This is a repository copy of Artificial Biochemical Networks : Evolving Dynamical Systems to Control Dynamical Systems. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/75277/ Version: Accepted Version Article: Lones, Michael Adam, Fuente, Luis Alberto, Turner, Alexander Phillip et al. (4 more authors) (2014) Artificial Biochemical Networks : Evolving Dynamical Systems to Control Dynamical Systems. IEEE Transactions on Evolutionary Computation. 6423886. pp. 145- 166. ISSN 1089-778X https://doi.org/10.1109/tevc.2013.2243732 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing
[email protected] including the URL of the record and the reason for the withdrawal request.
[email protected] https://eprints.whiterose.ac.uk/ IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, PREPRINT, ACCEPTED FOR PUBLICATION DECEMBER 2012 1 Artificial Biochemical Networks: Evolving Dynamical Systems to Control Dynamical Systems Michael A. Lones, Senior Member, IEEE, Luis A. Fuente, Alexander P. Turner, Leo S. D. Caves, Susan Stepney, Stephen L. Smith, Member, IEEE, and Andy M. Tyrrell, Senior Member, IEEE Abstract—Biological organisms exist within environments in different evolutionary algorithms have been used to design which complex, non-linear dynamics are ubiquitous.