Rapport D'évaluation HCERES

Total Page:16

File Type:pdf, Size:1020Kb

Rapport D'évaluation HCERES Rapport d’évaluation HCERES Laboratoire Biogéosciences Pascal NEIGE, directeur du contrat [2012-2016] Emmanuel FARA, directeur proposé du contrat [2017-2021] PARTIE A – BILAN ET PROJET DU LABORATOIRE BIOGEOSCIENCES PARTIE B – BILAN ET PROJET DES EQUIPES PARTIE C – PROJETS INTER-EQUIPES PARTIE D – ANNEXES PARTIE E – TABLEAUX DE SYNTHESE DEMANDES PAR L’HCERES Table des Matières PARTIE A – BILAN ET PROJET DU LABORATOIRE BIOGEOSCIENCES I. Présentation du laboratoire Biogéosciences .......................................................................................................... 7 1. Objectifs scientifiques, Structuration ....................................................................................................................................................... 7 2. Biogéosciences dans son contexte régional, national et international ..................................................................................... 8 2.1. Position de Biogéosciences à l’uB et au CNRS .................................................................................................................................... 8 2.2. Positionnement régional et inter‐régional .......................................................................................................................................... 8 2.3. Positionnement national et international ........................................................................................................................................... 9 3. Profil d’activité ................................................................................................................................................................................................... 9 4. Organisation et Vie de l’unité ...................................................................................................................................................................... 9 4.1. Gouvernance ..................................................................................................................................................................................................... 9 4.2 Organigramme .................................................................................................................................................................................................. 9 4.3. Organisation Scientifique .......................................................................................................................................................................... 10 4.4. Ressources Humaines du laboratoire .................................................................................................................................................. 10 4.5. Ressources Financières du laboratoire ............................................................................................................................................... 11 4.6. Politique Hygiène et Sécurité................................................................................................................................................................... 11 5. Plateaux techniques et Plateformes ....................................................................................................................................................... 1 2 5.1. Service Biologie, Génétique et Biominéralisation .......................................................................................................................... 12 5.2. GISMO ................................................................................................................................................................................................................. 13 5.3. MorphOptics .................................................................................................................................................................................................... 14 5.4. Pôle de Simulations Climatiques (PSC) ............................................................................................................................................... 15 5.5. Animaleries ...................................................................................................................................................................................................... 15 5.6. Salles de préparation du matériel ......................................................................................................................................................... 16 5.7. Service des collections ................................................................................................................................................................................. 17 5.8. Service de Plongée Scientifique .............................................................................................................................................................. 17 5.9. Service Véhicule ............................................................................................................................................................................................. 18 5.10. Service Gestion – Administration ........................................................................................................................................................ 18 5.11. Liens avec le Centre de Ressource Informatique de l’uB........................................................................................................... 18 II. Synthèse des Résultats et Faits Marquants du laboratoire .................................................................................. 19 1. Faits marquants de la période 2010‐2015 : 10 points pour appréhender Biogéosciences ........................................... 19 2. Production et qualité scientifiques ......................................................................................................................................................... 20 2.1. Eléments quantitatifs .................................................................................................................................................................................. 20 2.2. Eléments qualitatifs ..................................................................................................................................................................................... 25 2.3. Eléments sur les collaborations inter‐équipes ................................................................................................................................. 30 3. Rayonnement et attractivité académiques .......................................................................................................................................... 31 3.1. Prix et distinctions ........................................................................................................................................................................................ 31 3.2. Membres d’instances locales & nationales ........................................................................................................................................ 31 3.3. Direction et Participation à des Conseils scientifiques ................................................................................................................ 31 3.4. Implications fortes dans des associations nationales ou internationales & dans des réseaux de recherche ...... 32 3.5. Organisation de colloques et journée scientifiques ....................................................................................................................... 32 3.6. Participation à des laboratoires Internationaux ........................................................................................................................... 32 3.7. Activités éditoriales ...................................................................................................................................................................................... 32 3.8. Invitations à des Conférences et Séminaires ..................................................................................................................................... 32 4. Interaction avec l’environnement social, économique et culturel ............................................................................................ 33 4.1. Activités de diffusion de la Culture Scientifique .............................................................................................................................. 33 4.2. Relations avec le monde socio‐économique ...................................................................................................................................... 34 III. Implication dans la formation par la recherche .................................................................................................. 34 IV. Stratégie et Perspectives Scientifiques pour le Futur Contrat ............................................................................. 34 1. Auto‐analyse de l’unité de recherche ..................................................................................................................................................... 3 4 2. Politique et objectifs scientifiques de l’unité de recherche .......................................................................................................... 35 1 3. Stratégie scientifique et plan d’action...................................................................................................................................................
Recommended publications
  • Summer 2021: Air France to Serve the French Caribbean, French Guiana and Reunion Island from Paris-Charles De Gaulle and Paris- Orly
    Roissy, 7 January 2021 Summer 2021: Air France to serve the French Caribbean, French Guiana and Reunion Island from Paris-Charles de Gaulle and Paris- Orly Air France is increasing its service to the French Overseas Departments. This summer, the company will operate flights between the French Caribbean (Pointe-à-Pitre in Guadeloupe and Fort-de-France in Martinique), French Guiana (Cayenne) and Reunion Island (Saint-Denis de La Réunion) and Paris- Charles de Gaulle, in addition to its frequencies to and from Paris-Orly. Up to 56 flights will operate every week between these destinations and the two Paris airports, providing connections to the airline’s entire short, medium- and long-haul network. Launched last December, the number of services between Paris-Charles de Gaulle and the French Caribbean will increase, with 7 weekly flights to and from each of the two islands. Services between Paris-Charles de Gaulle and Cayenne and between Paris-Charles de Gaulle and Saint-Denis de La Réunion will be launched on 2 and 6 April 2021 respectively. Flight schedule –2021 summer season: - To/from Pointe-à-Pitre: 18 weekly direct flights o 11 weekly direct flights on departure from Paris-Orly o 7 weekly direct flights on departure from Paris-Charles de Gaulle - To/from Fort-de-France: 14 weekly direct flights o 7 weekly direct flights on departure from Paris-Orly o 7 weekly direct flights on departure from Paris-Charles de Gaulle - To/from Cayenne: 10 weekly direct flights o 7 weekly direct flights on departure from Paris-Orly o 3 weekly direct flights on departure from Paris-Charles de Gaulle on Wednesdays, Fridays and Sundays as from 2 April 2021 - To/from Saint-Denis de La Réunion: 14 weekly direct flights o 7 weekly direct flights on departure from Paris-Orly o 7 weekly direct flights on departure from Paris-Charles de Gaulle as from 6 April 2021 Flights will be operated by Boeing 777-200 and -300 equipped with Business, Premium Economy and Economy cabins Tickets can already be booked at all Air France points of sale including www.airfrance.com.
    [Show full text]
  • Based on SSU Rdna Sequences
    J. Eukaryot. Microbiol., 48(5), 2001 pp. 604±607 q 2001 by the Society of Protozoologists Phylogenetic Position of Sorogena stoianovitchae and Relationships within the Class Colpodea (Ciliophora) Based on SSU rDNA Sequences ERICA LASEK-NESSELQUISTa and LAURA A. KATZa,b aDepartment of Biological Sciences, Smith College, Northampton, Massachusetts 01063, and bProgram in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA ABSTRACT. The ciliate Sorogena stoianovitchae, which can form a multicellular fruiting body, has been classi®ed based upon its ultrastructure and morphology: the oral and somatic infraciliature of S. stoianovitchae most closely resemble those of members of the order Cyrtolophosidida in the class Colpodea. We characterized the small subunit ribosomal DNA (SSU rDNA) gene sequence from S. stoianovitchae and compared this sequence with those from representatives of all ciliate classes. These analyses placed S. stoianovitchae as either sister to members of the class Nassophorea or Colpodea. In an in-group analysis, including all SSU rDNA sequences from members of the classes Nassophorea and Colpodea and representatives of appropriate outgroups, S. stoianovitchae was always sister to Platyophrya vorax (class Colpodea, order Cyrtolophosidida). However, our analyses failed to support the monophyly of the class Colpodea. Instead, our data suggest that there are essentially three unresolved clades: (1) the class Nassophorea; (2) Bresslaua vorax, Colpoda in¯ata, Pseudoplatyophrya nana, and Bursaria truncatella (class Colpodea); and (3) P. vorax and S. stoianovitchae (class Colpodea). Key Words. Bursariomorphida, ciliate phylogeny, Colpodida, Cyrtolophosidida, molecular systematics, Nassophorea, Sorogenida. OROGENA stoianovitchae is a unique ciliate that aggregates partial B. sphagni sequence), provide the ®rst molecular hy- S to produce an aerial fruiting body when cells are starved.
    [Show full text]
  • An Integrative Approach Sheds New Light Onto the Systematics
    www.nature.com/scientificreports OPEN An integrative approach sheds new light onto the systematics and ecology of the widespread ciliate genus Coleps (Ciliophora, Prostomatea) Thomas Pröschold1*, Daniel Rieser1, Tatyana Darienko2, Laura Nachbaur1, Barbara Kammerlander1, Kuimei Qian1,3, Gianna Pitsch4, Estelle Patricia Bruni4,5, Zhishuai Qu6, Dominik Forster6, Cecilia Rad‑Menendez7, Thomas Posch4, Thorsten Stoeck6 & Bettina Sonntag1 Species of the genus Coleps are one of the most common planktonic ciliates in lake ecosystems. The study aimed to identify the phenotypic plasticity and genetic variability of diferent Coleps isolates from various water bodies and from culture collections. We used an integrative approach to study the strains by (i) cultivation in a suitable culture medium, (ii) screening of the morphological variability including the presence/absence of algal endosymbionts of living cells by light microscopy, (iii) sequencing of the SSU and ITS rDNA including secondary structures, (iv) assessment of their seasonal and spatial occurrence in two lakes over a one‑year cycle both from morphospecies counts and high‑ throughput sequencing (HTS), and, (v) proof of the co‑occurrence of Coleps and their endosymbiotic algae from HTS‑based network analyses in the two lakes. The Coleps strains showed a high phenotypic plasticity and low genetic variability. The algal endosymbiont in all studied strains was Micractinium conductrix and the mutualistic relationship turned out as facultative. Coleps is common in both lakes over the whole year in diferent depths and HTS has revealed that only one genotype respectively one species, C. viridis, was present in both lakes despite the diferent lifestyles (mixotrophic with green algal endosymbionts or heterotrophic without algae).
    [Show full text]
  • Critical Care Medicine in the French Territories in the Americas
    01 Pan American Journal Opinion and analysis of Public Health 02 03 04 05 06 Critical care medicine in the French Territories in 07 08 the Americas: Current situation and prospects 09 10 11 1 2 1 1 1 Hatem Kallel , Dabor Resiere , Stéphanie Houcke , Didier Hommel , Jean Marc Pujo , 12 Frederic Martino3, Michel Carles3, and Hossein Mehdaoui2; Antilles-Guyane Association of 13 14 Critical Care Medicine 15 16 17 18 Suggested citation Kallel H, Resiere D, Houcke S, Hommel D, Pujo JM, Martino F, et al. Critical care medicine in the French Territories in the 19 Americas: current situation and prospects. Rev Panam Salud Publica. 2021;45:e46. https://doi.org/10.26633/RPSP.2021.46 20 21 22 23 ABSTRACT Hospitals in the French Territories in the Americas (FTA) work according to international and French stan- 24 dards. This paper aims to describe different aspects of critical care in the FTA. For this, we reviewed official 25 information about population size and intensive care unit (ICU) bed capacity in the FTA and literature on FTA ICU specificities. Persons living in or visiting the FTA are exposed to specific risks, mainly severe road traffic 26 injuries, envenoming, stab or ballistic wounds, and emergent tropical infectious diseases. These diseases may 27 require specific knowledge and critical care management. However, there are not enough ICU beds in the FTA. 28 Indeed, there are 7.2 ICU beds/100 000 population in Guadeloupe, 7.2 in Martinique, and 4.5 in French Gui- 29 ana. In addition, seriously ill patients in remote areas regularly have to be transferred, most often by helicopter, 30 resulting in a delay in admission to intensive care.
    [Show full text]
  • Resource Partitioning Between Phytoplankton and Bacteria in the Coastal Baltic Sea Frontiers in Marine Science, 7: 1-19
    http://www.diva-portal.org This is the published version of a paper published in Frontiers in Marine Science. Citation for the original published paper (version of record): Sörenson, E., Lindehoff, E., Farnelid, H., Legrand, C. (2020) Resource Partitioning Between Phytoplankton and Bacteria in the Coastal Baltic Sea Frontiers in Marine Science, 7: 1-19 https://doi.org/10.3389/fmars.2020.608244 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-99520 ORIGINAL RESEARCH published: 25 November 2020 doi: 10.3389/fmars.2020.608244 Resource Partitioning Between Phytoplankton and Bacteria in the Coastal Baltic Sea Eva Sörenson, Hanna Farnelid, Elin Lindehoff and Catherine Legrand* Department of Biology and Environmental Science, Linnaeus University Centre of Ecology and Evolution and Microbial Model Systems, Linnaeus University, Kalmar, Sweden Eutrophication coupled to climate change disturbs the balance between competition and coexistence in microbial communities including the partitioning of organic and inorganic nutrients between phytoplankton and bacteria. Competition for inorganic nutrients has been regarded as one of the drivers affecting the productivity of the eutrophied coastal Baltic Sea. Yet, it is unknown at the molecular expression level how resources are competed for, by phytoplankton and bacteria, and what impact this competition has on the community composition. Here we use metatranscriptomics and amplicon sequencing and compare known metabolic pathways of both phytoplankton and bacteria co-occurring during a summer bloom in the archipelago of Åland in the Baltic Sea to examine phytoplankton bacteria resource partitioning.
    [Show full text]
  • Ciliate Diversity, Community Structure, and Novel Taxa in Lakes of the Mcmurdo Dry Valleys, Antarctica
    Reference: Biol. Bull. 227: 175–190. (October 2014) © 2014 Marine Biological Laboratory Ciliate Diversity, Community Structure, and Novel Taxa in Lakes of the McMurdo Dry Valleys, Antarctica YUAN XU1,*†, TRISTA VICK-MAJORS2, RACHAEL MORGAN-KISS3, JOHN C. PRISCU2, AND LINDA AMARAL-ZETTLER4,5,*࿣ 1Laboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; 2Montana State University, Department of Land Resources and Environmental Sciences, 334 Leon Johnson Hall, Bozeman, Montana 59717; 3Department of Microbiology, Miami University, Oxford, Ohio 45056; 4The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543; and 5Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island 02912 Abstract. We report an in-depth survey of next-genera- trends in dissolved oxygen concentration and salinity may tion DNA sequencing of ciliate diversity and community play a critical role in structuring ciliate communities. A structure in two permanently ice-covered McMurdo Dry PCR-based strategy capitalizing on divergent eukaryotic V9 Valley lakes during the austral summer and autumn (No- hypervariable region ribosomal RNA gene targets unveiled vember 2007 and March 2008). We tested hypotheses on the two new genera in these lakes. A novel taxon belonging to relationship between species richness and environmental an unknown class most closely related to Cryptocaryon conditions
    [Show full text]
  • French Guiana
    Country Profile FRENCH GUIANA French Guiana (GF) Geographic Coordinates: 4 00 N, 53 00 W 1 EEZ Extent: 135,048 km 2 (SAUP) Shelf area: 46,741km 2 (SAUP)2 Territorial sea Figure1. COUNTRY MAP Terrestrial extent: 91,000 km 2 Population (2006): 199,509 3 Other countries operating within this: EEZ: Venezuela, Trinidad & Tobago, Suriname Brazil, Barbados Total Landings Description Sited along the northern coast of South America, between Brazil and Suriname, French Guiana borders are demarcated by the Oyapock River in the south and east and the Maroni River in the West. An overseas department of France ( département d'outre-mer ). The Fisheries of French Guiana Overview Commercial shrimp fishing, along with forestry are the most important economic activities and export of shrimp accounts for 50% of export earnings (Weidner et al. 1999). Local fisheries are inshore artisanal canoe fisheries, line fisheries for snappers and commercial shrimp trawling. Foreign-flagged vessels were a significant component of the fishery until the 1990s, when French Guiana waters were closed to US and other international fleets. There are no longline fisheries in French Guiana. 1. What fisheries exist in this territory? The shrimp fishery is dominated by commercial operations fishing for penaeid shrimp, with P. subtilis and P.brasiliensis making up 99% of the catch. Xiphopenaeus kroyeri (seabob) shrimp fishey has not been assessed, and is considered insignificant because of the ban on trawling in the 20 m isobath (Charuau and Medley 2001). Most of the boats are equipped with vessel monitoring systems Red snapper fishery 1 World Fact Book CIA 2006 2 SAUP estimate 3 Worldfact Book CIA 2006 2 2.
    [Show full text]
  • Protozoologica
    Acta Protozool. (2014) 53: 207–213 http://www.eko.uj.edu.pl/ap ACTA doi:10.4467/16890027AP.14.017.1598 PROTOZOOLOGICA Broad Taxon Sampling of Ciliates Using Mitochondrial Small Subunit Ribosomal DNA Micah DUNTHORN1, Meaghan HALL2, Wilhelm FOISSNER3, Thorsten STOECK1 and Laura A. KATZ2,4 1Department of Ecology, University of Kaiserslautern, 67663 Kaiserslautern, Germany; 2Department of Biological Sciences, Smith College, Northampton, MA 01063, USA; 3FB Organismische Biologie, Universität Salzburg, A-5020 Salzburg, Austria; 4Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA Abstract. Mitochondrial SSU-rDNA has been used recently to infer phylogenetic relationships among a few ciliates. Here, this locus is compared with nuclear SSU-rDNA for uncovering the deepest nodes in the ciliate tree of life using broad taxon sampling. Nuclear and mitochondrial SSU-rDNA reveal the same relationships for nodes well-supported in previously-published nuclear SSU-rDNA studies, al- though support for many nodes in the mitochondrial SSU-rDNA tree are low. Mitochondrial SSU-rDNA infers a monophyletic Colpodea with high node support only from Bayesian inference, and in the concatenated tree (nuclear plus mitochondrial SSU-rDNA) monophyly of the Colpodea is supported with moderate to high node support from maximum likelihood and Bayesian inference. In the monophyletic Phyllopharyngea, the Suctoria is inferred to be sister to the Cyrtophora in the mitochondrial, nuclear, and concatenated SSU-rDNA trees with moderate to high node support from maximum likelihood and Bayesian inference. Together these data point to the power of adding mitochondrial SSU-rDNA as a standard locus for ciliate molecular phylogenetic inferences.
    [Show full text]
  • The Outermost Regions European Lands in the World
    THE OUTERMOST REGIONS EUROPEAN LANDS IN THE WORLD Açores Madeira Saint-Martin Canarias Guadeloupe Martinique Guyane Mayotte La Réunion Regional and Urban Policy Europe Direct is a service to help you find answers to your questions about the European Union. Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. European Commission, Directorate-General for Regional and Urban Policy Communication Agnès Monfret Avenue de Beaulieu 1 – 1160 Bruxelles Email: [email protected] Internet: http://ec.europa.eu/regional_policy/index_en.htm This publication is printed in English, French, Spanish and Portuguese and is available at: http://ec.europa.eu/regional_policy/activity/outermost/index_en.cfm © Copyrights: Cover: iStockphoto – Shutterstock; page 6: iStockphoto; page 8: EC; page 9: EC; page 11: iStockphoto; EC; page 13: EC; page 14: EC; page 15: EC; page 17: iStockphoto; page 18: EC; page 19: EC; page 21: iStockphoto; page 22: EC; page 23: EC; page 27: iStockphoto; page 28: EC; page 29: EC; page 30: EC; page 32: iStockphoto; page 33: iStockphoto; page 34: iStockphoto; page 35: EC; page 37: iStockphoto; page 38: EC; page 39: EC; page 41: iStockphoto; page 42: EC; page 43: EC; page 45: iStockphoto; page 46: EC; page 47: EC. Source of statistics: Eurostat 2014 The contents of this publication do not necessarily reflect the position or opinion of the European Commission. More information on the European Union is available on the internet (http://europa.eu). Cataloguing data can be found at the end of this publication.
    [Show full text]
  • Protist Diversity Along a Salinity Gradient in a Coastal Lagoon
    Vol. 74: 263–277, 2015 AQUATIC MICROBIAL ECOLOGY Published online March 25 doi: 10.3354/ame01740 Aquat Microb Ecol Protist diversity along a salinity gradient in a coastal lagoon Sergio Balzano1,2,*, Elsa Abs1, Sophie C. Leterme1 1School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide 5001, South Australia 2Present address: Department of Marine Organic Biogeochemistry, Royal Netherlands Institute for Sea Research, PO Box 59, 1790AB Den Burg, The Netherlands ABSTRACT: The importance of microbial eukaryotes to aquatic systems has been widely acknowledged in the last decade, and the application of high-throughput sequencing techniques has revealed an astonishing diversity and high proportions of novel taxa. Most studies have focused either on marine or freshwater ecosystems; thus, information on estuarine communities is either incomplete or missing. We assessed the composition of microbial eukaryotes along a South Australian coastal lagoon affected by a broad (7 to 65 PSU) salinity gradient, the Coorong Lagoon. This lagoon extends for over 170 km from the mouth of the River Murray (Murray Mouth) south- wards, where the salinity increases up to hypersaline values. We sampled 5 stations during the austral summer and winter and sequenced the amplified V4 region of the 18S rRNA gene using Ion Torrent. Genetic libraries were mostly represented by reads from 5 phyla, with Chlorophyta prevailing in summer, diatoms in winter and Haptophyta in the southernmost sampling sites. In spite of the broad spatial and temporal salinity changes observed, the communities of small eukaryotes clustered in 2 groups reflecting the sample location. Moreover, dissimilarities between samples were unaffected by differences in salinity, but increased with increasing geographic dis- tances.
    [Show full text]
  • Ciliate Biodiversity and Phylogenetic Reconstruction Assessed by Multiple Molecular Markers Micah Dunthorn University of Massachusetts Amherst, [email protected]
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Open Access Dissertations 9-2009 Ciliate Biodiversity and Phylogenetic Reconstruction Assessed by Multiple Molecular Markers Micah Dunthorn University of Massachusetts Amherst, [email protected] Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations Part of the Life Sciences Commons Recommended Citation Dunthorn, Micah, "Ciliate Biodiversity and Phylogenetic Reconstruction Assessed by Multiple Molecular Markers" (2009). Open Access Dissertations. 95. https://doi.org/10.7275/fyvd-rr19 https://scholarworks.umass.edu/open_access_dissertations/95 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. CILIATE BIODIVERSITY AND PHYLOGENETIC RECONSTRUCTION ASSESSED BY MULTIPLE MOLECULAR MARKERS A Dissertation Presented by MICAH DUNTHORN Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of Doctor of Philosophy September 2009 Organismic and Evolutionary Biology © Copyright by Micah Dunthorn 2009 All Rights Reserved CILIATE BIODIVERSITY AND PHYLOGENETIC RECONSTRUCTION ASSESSED BY MULTIPLE MOLECULAR MARKERS A Dissertation Presented By MICAH DUNTHORN Approved as to style and content by: _______________________________________
    [Show full text]
  • Marine Turtles Identification in French Guiana : Why, Where and How ?
    MARINE TURTLES IDENTIFICATION IN FRENCH GUIANA : WHY, WHERE AND HOW ? Johan Chevalier 1 & Marc Girondot 1, 2 1- UMR 8570 - Université Paris 7 Denis Diderot, CNRS, MNHN Paris et Collège de France - 2 place Jussieu - 75251 Paris Cedex 05 - France. [email protected] & [email protected] 2 - Réserve Naturelle de l’Amana - 97361 Ya:lima:po-Awa:la - Guyane française. Leatherback identification program began at the end of the 1960s in French Guiana. Many different methods have been used : plastic tags, titanium tags, Monel tags, PIT tags, photo- identification and branding. In total, more than 50,000 tags have been put on leatherbacks whereas the estimated number of females is much lower. Althought it initialy yielded important information the tagging program quickly became what Mrosovsky called the tagging reflex, because of the lack of objectives. Since 1998, a new identification program has begun in French Guiana. The first step of this program has been to clearly identify why, where and how leatherback identification should be performed in this region. Why ? The first question we asked was not why identify, but what scientific data do we need to improve knowledge and conservation of this species. Identification is a suitable tool to perform some of the needed studies such as: - The delimitation of the leatherback population nesting in the Guianas. The coast of the Guianas (North of Brazil, French Guiana, Suriname, and Guyana) is the most important nesting zone for Dermochelys coriacea in the world (Spotila et al., 1996). Ya:lima:po beach, in the western part of French Guiana, concentrates the large majority of the leatherback nesting activity in this region (Girondot & Fretey, 1996).
    [Show full text]