Planar Tetracoordination of Carbon in Groups 4 and 5 Organometallic

Total Page:16

File Type:pdf, Size:1020Kb

Planar Tetracoordination of Carbon in Groups 4 and 5 Organometallic Acc. Chem. Res. 1999, 32, 494-502 Planar Tetracoordination of Scheme 1 Carbon in Groups 4 and 5 Organometallic Chemistry ROBERT CHOUKROUN* AND PATRICK CASSOUX Equipe PreÂcurseurs MoleÂculaires et MateÂriaux, Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 Toulouse CeÂdex, France Received July 29, 1998 dentally. Several recent important papers and exhaustive and comprehensive reviews have appeared at different Introduction stages of development of this research,5 and the reader is especially directed to the most recent one by Erker et al.6 Nowadays, when so many things are questioned again and Examination of the structural and electronic features of again, tetrahedral sp3 hybridization of tetravalent carbon the various involved compounds indicates that the sta- seemed to be a rock solid concept since its proposal by bilization required for obtaining ptC compounds may van't Hoff and Le Bel.1 Forget this! Planar tetracoordinate result from the incorporation of a carbon atom into carbon is not as odd as a three-dollar bill and does exist. sterically rigid, small ring or polycyclic systems, or from In 1970, Hoffman et al. were the first to predict, on the the increase of the electron density in the σ system and basis of a theoretical approach, the possible existence of its decrease in the π system. In the second case, variation planar methane with an electronic structure involving a of the electronic density may be obtained by use of six-electron four-bond electron-deficient σ system and a appropriate σ-donor/π-acceptor substituents, such as, for two-electron-containing p -based orbital perpendicular to z example, transition metals. As appears in the literature,6 the σ plane.2 Naturally, as the energy of planar methane most ptC compounds were obtained that way, and it may is higher than that of tetrahedral methane,3 some kind of seem ironic that organometallic chemistry provides the stabilization was needed if compounds containing planar most efficient route toward planar tetracoordinate carbon. tetracoordinate carbon (ptC) were to be prepared. Indeed, this prediction was experimentally confirmed,4 when Seidel et al. reported in 1976 the synthesis,4a and Cotton Planar Tetracoordinate Carbon in Groups 4 4b ‚ et al. in 1977 the structure, of V2(2,6-dimethoxyphenyl)4 and 13 Dimetallic Complexes THF, a divanadium complex in which a ptC may be From a general point of view, the preparation of dimetallic identified. Following on this seminal result, a number of complexes associating two transition metals has recently other ptC compounds have been prepared, often inci- attracted an increasing amount of attention. This is due to a new chemical reaction behavior resulting from the Robert Choukroun was born in Alger (in the former French department of Algeria), synergistic combination of the properties of both metals on June 24, 1944. He received all of his degrees from the Universite´ Paul Sabatier, which may be utilized in stoichiometric or catalytic in Toulouse, where he joined the CNRS in 1968 (Doctorat d'Etat, in 1975, under reactions.7 It happens that most of the ptC-containing the Supervision of Professor Danie`le Gervais). After a postdoctoral stay in 1975- 1976 at the Unit of Nitrogen Fixation, University of Sussex (Brighton, U.K.) under transition metal complexes reported to date are dimetallic the direction of Professor Chatt, he joined the Laboratoire de Chimie de complexes of groups 4 and 13 (I in Scheme 1).6 Coordination de Toulouse, where he has remained to this day, becoming Directeur de Recherche in 1996. His current research interests are concerned with the All the synthetic procedures described for preparing I organometallic chemistry of the early transition metals of groups 4 and 5 and are believed to involve an (alkyne)-metallocene interme- their development and use as catalysts for homogeneous catalysis and molecular diate compound II which reacts with another metal- precursors to ceramic materials and colloids. containing species to afford the dimetallic complex I in Patrick Cassoux was born in Hanoõ¨, former French Indochina (Viet Nam), on which a C1dC2 bond is connected to both metals. The C2 September 5, 1941. He received the ªInge´nieurº degree from the ªEcole Nationale atom is the ptC in this system as shown by the planarity Supe´rieure de Chimie de Toulouseº, the master degree from the Paul Sabatier 1 2 ′ ° University at Toulouse, in 1965, and the ªDoctorat d'Etatº (Ph.D.) from the same of the MC C M X cycle and the value close to 360 of the University, in 1971, under the direction of F. Gallais. He was a postdoctoral sum of the bond angles around C2. The preparation of associate at the University of Michigan, Ann Arbor, with R. L. Kuczkowski in ptC-containing, group 4 homodimetallic complex cations - 1973 74, and a visiting research fellow at the General Electric R&D Center, seems also to involve an (alkyne)-metallocene intermedi- Schenectady, NY, with L. V. Interrante in 1979. He joined the French National Center for Research (CNRS) in 1966, where he rose through the ranks to become ate.6,8,9 Thus, the presence of this (alkyne)-metallocene ªDirecteur de Recherche Iº in 1989. His research interests include molecular coordination compounds with unusual solid-state properties and molecular * Phone: +(33) [0]5 61333161. FAX: +(33) [0]5 61553003. E-mail: organometallic precursors to ceramic materials. [email protected]. 494 ACCOUNTS OF CHEMICAL RESEARCH / VOL. 32, NO. 6, 1999 10.1021/ar970304z CCC: $18.00 1999 American Chemical Society Published on Web 01/29/1999 Planar Tetracoordination of Carbon Choukroun and Cassoux Scheme 2 and heterodimetallic complexes with various structural configurations. For example, Lang et al. have successfully used the reactivity of alkynes coordinated to titanium or zirconium to prepare heterodimetallic complexes in which the second metal is an element of group 11.17,18 These opportunities have also been exploited by Erker et al. who used Cp2Zr(butadiene) as a source of zirconocene. Reac- tion of ªCp2Zrº with Cp2M(CtCPh)2 (M ) Zr, Hf) is fol- Scheme 3 lowed by a redistribution process which affords either the dimeric [Cp2Zr(µ-CtCPh)]2 or the heterodimetallic Cp2- 19 Zr(µ-CtCPh)2HfCp2 complexes (Scheme 4). This re- search line was further explored by studying the proto- nation of [Cp2Zr(µ-CtCPh)]2, which led to the formation of ptC.19 intermediate, or, if available, an (alkyne)-metallocene- based reagent, seems crucial for obtaining group 4 and Synthesis and Characterization of Groups 4 13 dimetallic complexes containing one ptC. and 5 Dimetallic Complexes On the other hand, more recently, implication of All the ptC-containing dimetallic complexes reported until alkynyl moieties for incidental ptC generation was also recently had only one planar tetracoordinate carbon atom. observed by Rosenthal et al. in the reactivity of Ni0 We were able to prepare and characterize dimetallic complexes and titanocene (vide infra).10 Indeed, two complexes of groups 4 and 5 containing two ptCs.20 This - - heterobimetallic compounds (Ti Ni, Zr Ni) were pre- result was obtained in our group rather incidentally as our pared, and their crystal structure determination led to the primary goal was then the synthesis of dimetallic vana- identification of ptC in these compounds. dium-titanium complexes for use as molecular precursors in the organometallic chemical vapor deposition of car- Acetylide Chemistry. π Donation as the First bonitride ceramics containing both these metals.21,22 In Step many heterodimetallic complexes, an electron-poor metal The chemistry of acetylides is well suited for the prepara- (Ti, Zr) is associated with an electron-rich metal (Rh, 7,23 tion of new compounds of group 4 elements, either by Ru). The association in a single molecule of two oxidative addition of a diyne on the metal (initially TiII electron-poor metals is more unusual, and indeed, very and ZrII) of ligand-stabilized metallocene or by reaction few heterodimetallic compounds of groups 4 and 5 24-26 of an alkyne compound of a group 4 element with a Lewis elements have been described. The reaction behavior metal complex. Different situations may be encountered of alkyne triple bonds in substituted titanocene and depending on the nature of the metal, the substituents zirconocene compounds has recently been extensively 17,18,27-30 on the diyne or alkyne, and the stoichiometry, the simplest studied. In particular, the preparation by oxida- - - situation being the formation of the homodimetallic tive addition of titanium silver and titanium copper t complex [Cp M(µ-CtCPh)] (Cp ) cyclopentadienyl) heterodimetallic compounds from [(C5H4(SiMe3)]2Ti(C 2 2 ) ′ ′ ) (Scheme 2).11-14 Moreover, it has been shown by Rosenthal CSiMe3)2 and MCl2 (M Fe, Co, Ni) or M X(M Ag, Cu; X ) Cl, R) has been reported by Lang et al. (Scheme 5).18 et al. that the Cp2Ti(Me3SiCtCSiMe3) and Cp2Zr(THF)- t (Me3SiCtCSiMe3) compounds are convenient sources of Likewise, a similar oxidative addition of Cp2Hf(C CPh)2 15 transient Ti- and Zr-metallocene species (Scheme 3). by Cp2Zr(butadiene) has led to the preparation of Cp2Hf- t 19 Thus, the ªCp2Tiº titanocene and ªCp2Zrº zirconocene are (µ-C CPh)2ZrCp2. These results showed the way toward the reactive moieties on alkynes and dialkynes and can heterodimetallic [Ti, V] or [Zr, V] complexes involving the self-organize to afford [Ti, Ti] and [Zr, Zr] homodimetallic, use of acetylenic titanium or zirconium compounds. 16 2 1 2 as well as heterodimetallic, [Ti, Zr] complexes. Alter- Moreover, the synthesis of the [Cp2V(η -R CdCR ] com- nately, the reactivity toward diynes of these transient pound (Scheme 6)31 indicated that the oxidative addition ªCp2Mº species also allows the stabilization of these of vanadocene Cp2V (the oxidation state of vanadium species.
Recommended publications
  • Donor/Acceptor Metallocenes: a New Structure Principle in Catalyst Design
    COMMUNICATIONS metal complex inside their tunnels, which makes these [19] C. Cascales, E. GutieÂrrez-Puebla, M. A. Monge, C. Ruiz-Valero, materials a good point of departure for designing new Angew. Chem. 1998, 110, 135 ± 138; Angew. Chem. Int. Ed. 1998, 37, 129 ± 131. catalysts; a stable framework after removal of the transition [20] H. Li, M. Eddaaoudi, D. A. Richardson, O. M. Yaghi, J. Am. Chem. metal complex; and large distances between the active metal Soc. 1998, 120, 8567. centers, which allows unhindered access of reactants to these [21] Hailian Li, O. M. Yaghi, J. Am. Chem. Soc. 1998, 120, 10569. centers through uniformly sized 8Rc channels. [22] T. E. Gier, X. Bu, P. Feng, G. D. Stucky, Nature 1998, 395, 154. [23] X. Bu, P. Feng, G. D. Stucky, J. Am. Chem. Soc. 1998, 120, 11204. [24] X. Bu, P. Feng, T. E. Gier, D. Zhao, G. D. Stucky, J. Am. Chem. Soc. 1998, 120, 13389. [25] H. Brumer, K. Wutz, New J. Chem. 1992, 16,57. Experimental Section [26] A. Corma, V. ForneÂs, S. B. Pergher, T. L. Maesennn, J. G. Buglass, Nature 1998, 396, 353. [27] SHELXTL, Siemens Energy & Automation Inc., Analytical Instru- X-ray structure analysis of ICMM-2Cu, ICMM-2Ag, and ICMM-2H: mentation, 1996. Orthorhombic, space group Pnna,MoKa, dimensions of crystals: 0.2 Â 0.1 Â 0.05, 0.02 Â 0.08 Â 0.2, and 0.04 Â 0.16 Â 0.2 mm, respectively; see Table 1 for the cell parameters. Data were collected in a Siemens SMART- CCD diffractometer using w scans over the range 3 < q < 268.
    [Show full text]
  • University of Groningen Structural Characterization of a Cationic Zirconocene Olefin Polymerization Catalyst with Its Methylated
    University of Groningen Structural characterization of a cationic zirconocene olefin polymerization catalyst with its methylated boralumoxane counterion Richter, Bodo; Meetsma, Auke; Hessen, Bart; Teuben, Jan H. Published in: Angewandte Chemie-International Edition in English IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2002 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Richter, B., Meetsma, A., Hessen, B., & Teuben, J. H. (2002). Structural characterization of a cationic zirconocene olefin polymerization catalyst with its methylated boralumoxane counterion. Angewandte Chemie-International Edition in English, 41(12), 2166 - 2169. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 10-02-2018 COMMUNICATIONS A. P. Wheeler, A. Veis, A. I. Caplan, Science 1992, 255, 1098 ± Structural Characterization of a Cationic 1105. [4] P. Calvert, P.
    [Show full text]
  • Organometallic and Catalysis
    ORGANOMETALLIC AND CATALYSIS Dr. Malay Dolai, Assistant Professor, Department of Chemistry, Prabhat Kumar College, Contai, Purba Medinipur-721404, WB, India. 1.Introduction Organometallic chemistry is the study of organometallic compounds, chemical compounds containing at least one chemical bond between a carbon atom of an organic molecule and a metal, including alkaline, alkaline earth, and transition metals, and sometimes broadened to include metalloids like boron, silicon, and tin, as well. Aside from bonds to organyl fragments or molecules, bonds to 'inorganic' carbon, like carbon monoxide (metal carbonyls), cyanide, or carbide, are generally considered to be organometallic as well. Some related compounds such as transition metal hydrides and metal phosphine complexes are often included in discussions of organometallic compounds, though strictly speaking, they are not necessarily organometallic. The related but distinct term "metalorganic compound" refers to metal-containing compounds lacking direct metal-carbon bonds but which contain organic ligands. In 1827, Zeise's salt is the first platinum- olefin complex: K[PtCl3(C2H4)].H2O, the first invented organometallic compound. Organometallic compounds find wide use in commercial reactions, both as homogeneous catalysis and as stoichiometric reagents For instance, organolithium, organomagnesium, and organoaluminium compounds, examples of which are highly basic and highly reducing, are useful stoichiometrically, but also catalyze many polymerization reactions. Almost all processes involving carbon monoxide rely on catalysts, notable examples being described as carbonylations. The production of acetic acid from methanol and carbon monoxide is catalyzed via metal carbonyl complexes in the Monsanto process and Cativa process. Most synthetic aldehydes are produced via hydroformylation. The bulk of the synthetic alcohols, at least those larger than ethanol, are produced by hydrogenation of hydroformylation- derived aldehydes.
    [Show full text]
  • Nbcl5-Mg Reagent System in Regio- and Stereoselective Synthesis of (2Z)-Alkenylamines and (3Z)-Alkenylols from Substituted 2-Alkynylamines and 3-Alkynylols
    molecules Article NbCl5-Mg Reagent System in Regio- and Stereoselective Synthesis of (2Z)-Alkenylamines and (3Z)-Alkenylols from Substituted 2-Alkynylamines and 3-Alkynylols Rita N. Kadikova *, Azat M. Gabdullin, Oleg S. Mozgovoj, Ilfir R. Ramazanov and Usein M. Dzhemilev Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, 450075 Ufa, Russia; [email protected] (A.M.G.); [email protected] (O.S.M.); ilfi[email protected] (I.R.R.); [email protected] (U.M.D.) * Correspondence: [email protected] Abstract: The reduction of N,N-disubstituted 2-alkynylamines and substituted 3-alkynylols using the NbCl5–Mg reagent system affords the corresponding dideuterated (2Z)-alkenylamine and (3Z)- alkenylol derivatives in high yields in a regio- and stereoselective manner through the deuterolysis (or hydrolysis). The reaction of substituted propargylamines and homopropargylic alcohols with the in situ generated low-valent niobium complex (based on the reaction of NbCl5 with magnesium metal) is an efficient tool for the synthesis of allylamines and homoallylic alcohols bearing a 1,2-disubstituted double bond. It was found that the well-known approach for the reduction of alkynes based on the use of the TaCl5-Mg reagent system does not work for 2-alkynylamines and 3-alkynylols. Thus, this article reveals a difference in the behavior of two reagent systems—NbCl5-Mg and TaCl5-Mg, Citation: Kadikova, R.N.; Gabdullin, in relation to oxygen- and nitrogen-containing alkynes. A regio- and stereoselective method was A.M.; Mozgovoj, O.S.; Ramazanov, developed for the synthesis of nitrogen-containing E-β-chlorovinyl sulfides based on the reaction of I.R.; Dzhemilev, U.M.
    [Show full text]
  • Room-Temperature Catalytic Hydrodefluorination of Pentafluoro
    Journal of Molecular Catalysis A: Chemical 261 (2007) 184–189 Room-temperature catalytic hydrodefluorination of pentafluoro-pyridine by zirconocene fluoro complexes and diisobutylaluminumhydride Ulrike Jager-Fiedler¨ a, Marcus Klahn a, Perdita Arndt a, Wolfgang Baumann a, Anke Spannenberg a, Vladimir V. Burlakov b,1, Uwe Rosenthal a,∗ a Leibniz-Institut f¨ur Katalyse e.V. an der Universit¨at Rostock, Albert-Einstein-Str. 29a, D-18059 Rostock, Germany b A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov St. 28, 117813 Moscow, Russia Received 5 May 2006; received in revised form 9 June 2006; accepted 12 June 2006 Available online 11 September 2006 Dedicated to Professor Bernhard Lucke¨ on the occasion of his 70th birthday Abstract ␩5 Mixtures consisting of zirconocene difluorides Cp2ZrF2 (Cp = substituted or nonsubstituted -cyclopentadienyl) as pre-catalysts and diisobutylaluminumhydride i-Bu2AlH as activator were found to be active catalysts in the room-temperature hydrodefluorination (HDF) of fluorinated pyridines. Evaluation of these systems established rac-(ebthi)ZrF2 (1) and Cp2ZrF2 (3) together with i-Bu2AlH as active catalysts in the room-temperature hydrodefluorination (HDF) of pentafluoro-pyridine. The active species for the conversion were the actually formed hydrides [rac-(ebthi)ZrH(␮-H)]2 (2) and [Cp2ZrH(␮-H)]2 (4). The results we obtained (rt, 24 h, turn over number 67) showed a significantly better performance compared to other investigations published before for this HDF reaction. © 2006 Elsevier B.V. All rights reserved. Keywords: Zirconocene; C F bond activation; C H bond activation; Organometallics; Heterocycles 1. Introduction complex Cp2Ti(F)[(O–C(CCF3)3C CF2)] [8].
    [Show full text]
  • Reactions of Alkyl and Alkenyl Zirconocene Complexes
    Reactions of alkyl and alkenyl zirconocene complexes by Klark Thor Hanson A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Chemistry Montana State University © Copyright by Klark Thor Hanson (1992) Abstract: Zirconacycles have been. demonstrated to react sluggishly with acyl chlorides even at elevated temperatures . Studies were undertaken to detertmine whether or not this reaction could be facilitated via transmetallation of one or both of the carbon-zirconium bonds of the zirconacycle to a more suitable metal. This research demonstrates that zirconacycles will react with acyl chlorides in the presence of secondary metallic reagents. Cuprate reagents and catalytic palladium complexes have been demonstrated to function in this capacity, presumably via stoichiometric and catalytic transmetallation respectively. REACTIONS OF ALKYL AND ALKENYL ZIRCONOCENE COMPLEXES by Klark Thor Hanson A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Chemistry MONTANA STATE UNIVERSITY Bozeman, Montana April 1992 ii APPROVAL of a thesis submitted by Klark Thor Hanson This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the College of Graduate Studies. Date Chairperson/ Graduat Committee Approved for the Major Department ^ JC 0- ^ __ Date He$ra.\ Major Department O Approved for the College of Graduate Studies Date I ' Graduate? Dean iii STATEMENT OF PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a master's degree at Montana State University, I agree that the Library shall make it available to borrowers under the rules of the Library.
    [Show full text]
  • Zwitterionic Aluminabenzene-Alkylzirconium Complex Having Half-Zirconocene Structure: Synthesis and Application for an Additive-Free Ethylene Polymerization
    ChemComm Zwitterionic Aluminabenzene-Alkylzirconium Complex Having Half-Zirconocene Structure: Synthesis and Application for an Additive-Free Ethylene Polymerization Journal: ChemComm Manuscript ID CC-COM-03-2018-002186 Article Type: Communication Page 1 of 5 Please doChemComm not adjust margins Journal Name COMMUNICATION Zwitterionic Aluminabenzene-Alkylzirconium Complex Having Half-Zirconocene Structure: Synthesis and Application for an Received 00th January 20xx, Additive-Free Ethylene Polymerization Accepted 00th January 20xx a ,b ,b DOI: 10.1039/x0xx00000x Taichi Nakamura, Katsunori Suzuki* and Makoto Yamashita* www.rsc.org/ The aluminabenzene-alkylzirconium complex having half- resulting zwitterionic complexes catalyses ethylene zirconocene structure was synthesized. X-ray crystallographic polymerization as a highly active singlecomponent catalyst.5b analysis of this complex revealed a zwitterionic structure However, the reported group 4 metal catalyst systems with a consisting of cationic alkylzirconium chloride and four-coordinated pendent aluminum-based Lewis acidic moiety were limited,6 aluminate. In the presence of catalytic amount of this complex, while the aluminum additives have been commonly used in ethylene polymerization could proceed without any additives to Kaminsky catalyst. Nomura reported utilization of titanium t form ultra-high molecular weight polyethylene. complex bearing Me2Al(O Bu)(OR) moiety as a single- component catalyst for ethylene polymerization (Scheme In homogeneous catalytic polymerization of olefins, an 1B).6a,b In their plausible mechanism, the dissociation of admixture of group 4 transition-metal complex, such as Me2Al(OtBu)(OR) moiety as an anion generates zwitterionic metallocene or halfmetallocene complexes, and Lewis acidic complex involving cationic titanium centre. This catalyst additive, have been known to construct an effective catalyst system can form high molecular weight PE (> 1,000,000) due 1 system, represented as Kaminsky catalyst.
    [Show full text]
  • Mechanisms of Metal-Mediated Cyclizations
    Mechanisms of Metal-Mediated Cyclizations by Benjamin Peter Warner Submitted to the Department of Chemistry in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Organic Chemistry at the Massachusetts Institute of Technology February 1995 © Massachusetts Institute of Technology, 1995 All Rights Reserved Signature of Author.., .... ..,. ....................... ................................................................ Department of Chemistry February 1, 1995 Certified by ........................... I....................... Stephen L. Buchwald Thesis Supervisor Accepted by.............................................v..................................................................... Dietmar Seyferth Chair, Departmental Committee on Graduate Students Sciencx- This doctoral thesis has been examined by a committee of the Department of Chemistry as follows: Professor Gregory C. Fu.............................. .... ........................................................... Chair Professor Stephen L. Buchwald .................. ;................... Thesis Supervisor Professor Christopher C. Cummins.................. ................. .. ...............................; 2 Mechanisms of Metal-Mediated Cyclizations by Benjamin Peter Warner Submitted to the Department of Chemistry in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Organic Chemistry at the Massachusetts Institute of Technology Abstract A complex of zirconocene with two rq2-alkynyl ligands is described. This
    [Show full text]
  • A Rigid Cj-Bridged Ansa-Zirconocene-Derived
    A Rigid Cj-Bridged Ansa-Zirconocene-Derived Catalyst System Suited for Stereoselective Low Molecular Weight Polypropylene Formation Gerhard Erker*, Christian Psiorz, Roland Fröhlich Organisch-Chemisches Institut der Universität Münster, Corrensstraße 40, D-48149 Münster Dedicated to Prof. Dr. Dr. h.c. mult. Günther Wilke on the occasion o f his 70th birthday Z. Naturforsch. 50b, 469-475 (1995); received September 20, 1994 Homogeneous Ziegler Catalyst, Isotactic Polypropylene, Ansa-Metallocene, Fulvene 2,5-Hexanedione was converted into the bisfulvene 2, then treated with two molar equiva­ lents of methyllithium to yield the [4-cyclopentadienylidene-4,7,7-trimethyl-4,5,6,7-tetra- hydroindenyl]dilithio compound 4. Hydrolysis, followed by treatment with acetone/pyrroli­ dine, gave the corresponding fulvene system 5. Reaction of 5 with methyllithium followed by treatment with ZrCl4 furnished the ring-annulated Cr bridged ansa-metallocene 8, bearing a tert-butyl substituent at the Cp ring, as a 1:1 mixture of two diastereoisomers. Treatment of the fulvene 5 with LiAlH4 followed by ZrCl4 yielded the respective isopropyl-substituted ansa-metallocene diastereomers 9a and 9 b. Com plex 9 b was separated by fractional crys­ tallization and characterized by X-ray diffraction. Complexes 8 and 9 provide active homo­ geneous Ziegler-type catalyst systems upon activation with excess methylalumoxane produc­ ing low molecular weight isotactic polypropylene with high catalyst activities. Introduction Homogeneous group 4 bent metallocene methylalumoxane-derived Ziegler-type catalyst systems have become of enormous importance for the development of a-olefin polymerization [ 1], Most of the catalyst systems of practical impor­ tance are derived from ansa-metallocene precur­ I sors [2].
    [Show full text]
  • Physicochemical Surface-Structure Studies of Highly Active Zirconocene Polymerisation Cite This: Mater
    MATERIALS CHEMISTRY FRONTIERS View Article Online RESEARCH ARTICLE View Journal | View Issue Physicochemical surface-structure studies of highly active zirconocene polymerisation Cite this: Mater. Chem. Front., 2020, 4, 3226 catalysts on solid polymethylaluminoxane activating supports† Alexander F. R. Kilpatrick, Nicholas H. Rees, Zoe¨ R. Turner, Jean-Charles Buffet and Dermot O’Hare * Physicochemical surface-structure studies of highly active slurry-phase ethylene polymerisation catalysts has been performed. Zirconocene complexes immobilised on solid polymethylaluminoxane (sMAO) (sMAO–Cp2ZrX2), have been investigated using SEM-EDX, diffuse reflectance FT-IR (DRIFT) and high field (21.1 T) solid state NMR (ssNMR) spectroscopy. The data suggest a common surface-bound cationic 91 Received 14th July 2020, methylzirconocene is the catalytically active species. Zr solid sate NMR spectra of sMAO–Cp2ZrCl2 and Accepted 7th September 2020 Creative Commons Attribution-NonCommercial 3.0 Unported Licence. sMAO–Cp2ZrMe2 are consistent with a common surface-bound Zr environment. However, variation of DOI: 10.1039/d0qm00482k the s-donor (X) groups on the metallocene precatalyst leads to significant differences in polymerisation activity. We report evidence for X group transfer from the precatalyst complex onto the surface of the rsc.li/frontiers-materials aluminoxane support, which in the case of X = C6F5, results in a 38% increase in activity. Introduction benzoic acid.10 We have recently reported the laboratory scale synthesis and detailed characterisation
    [Show full text]
  • Professor Stephen L. Buchwald – This Is Your (Research) Life Literature Review Bobby Brooks Dr Ed Anderson Group 21/06/13 Professor Buchwald – Academic History
    Professor Stephen L. Buchwald – This is your (research) life Literature Review Bobby Brooks Dr Ed Anderson Group 21/06/13 Professor Buchwald – Academic history 1955 – Born in Bloomington, Indiana 1977 – Sc.B. Brown University Worked a summer with Prof. Gilbert Stork at Columbia University 1982 – Ph.D. Harvard University: Studying the mechanism of phosphoryl transfer reactions in chemistry and biochemistry under Prof. Jeremy R. Knowles 1982 to 1984 – Myron A. Bantrell postdoctoral fellow at Caltech with Prof. Robert H. Grubbs: Studying titanocene methylenes as reagents in organic synthesis 1984 – Assistant Professor in Chemistry at MIT 1989 – Associate Professor in Chemistry 1993 – Professor in Chemistry 1997 – Camille Dreyfus Professor of Chemistry >350 papers and >50 patents Professor Buchwald and Group – 2000 Awards Award in Organometallic Chemistry from the American Chemical Society Fellow of the American Academy of Arts and Sciences 2005 Bristol-Myers Squibb Distinguished Achievement Award CAS Science Spotlight Award 2006 American Chemical Society's Award for Creative Work in Synthetic Organic Chemistry Siegfried Medal Award in Chemical Methods which Impact Process Chemistry 2008 Elected as a member of the National Academy of Science 2010 Gustavus J. Esselen Award for Chemistry in the Public Interest 2013 Arthur C. Cope Award from the American Chemical Society Harold Edgerton Faculty Achievement Award of MIT Arthur C. Cope Scholar Award MERIT award from the National Institutes of Health Associate editor
    [Show full text]
  • UNIVERSITY of CALIFORNIA Los Angeles Ferrocene-Chelating
    UNIVERSITY OF CALIFORNIA Los Angeles Ferrocene-Chelating Heteroscorpionate Ligands Support Zinc Complexes as Redox Switchable Catalysts A thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Chemistry by Tate Christopher Reuter 2018 © Copyright by Tate Christopher Reuter 2018 ABSTRACT OF THE THESIS Ferrocene-Chelating Heteroscorpionate Ligands Support Zinc Complexes as Redox Switchable Catalysts by Tate Christopher Reuter Master of Science in Chemistry University of California, Los Angeles, 2018 Professor Paula Loredana Diaconescu, Chair Ferrocene-chelating heteroscorpionate compounds based on [fc(PPh2)(BH[(3-R-5-R'-1-H)2pz]2)] (fc = 1,1'-ferrocenediyl, pz = pyrazole) are studied and characterized for their role in the synthesis of block copolymers. The ferrocene scaffold is part of a heteroscorpionate ligand that supports late transition metals. A zinc complex, [fc(PPh2)(BH[(3,5-Me-1H)2pz]2)]Zn(μ-OCH2Ph), was synthesized previously and shown to exist in a dimeric state. Herein, the substituents on the pyrazole fragments of the scorpionate are replaced with bulkier groups to force the formation of a monomeric compound in order to arrive at a redox switchable catalyst. ii The thesis of Tate Christopher Reuter is approved. Richard B. Kaner Ellen May Sletten Paula Loredana Diaconescu, Committee Chair University of California, Los Angeles 2018 iii This work is dedicated to my loving family and those making a sacrifice to better themselves and the world we share. iv TABLE OF CONTENTS Abstract ii
    [Show full text]