger Fig. 10.3 The exclusion cages at Cockle Bay, Magnetic Island, Queensland, See Section 14.2.2 for details. The large Avtcennta tree behind the foremost cage is one of the two on which the mark and recapture study of •ittorarta ftLosa was carried out. Fig. 10.4 Aerial view of study area at Cockle Bay, Magnetic Island, Queensland. Road to Picnic Bay in background (see map, Fig. 10.2). 405 Avtcennta trees on the edge of the sand bar were selected for study, on each of which L. phtLipptana was common. Details of the dimensions of trees are given in Table 10.1. All trees were identified individually by numbers, and the ground level beneath each was estimated (to the nearest 0.1 m) in relation to tidal datum, by comparison of water depth with predicted tidal heights at recorded times on three occasions. Within each of these study areas all the snails were individually numbered, for the purposes of recording their location on the trees, their growth and, by employing a mark and recapture technique, to investigate population dynamics. Details of the methods used are given in the appropriate later chapters. Exclusion experiments, to measure loss due to predation and other causes, were carried out on small, isolated Avtcennta trees in the area between the Rhtzophora grove and the sand bar (Fig. 10.3). An experiment to investigate frequency-dependent selection was performed in an area with numerous isolated and equally sized Avtcennta bushes (Fig. 10.2). Specimens for the examination of reproductive condition were collected from the sampling area reserved for the purpose. Table 10.1 Dimensions of trees in three main study areas at Cockle Bay, Magnetic Island, Queensland. Ltttorarta sp. Tree sp. No. of Height Lowest Canopy Diameter studied trees (m) foliage width at breast (m) (m) ht. (cm) L. scabra, Rhtzoptiora 64 4-8 1-3.5 1-3 5-18 L. tntermodia, styLosa L. phtLtpptana L. ftLosa Avtcennta 2 3,4 0.6,0.1 3 5,10 eucaLypttfoLta L. phiLtppiana Avicennta 5 4-5 0.2-1.4 3-5 10-17 eucaLypttfoLta 407 CHAPTER 11: HABITAT AND ZONATION 11.1 Introduction The association of many members of the genus Ltttorarta with mangrove, salt marsh and drift wood habitats represents amajor adaptive shift away from the ancestral habitat of intertidal rocks. That this condition is indeed derived is indicated by the fact that Ltttorarta species typical of rocky substrates occur only in the paraphyletic nominate subgenus (Section 8.1.2 and Fig. 8.2). Outgroup comparison with the sister group Nodtlittortna leads to the same conclusion, for all but one of the many species of NodtZtttortna occur only on rocky shores (pers. obs. and museum collections). In littorinid genera other than Ltttorarta, only a few species can be found on vegetation. These include a single species of NodtLittortna (a rare, undescribed species from South East Asia), Bembtctum meLanostoma (in eastern Australia), a species of PeasteLLa (in northern Australia) and several members of the genus Ltttortna which are sometimes found on salt marsh vegetation in the northern Atlantic (Raffaelli, 1978b). At most mangrove localities Ltttorarta species are the only abundant arboreal gastropods. On the trees at the seaward edge of the forest, gastropods typical of rocky shores can sometimes be found, including species of PateLLotda, Monodonta, CLypeomorus, Planaxts, MoruLa and Thats, usually at low densities and at tidal levels below those occupied by Ltttorarta. Within the forest several species of Nertta are found, while towards the landward edge of the forest Certthtdea and various ellobiid pulmonates climb the mangrove trees, descending to feed at low tide (see Macnae, 1968; Berry, 1972; Frith et aL., 1976, for general accounts of the molluscan fauna of Indo-Pacific mangroves). At none of the localities visited during the present study did these other arboreal gastropods occur 408 in large numbers at the same levels as Ltttorarta species, and their respective patterns of distribution did not suggest any evidence of interspecific competitive effects.
Recommended publications
  • (Gastropoda: Littorinidae) in the Temperate Southern Hemisphere: the Genera Nodilittorina, Austrolittorina and Afrolittorina
    © Copyright Australian Museum, 2004 Records of the Australian Museum (2004) Vol. 56: 75–122. ISSN 0067-1975 The Subfamily Littorininae (Gastropoda: Littorinidae) in the Temperate Southern Hemisphere: The Genera Nodilittorina, Austrolittorina and Afrolittorina DAVID G. REID* AND SUZANNE T. WILLIAMS Department of Zoology, The Natural History Museum, London SW7 5BD, United Kingdom [email protected] · [email protected] ABSTRACT. The littorinine gastropods of the temperate southern continents were formerly classified together with tropical species in the large genus Nodilittorina. Recently, molecular data have shown that they belong in three distinct genera, Austrolittorina, Afrolittorina and Nodilittorina, whereas the tropical species are members of a fourth genus, Echinolittorina. Austrolittorina contains 5 species: A. unifasciata in Australia, A. antipodum and A. cincta in New Zealand, and A. fernandezensis and A. araucana in western South America. Afrolittorina contains 4 species: A. africana and A. knysnaensis in southern Africa, and A. praetermissa and A. acutispira in Australia. Nodilittorina is monotypic, containing only the Australian N. pyramidalis. This paper presents the first detailed morphological descriptions of the African and Australasian species of these three southern genera (the eastern Pacific species have been described elsewhere). The species-level taxonomy of several of these has been confused in the past; Afrolittorina africana and A. knysnaensis are here distinguished as separate taxa; Austrolittorina antipodum is a distinct species and not a subspecies of A. unifasciata; Nodilittorina pyramidalis is separated from the tropical Echinolittorina trochoides with similar shell characters. In addition to descriptions of shells, radulae and reproductive anatomy, distribution maps are given, and the ecological literature reviewed.
    [Show full text]
  • The Systematics and Ecology of the Mangrove-Dwelling Littoraria Species (Gastropoda: Littorinidae) in the Indo-Pacific
    ResearchOnline@JCU This file is part of the following reference: Reid, David Gordon (1984) The systematics and ecology of the mangrove-dwelling Littoraria species (Gastropoda: Littorinidae) in the Indo-Pacific. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/24120/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/24120/ THE SYSTEMATICS AND ECOLOGY OF THE MANGROVE-DWELLING LITTORARIA SPECIES (GASTROPODA: LITTORINIDAE) IN THE INDO-PACIFIC VOLUME I Thesis submitted by David Gordon REID MA (Cantab.) in May 1984 . for the Degree of Doctor of Philosophy in the Department of Zoology at James Cook University of North Queensland STATEMENT ON ACCESS I, the undersigned, the author of this thesis, understand that the following restriction placed by me on access to this thesis will not extend beyond three years from the date on which the thesis is submitted to the University. I wish to place restriction on access to this thesis as follows: Access not to be permitted for a period of 3 years. After this period has elapsed I understand that James Cook. University of North Queensland will make it available for use within the University Library and, by microfilm or other photographic means, allow access to users in other approved libraries. All uses consulting this thesis will have to sign the following statement: 'In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper written acknowledgement for any assistance which I have obtained from it.' David G.
    [Show full text]
  • FISH Mapping of 18S-28S and 5S Ribosomal DNA, (GATA)N
    Heredity (2002) 88, 381–384 2002 Nature Publishing Group All rights reserved 0018-067X/02 $25.00 www.nature.com/hdy FISH mapping of 18S-28S and 5S ribosomal DNA, (GATA)n and (TTAGGG)n telomeric repeats in the periwinkle Melarhaphe neritoides (Prosobranchia, Gastropoda, Caenogastropoda) MS Colomba1, R Vitturi2, L Castriota3, R Bertoni4 and A Libertini5 1Facolta` di Scienze Ambientali, Universita` di Urbino, Localita` Crocicchia, 61029 Urbino, Italy; 2Dipartimento di Biologia Animale, Universita` di Palermo, Via Archirafi 18, 90123 Palermo; 3ICRAM, Via Emerico Amari 124, 90139 Palermo, Italy; 4Dipartimento di Biologia Animale, Universita` di Modena, Via Campi 213/d, 41100 Modena, Italy; 5Istituto di Biologia del Mare, CNR, Riva 7 Martiri 1364/a, 30122 Venezia, Italy Spermatocyte chromosomes of Melarhaphe neritoides with termini of all chromosomes whereas the (GATA)n probe (Mollusca, Prosobranchia, Caenogastropoda) were studied did not label any areas. Simultaneous 18S-5S rDNA and using fluorescent in situ hybridization (FISH) with four repeti- 18S-(TTAGGG)n FISH demonstrated that repeated units of tive DNA probes (18S rDNA, 5S rDNA, (TTAGGG)n and the three multicopy families are closely associated on the (GATA)n). Single-colour FISH consistently mapped one same chromosome pair. chromosome pair per spread using either 18S or 5S rDNA Heredity (2002) 88, 381–384. DOI: 10.1038/sj/hdy/6800070 as probes. The telomeric sequence (TTAGGG)n hybridized Keywords: chromosomes; repetitive DNA; FISH; invertebrate; Mollusca; Caenogastropoda Introduction to map repeated units of the two rDNA families (18S-28S rDNA and 5S rDNA) and to test the presence of (GATA)n Fluorescence in situ hybridization (FISH) is a powerful and (TTAGGG)n repeats in the genome of this species.
    [Show full text]
  • Saltmarsh and Samphire
    Baker, J. L. (2015) Marine Assets of Yorke Peninsula. Volume 2 of report for Natural Resources - Northern and Yorke, South Australia 6. Saltmarsh and Samphire © A. Brown Figure 6.1: Saltmarsh with samphire, in NY NRM Region. (A) Point Davenport; (B) Winninowie Conservation Park. Photos (c) A. Brown. (B): (c) Google Earth. Asset Saltmarsh and Samphire Description Areas of saline, mineral-rich, organic-rich, and low oxygen coastal soils within and above high tide level, often fronted by mangroves, and backed by saltbush shrubland. Saltmarsh supports various salt-tolerant plants, with samphires being the most common and significant in terms of cover in South Australia. There are distinct assemblages of salt-tolerant invertebrates associated with saltmarsh habitats. Saltmarshes provide habitat for fishes, including juveniles of species which utilise other marine habitats, and are an important feeding area for various bird species, including migratory shore birds. Examples of Birds Main Species Cormorant species (e.g.; Pied, Little Pied, and Black-faced) Caspian Tern and Little Tern Pied Oystercatcher and Sooty Oystercatcher Black-winged Stilt, Banded Stilt, Great Egret, White-faced Heron, Little Egret the threatened species Hooded Plover Little Stint Red-capped Plover Slender-billed Thornbill (Samphire Thornbill) Rock Parrot The raptors Eastern Osprey and White-bellied Sea Eagle Migratory shorebirds listed under international treaties, such as Bar-tailed Godwit, Curlew Sandpiper and Sharp-tailed Sandpiper, Red-necked Stint, Grey Plover , Red Knot, Common Greenshank, Ruddy Turnstones Bony Fishes juvenile Yelloweye Mullet juvenile Greenback Flounder juvenile Southern Blue-spotted Flathead Western Striped Grunter Congolli Glass Goby Small-mouthed Hardyhead Silver Fish Smooth Toadfish Goby species such as Blue-spotted Goby and Southern Longfin Goby Adelaide Weedfish Baker, J.
    [Show full text]
  • E Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary
    !e Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary Jessica Reeves & John Buckeridge Published by: Greypath Productions Marine Care Ricketts Point PO Box 7356, Beaumaris 3193 Copyright © 2012 Marine Care Ricketts Point !is work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission of the publisher. Photographs remain copyright of the individual photographers listed. ISBN 978-0-9804483-5-1 Designed and typeset by Anthony Bright Edited by Alison Vaughan Printed by Hawker Brownlow Education Cheltenham, Victoria Cover photo: Rocky reef habitat at Ricketts Point Marine Sanctuary, David Reinhard Contents Introduction v Visiting the Sanctuary vii How to use this book viii Warning viii Habitat ix Depth x Distribution x Abundance xi Reference xi A note on nomenclature xii Acknowledgements xii Species descriptions 1 Algal key 116 Marine invertebrate key 116 Glossary 118 Further reading 120 Index 122 iii Figure 1: Ricketts Point Marine Sanctuary. !e intertidal zone rocky shore platform dominated by the brown alga Hormosira banksii. Photograph: John Buckeridge. iv Introduction Most Australians live near the sea – it is part of our national psyche. We exercise in it, explore it, relax by it, "sh in it – some even paint it – but most of us simply enjoy its changing modes and its fascinating beauty. Ricketts Point Marine Sanctuary comprises 115 hectares of protected marine environment, located o# Beaumaris in Melbourne’s southeast ("gs 1–2). !e sanctuary includes the coastal waters from Table Rock Point to Quiet Corner, from the high tide mark to approximately 400 metres o#shore.
    [Show full text]
  • Evidence for the Validity of Protatlanta Sculpta (Gastropoda: Pterotracheoidea)
    Contributions to Zoology, 85 (4) 423-435 (2016) Evidence for the validity of Protatlanta sculpta (Gastropoda: Pterotracheoidea) Deborah Wall-Palmer1, 2, 6, Alice K. Burridge2, 3, Katja T.C.A. Peijnenburg2, 3, Arie Janssen2, Erica Goetze4, Richard Kirby5, Malcolm B. Hart1, Christopher W. Smart1 1 School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, United Kingdom 2 Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands 3 Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, the Netherlands 4 Department of Oceanography, University of Hawai‘i at Mānoa, 1000 Pope Road, Honolulu, HI 96822, USA 5 Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, United Kingdom 6 E-mail: [email protected] Key words: Atlantic Ocean, biogeography, DNA barcoding, morphometrics, Protatlanta, shelled heteropod Abstract Introduction The genus Protatlanta is thought to be monotypic and is part of The genus Protatlanta Tesch, 1908 is one of three the Atlantidae, a family of shelled heteropods. These micro- shelled heteropod genera within the family Atlantidae. scopic planktonic gastropods are poorly known, although re- search on their ecology is now increasing in response to con- All members of the Atlantidae are microscopic (<12 cerns about the effects of ocean acidification on calcareous mm), holoplanktonic gastropods that have a foot mod- plankton. A correctly implemented taxonomy of the Atlantidae ified for swimming, a long proboscis, large, complex is fundamental to this progressing field of research and it re- eyes and flattened shells with keels. Defining charac- quires much attention, particularly using integrated molecular teristics of the three genera within the Atlantidae are and morphological techniques.
    [Show full text]
  • Littorina Littorea Class
    . Easily seen year round along the Littorina littorea shore line of Burntcoat Class: Gastropoda Head. Order: Neotaenioglossa Family: Littorinidae Genus: Littorina Distribution The Littorinidae family is a In the genus Littorina is the species L.littorea commonly known group of over 200 known as the edible periwinkle. It is native to the north-eastern coasts species of sea snails, of the Atlantic Ocean, including northern Spain, France, commonly referred to as England, Scotland, Ireland, Scandinavia and Russia and has been periwinkles. They have a introduced to the Atlantic coast of North America. It is now a global distribution. Within predominant mollusc from New Jersey to Newfoundland. In this family of periwinkles Canada, their range includes New Brunswick, Nova Scotia, there are several genera, Quebec, Newfoundland and Labrador. one of which is Litttorina. They are plentiful at Burntcoat Head. Habitat Though most abundant on rocky substrates and common in tide In the Atlantic it is found pools, it is a habitat generalist that also occurs on muddy or on both open coast and sandy bottoms. They are found along the entire coast, on estuary habitats from the breakwaters, dikes, piers, etc. In favourable habitats, it reaches upper intertidal zone to densities of up to 200-800 individuals per square metre. about 40 metres deep, and Since its arrival in North America it has become the most can tolerate salinities down abundant shallow-water herbivorous snail from Nova Scotia to to around 13 ppt. Long Island Sound. Food Although primarily an algae grazer, it also feeds on small L. littorea is a mostly invertebrates such as barnacle larvae.
    [Show full text]
  • The Malacological Society of London
    ACKNOWLEDGMENTS This meeting was made possible due to generous contributions from the following individuals and organizations: Unitas Malacologica The program committee: The American Malacological Society Lynn Bonomo, Samantha Donohoo, The Western Society of Malacologists Kelly Larkin, Emily Otstott, Lisa Paggeot David and Dixie Lindberg California Academy of Sciences Andrew Jepsen, Nick Colin The Company of Biologists. Robert Sussman, Allan Tina The American Genetics Association. Meg Burke, Katherine Piatek The Malacological Society of London The organizing committee: Pat Krug, David Lindberg, Julia Sigwart and Ellen Strong THE MALACOLOGICAL SOCIETY OF LONDON 1 SCHEDULE SUNDAY 11 AUGUST, 2019 (Asilomar Conference Center, Pacific Grove, CA) 2:00-6:00 pm Registration - Merrill Hall 10:30 am-12:00 pm Unitas Malacologica Council Meeting - Merrill Hall 1:30-3:30 pm Western Society of Malacologists Council Meeting Merrill Hall 3:30-5:30 American Malacological Society Council Meeting Merrill Hall MONDAY 12 AUGUST, 2019 (Asilomar Conference Center, Pacific Grove, CA) 7:30-8:30 am Breakfast - Crocker Dining Hall 8:30-11:30 Registration - Merrill Hall 8:30 am Welcome and Opening Session –Terry Gosliner - Merrill Hall Plenary Session: The Future of Molluscan Research - Merrill Hall 9:00 am - Genomics and the Future of Tropical Marine Ecosystems - Mónica Medina, Pennsylvania State University 9:45 am - Our New Understanding of Dead-shell Assemblages: A Powerful Tool for Deciphering Human Impacts - Sue Kidwell, University of Chicago 2 10:30-10:45
    [Show full text]
  • Checklist of Marine Gastropods Around Tarapur Atomic Power Station (TAPS), West Coast of India Ambekar AA1*, Priti Kubal1, Sivaperumal P2 and Chandra Prakash1
    www.symbiosisonline.org Symbiosis www.symbiosisonlinepublishing.com ISSN Online: 2475-4706 Research Article International Journal of Marine Biology and Research Open Access Checklist of Marine Gastropods around Tarapur Atomic Power Station (TAPS), West Coast of India Ambekar AA1*, Priti Kubal1, Sivaperumal P2 and Chandra Prakash1 1ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri West, Mumbai - 400061 2Center for Environmental Nuclear Research, Directorate of Research SRM Institute of Science and Technology, Kattankulathur-603 203 Received: July 30, 2018; Accepted: August 10, 2018; Published: September 04, 2018 *Corresponding author: Ambekar AA, Senior Research Fellow, ICAR-Central Institute of Fisheries Education, Off Yari Road, Versova, Andheri West, Mumbai-400061, Maharashtra, India, E-mail: [email protected] The change in spatial scale often supposed to alter the Abstract The present study was carried out to assess the marine gastropods checklist around ecologically importance area of Tarapur atomic diversity pattern, in the sense that an increased in scale could power station intertidal area. In three tidal zone areas, quadrate provide more resources to species and that promote an increased sampling method was adopted and the intertidal marine gastropods arein diversity interlinks [9]. for Inthe case study of invertebratesof morphological the secondand ecological largest group on earth is Mollusc [7]. Intertidal molluscan communities parameters of water and sediments are also done. A total of 51 were collected and identified up to species level. Physico chemical convergence between geographically and temporally isolated family dominant it composed 20% followed by Neritidae (12%), intertidal gastropods species were identified; among them Muricidae communities [13].
    [Show full text]
  • Four Marine Digenean Parasites of Austrolittorina Spp. (Gastropoda: Littorinidae) in New Zealand: Morphological and Molecular Data
    Syst Parasitol (2014) 89:133–152 DOI 10.1007/s11230-014-9515-2 Four marine digenean parasites of Austrolittorina spp. (Gastropoda: Littorinidae) in New Zealand: morphological and molecular data Katie O’Dwyer • Isabel Blasco-Costa • Robert Poulin • Anna Falty´nkova´ Received: 1 July 2014 / Accepted: 4 August 2014 Ó Springer Science+Business Media Dordrecht 2014 Abstract Littorinid snails are one particular group obtained. Phylogenetic analyses were carried out at of gastropods identified as important intermediate the superfamily level and along with the morpholog- hosts for a wide range of digenean parasite species, at ical data were used to infer the generic affiliation of least throughout the Northern Hemisphere. However the species. nothing is known of trematode species infecting these snails in the Southern Hemisphere. This study is the first attempt at cataloguing the digenean parasites Introduction infecting littorinids in New Zealand. Examination of over 5,000 individuals of two species of the genus Digenean trematode parasites typically infect a Austrolittorina Rosewater, A. cincta Quoy & Gaim- gastropod as the first intermediate host in their ard and A. antipodum Philippi, from intertidal rocky complex life-cycles. They are common in the marine shores, revealed infections with four digenean species environment, particularly in the intertidal zone representative of a diverse range of families: Philo- (Mouritsen & Poulin, 2002). One abundant group of phthalmidae Looss, 1899, Notocotylidae Lu¨he, 1909, gastropods in the marine intertidal environment is the Renicolidae Dollfus, 1939 and Microphallidae Ward, littorinids (i.e. periwinkles), which are characteristic 1901. This paper provides detailed morphological organisms of the high intertidal or littoral zone and descriptions of the cercariae and intramolluscan have a global distribution (Davies & Williams, 1998).
    [Show full text]
  • Linking Behaviour and Climate Change in Intertidal Ectotherms: Insights from 1 Littorinid Snails 2 3 Terence P.T. Ng , Sarah
    1 Linking behaviour and climate change in intertidal ectotherms: insights from 2 littorinid snails 3 4 Terence P.T. Nga, Sarah L.Y. Laua, Laurent Seurontb, Mark S. Daviesc, Richard 5 Staffordd, David J. Marshalle, Gray A.Williamsa* 6 7 a The Swire Institute of Marine Science and School of Biological Sciences, The 8 University of Hong Kong, Pokfulam Road, Hong Kong SAR, China 9 b Centre National de la Recherche Scientifique, Laboratoire d’Oceanologie et de 10 Geosciences, UMR LOG 8187, 28 Avenue Foch, BP 80, 62930 Wimereux, France 11 c Faculty of Applied Sciences, University of Sunderland, Sunderland, U.K. 12 d Faculty of Science and Technology, Bournemouth University, U.K. 13 e Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, 14 Gadong BE1410, Brunei Darussalam 15 16 Corresponding author: The Swire Institute of Marine Science, The University of Hong 17 Kong, Cape d' Aguilar, Shek O, Hong Kong; [email protected] (G.A. Williams) 18 19 Keywords: gastropod, global warming, lethal temperature, thermal safety margin, 20 thermoregulation 21 22 Abstract 23 A key element missing from many predictive models of the impacts of climate change 24 on intertidal ectotherms is the role of individual behaviour. In this synthesis, using 25 littorinid snails as a case study, we show how thermoregulatory behaviours may 26 buffer changes in environmental temperatures. These behaviours include either a 27 flight response, to escape the most extreme conditions and utilize warmer or cooler 28 environments; or a fight response, where individuals modify their own environments 29 to minimize thermal extremes. A conceptual model, generated from studies of 30 littorinid snails, shows that various flight and fight thermoregulatory behaviours may 31 allow an individual to widen its thermal safety margin (TSM) under warming or 32 cooling environmental conditions and hence increase species’ resilience to climate 33 change.
    [Show full text]
  • Márcia Alexandra the Course of TBT Pollution in Miranda Souto the World During the Last Decade
    Márcia Alexandra The course of TBT pollution in Miranda Souto the world during the last decade Evolução da poluição por TBT no mundo durante a última década DECLARAÇÃO Declaro que este relatório é integralmente da minha autoria, estando devidamente referenciadas as fontes e obras consultadas, bem como identificadas de modo claro as citações dessas obras. Não contém, por isso, qualquer tipo de plágio quer de textos publicados, qualquer que seja o meio dessa publicação, incluindo meios eletrónicos, quer de trabalhos académicos. Márcia Alexandra The course of TBT pollution in Miranda Souto the world during the last decade Evolução da poluição por TBT no mundo durante a última década Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Toxicologia e Ecotoxicologia, realizada sob orientação científica do Doutor Carlos Miguez Barroso, Professor Auxiliar do Departamento de Biologia da Universidade de Aveiro. O júri Presidente Professor Doutor Amadeu Mortágua Velho da Maia Soares Professor Catedrático do Departamento de Biologia da Universidade de Aveiro Arguente Doutora Ana Catarina Almeida Sousa Estagiária de Pós-Doutoramento da Universidade da Beira Interior Orientador Carlos Miguel Miguez Barroso Professor Auxiliar do Departamento de Biologia da Universidade de Aveiro Agradecimentos A Deus, pela força e persistência que me deu durante a realização desta tese. Ao apoio e a força dados pela minha família para a realização desta tese. Á Doutora Susana Galante-Oliveira, por toda a aprendizagem científica, paciência e pelo apoio que me deu nos momentos mais difíceis ao longo deste percurso. Ao Sr. Prof. Doutor Carlos Miguel Miguez Barroso pela sua orientação científica.
    [Show full text]