DOCUMENT RESUME Making Education Count: Developing And

Total Page:16

File Type:pdf, Size:1020Kb

DOCUMENT RESUME Making Education Count: Developing And DOCUMENT RESUME ED 411 322 TM 027 391 TITLE Making Education Count: Developing and Using International Indicators. INSTITUTION Organisation for Economic Cooperation and Development, Paris (France). Centre for Educational Research and Innovation. ISBN ISBN-92-64-14050-6 PUB DATE 1994-00-00 NOTE 368p. AVAILABLE FROM OECD Washington Center, 2001 L Street, N.W., Suite 650, Washington, DC 20036-4922; phone 1-800-456-6323 ($58, plus $4.50 shipping and handling). PUB TYPE Collected Works General (020) EDRS PRICE MF01/PC15 Plus Postage. DESCRIPTORS Academic Achievement; Context Effect; Educational History; Educational Policy; *Elementary Secondary Education; Evaluation Methods; Foreign Countries; Higher Education; *International Education; International Studies; *Outcomes of Education; *Policy Formation; Political Influences; Public Policy IDENTIFIERS *Educational Indicators; Organisation for Economic Cooperation Development ABSTRACT The chapters in this book were prepared during the second phase of a study conducted by the Organisation for. Economic Cooperation and Development to develop a set of International Indicators of Education Systems (INES). They were among the many studies presented at the General Assembly of the INES Project in Lugano (Switzerland), September 16-18, 1991. Taken together, these papers present what is currently known about the organization, development, measurement, and uses of international education indicators. Attention is given to the political contexts within which education indicators are used for informing policy-makers. The 18 chapters deal mainly with conceptual and analytical issues in the organization of education indicators. They are grouped thematically into four parts. Part I, "History and Definition of Indicators," presents a framework for the other contributions. Part II, "Development of Indicators," discusses issues in the development and implementation of different types of indicators. Part III, "Indicators of Outcomes of Education," is concerned with indicators of learning, student achievement, and other educational outcomes, such as labor market destinations. The five chapters in Part IV, "Interpreting Indicators for Policy," focus on the uses and abuses of reporting and interpreting international education indicators. Each chapter contains references. (Contains 10 tables and 16 figures.) (SLD) ******************************************************************************** Reproductions supplied by EDRS are the best that can be made from the original document. ******************************************************************************** M Centre for Educational Research and Innovation Making Education County Developing and Using International Indicators PERMISSION TO REPRODUCE AND U.S. DEPARTMENT OF EDUCATION DISSEMINATE THIS MATERIAL Office of Educational Research and Improvement IN OTHER THAN PAPER COPY EDUCATIONAL RESOURCES INFORMATION HAS BEEN GRANTED BY CENTER (ERIC) cieThis document has been reproduced as received from the person or organization 12%. v\fSr originating it. Minor changes have been made to improve reproduction quality. TO THE EDUCATIONAL RESOURCES Points of view or opinions stated in this INFORMATION CENTER (ERIC) document do not necessarily represent official OERI position or policy. ti O OECD CICDE PARIS FAT COPY AVAULARLE Centre for Educational Research and Innovation Making Education Count Developing and Using International Indicators ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT Pursuant to Article 1 of the Convention signed in Paris on 14th December 1960, and which came into force on 30th September 1961, the Organisation for Economic Co-operation and Development (OECD) shall promote policies designed: to achieve the highest sustainable economic growth and employment and a rising standard of living in Member countries, while maintaining financial stability, and thus to contribute to the development of the world economy; to contribute to sound economic expansion in Member as well as non-member countries in the process of economic development; and to contribute to the expansion of world trade on a multilateral, non-discriminatory basis in accordance with international obligations. The original Member countries of the OECD are Austria, Belgium, Canada, Denmark, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The following countries became Members subsequently through accession at the dates indicated hereafter: Japan (28th April 1964), Finland (28th January 1969), Australia (7th June 1971), New Zealand (29th May 1973) and Mexico (18th May 1994). The Commission of the European Communities takes part in the work of the OECD (Article 13 of the OECD Convention). The Centre for Educational Research and Innovation was created in June 1968 by the Council of the Organisation for Economic Co-operation and Development and all Member countries of the OECD are participants. The main objectives of the Centre are as follows: to promote and support the development of research activities in education and undertake such research activities where appropriate; to promote and support pilot experiments with a view to introducing and testing innovations in the educational system; to promote the development of co-operation between Member countries in the field of educational research and innovation. The Centre functions within the Organisation for Economic Co-operation and Development in accordance with the decisions of the Council of the Organisation, under the authority of the Secretary-General. It is supervised by a Governing Board composed ofone national expert in its field of competence from each of the countries participating in its programme of work Publid en fransais sous Is titre EVALUER L'ENSEIGNEMENT De l'utilite des indicateurs internationaux Reprinted 1994 ei OECD 1994 Applications for permission to reproduce or translate all or part of this publication should be made to: Head of Publications Service, OECD 2, rue Andre-Pascal, 75775 PARIS CEDEX 16, France Foreword The chapters in this volume were prepared by consultants and the CERI Secretariat during the second phase of the OECD study designed to develop a set of International Indicators of Education Systems (INES). They were among the many studies presented at the General Assembly of the INES Project held in Lugano, Switzerland, 16-18 Septem- ber 1991 at which all the participants in the Project met to take stock of the achievements and the options for work to be undertaken during the third phase. Taken together, these papers present what is currently known about the organisation, development, measurement and uses of international education indicators. Much attention is given to the political contexts within which education indicators are used for informing policy-makers. The eighteen chapters deal mainly with conceptual and analytical issues in the organisation of education indicators. They are grouped thematically into four parts. Part I presents a framework for the other contributions. Part II discuss issues in the development and implementation of different types of indicators. Part III is concerned with indicators of learning, student achievement and other educational outcomes, such as labour market destinations. The five chapters in Part IV focus on the uses and abuses of reporting and interpreting international education indicators. While voicing a number of cautionary notes on the difficulties besetting indicator construction and interpretation, the distinguished authors of the various chapters are generally supportive of the OECD initiative to develop a coherent set of reliable and policy-sensitive education indicators. Their support was an essential factor in the decision to publish the thirty-six indicators that resulted from the second phase of the INES Project. That publication, Education at a Glance: OECD Indicators, was released on 24 September 1992, one year almost to the day after country delegates and experts attending the Lugano Assembly received the recommendation to proceed. By working with Member governments and invited experts, the OECD has demonstrated in Education at a Glance that it is possible to produce reliable indicators of education systems. Moreover, the interest taken by policy-makers as well as the broad press coverage given to the publicationshows that the OECD indicators succeeded in addressing the demand for internationally comparative information on education. Whereas the scope of the first edition of the indicators report is still limited, future editions will expand the range of indicators and improve their reliability and comparability. This volume was prepared by Albert Tuijnman and Norberto Bottani of the CERI Secretariat and is published on the responsibility of the Secretary-General of the OECD. 3 Table of contents Introductory address by Thomas J. Alexander 13 Part One HISTORY AND DEFINITION OF INDICATORS Chapter 1 International education indicators: framework, development and interpretation Norberto Bottani and Albert Tuijnman History and definition of indicators 21 History of a failure 21 Policy priorities and changing research agendas 22 Call for a new concept of accountability 23 Education indicators back on the agenda 25 Development of indicators 26 Indicators in a political context 26 Issues in the measurement of education 27 Specificity in a comparative context 28 The management
Recommended publications
  • Artificial Development of Neural-Symbolic Networks
    University of Exeter Department of Computer Science Artificial Development of Neural-Symbolic Networks Joseph Paul Townsend March 2014 Supervised by Dr. Ed Keedwell and Dr. Antony Galton Submitted by Joseph Paul Townsend, to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Computer Science , March 2014. This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identi- fied and that no material has previously been submitted and approved for the award of a degree by this or any other University. (signature) ................................................................................................. 1 Abstract Artificial neural networks (ANNs) and logic programs have both been suggested as means of modelling human cognition. While ANNs are adaptable and relatively noise resis- tant, the information they represent is distributed across various neurons and is therefore difficult to interpret. On the contrary, symbolic systems such as logic programs are in- terpretable but less adaptable. Human cognition is performed in a network of biological neurons and yet is capable of representing symbols, and therefore an ideal model would combine the strengths of the two approaches. This is the goal of Neural-Symbolic In- tegration [4, 16, 21, 40], in which ANNs are used to produce interpretable, adaptable representations of logic programs and other symbolic models. One neural-symbolic model of reasoning is SHRUTI [89, 95], argued to exhibit biological plausibility in that it captures some aspects of real biological processes.
    [Show full text]
  • A Novel Generative Encoding for Evolving Modular, Regular and Scalable Networks
    A Novel Generative Encoding for Evolving Modular, Regular and Scalable Networks Marcin Suchorzewski Jeff Clune Artificial Intelligence Laboratory Creative Machines Laboratory West Pomeranian University of Technology Cornell University [email protected] [email protected] ABSTRACT 1. INTRODUCTION In this paper we introduce the Developmental Symbolic En- Networks designed by humans and evolution have certain coding (DSE), a new generative encoding for evolving net- properties that are thought to enhance both their perfor- works (e.g. neural or boolean). DSE combines elements of mance and adaptability, such as modularity, regularity, hier- two powerful generative encodings, Cellular Encoding and archy, scalability, and being scale-free [12, 11, 1]. In this pa- HyperNEAT, in order to evolve networks that are modular, per we introduce a new generative representation called the regular, scale-free, and scalable. Generating networks with Developmental Symbolic Encoding that evolves networks these properties is important because they can enhance per- that possess these properties. We first review the mean- formance and evolvability. We test DSE’s ability to gener- ing of these terms before discussing them with respect to ate scale-free and modular networks by explicitly rewarding previous evolutionary algorithms. these properties and seeing whether evolution can produce Modularity is the encapsulation of function within mostly networks that possess them. We compare the networks DSE independently operating units, where the internal workings evolves to those of HyperNEAT. The results show that both of the module tend to only affect the rest of the structure encodings can produce scale-free networks, although DSE through the module’s inputs and outputs [12, 11].
    [Show full text]
  • Artificial Biochemical Networks : Evolving Dynamical Systems to Control Dynamical Systems
    This is a repository copy of Artificial Biochemical Networks : Evolving Dynamical Systems to Control Dynamical Systems. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/75277/ Version: Accepted Version Article: Lones, Michael Adam, Fuente, Luis Alberto, Turner, Alexander Phillip et al. (4 more authors) (2014) Artificial Biochemical Networks : Evolving Dynamical Systems to Control Dynamical Systems. IEEE Transactions on Evolutionary Computation. 6423886. pp. 145- 166. ISSN 1089-778X https://doi.org/10.1109/tevc.2013.2243732 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, PREPRINT, ACCEPTED FOR PUBLICATION DECEMBER 2012 1 Artificial Biochemical Networks: Evolving Dynamical Systems to Control Dynamical Systems Michael A. Lones, Senior Member, IEEE, Luis A. Fuente, Alexander P. Turner, Leo S. D. Caves, Susan Stepney, Stephen L. Smith, Member, IEEE, and Andy M. Tyrrell, Senior Member, IEEE Abstract—Biological organisms exist within environments in different evolutionary algorithms have been used to design which complex, non-linear dynamics are ubiquitous.
    [Show full text]
  • Artificial Intelligence Vs (General) Artificial Intelligence 3
    ISSN 0798 1015 HOME Revista ESPACIOS ÍNDICES / Index A LOS AUTORES / To the ! ! AUTORS ! Vol. 40 (Number 4) Year 2019. Page 3 ¿Will machines ever rule the world? ¿Las máquinas dominarán el mundo? PEDROZA, Mauricio 1; VILLAMIZAR, Gustavo 2; MENDEZ, James 3 Received: 11/08/2018 • Approved: 16/12/2018 • Published 04/02/2019 Contents 1. Introduction 2. (Narrow) Artificial Intelligence vs (General) Artificial Intelligence 3. Machines designed as tools of man 4. Machines thought as similar to man 5. Conclusions Acknowledgments Bibliographic references ABSTRACT: RESUMEN: From ancient automatons, to the latest technologies Desde los antiguos autómatas hasta las últimas of robotics and supercomputing, the continued tecnologías de la robótica, el continuo progreso de la progress of mankind has led man to even question his humanidad ha llevado al hombre a cuestionar incluso future status as a dominant species. “Will machines su estatus futuro como especie dominante. "¿Alguna ever rule the world?” or more precisely: Do we want vez dominarán las máquinas el mundo?" O más machines to rule the world? Theoretical and precisamente: ¿Queremos que las máquinas dominen technological challenges involved in this choice will be el mundo? Los retos teóricos y tecnológicos que se considered both under the conservative approach of plantean en esta elección serán considerados tanto "machines designed as tools of man" and in the bajo el enfoque conservador de "máquinas que sirven scenario of "machines thought as similar to man". al hombre" como en el escenario de "máquinas Keywords: Artificial Intelligence, Cognitive Machines, equiparables al hombre" Narrow Artificial Intelligence Strong Artificial Palabras clave: Inteligencia Artificial, Máquinas Intelligence, Artificial General Intelligence.
    [Show full text]
  • Artificial Intelligence and Broadband Divide
    Artificial Intelligence and Broadband Divide State of ict Connectivity in Asia and the Pacific 2017 The Economic and Social Commission for Asia and the Pacific (ESCAP) serves as the United Nations’ regional hub promoting cooperation among countries to achieve inclusive and sustainable development. The largest regional intergovernmental platform with 53 Member States and 9 associate members, ESCAP has emerged as a strong regional think-tank offering countries sound analytical products that shed insight into the evolving economic, social and environmental dynamics of the region. The Commission’s strategic focus is to deliver on the 2030 Agenda for Sustainable Development, which it does by reinforcing and deepening regional cooperation and integration to advance connectivity, financial cooperation and market integration. ESCAP’s research and analysis coupled with its policy advisory services, capacity building and technical assistance to governments aims to support countries’ sustainable and inclusive development ambitions. The shaded areas of the map indicate ESCAP members and associate members. Information and statistics presented in this publication include only those member and associate member States located in the Asia-Pacific region. Disclaimer: This report of the Information and Communications Technology and Disaster Risk Reduction Division provides policy-relevant analysis on regional trends and challenges in support of the development of the Asia-Pacific Information Superhighway and inclusive development. The views expressed herein are those of the authors, and do not necessarily reflect the views of the United Nations. This report has been issued without formal editing, and the designations employed and material presented do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Building Processes Optimization : Toward an Artificial Ontogeny Based Approach
    Building processes optimization : Toward an artificial ontogeny based approach Alexandre Devert Directed by Marc Schoenauer and Nicolas Bred`eche Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy June 21, 2009 Ecole Doctorale d’Informatique Universit´eParis-Sud 11 Contents 1 Introduction to Evolutionary Design 5 1.1 Anevolutionaryalgorithmsprimer . 7 1.1.1 Description .......................... 8 1.1.2 Lamarckian and Baldwinian evolutions . 9 1.1.3 Onthe designof anevolutionaryalgorithm . 10 1.2 Simulationandevaluation . 11 1.2.1 Designofanevaluationfunction . 13 1.2.2 Theusageofsimulation . 14 1.3 Representations for Evolutionary Design . .. 15 1.3.1 Blockstacks.......................... 15 1.3.2 Explicit and implicit representations . 18 1.3.3 Modularity .......................... 19 1.3.4 Treestructures .. .. .. .. .. .. .. .. .. .. 21 1.3.5 Grammarsandrewritingsystems . 23 1.3.6 Theevolvabilityissue . 26 1.3.7 Cellularrepresentations . 26 1.4 Preview ................................ 29 2 AguidedtourofEvolutionaryDesign 31 2.1 Explicitrepresentations . 31 2.1.1 Blockstacks.......................... 31 2.1.2 Legostructures.. .. .. .. .. .. .. .. .. .. 32 2.1.3 Antennae ........................... 33 2.1.4 Shapes............................. 34 2.1.5 Robots............................. 35 2.1.6 Tensegritystructures. 36 2.1.7 TopologicalOptimumDesign . 37 2.1.8 Opticalfibersdesign . 38 2.1.9 Bladeshapedesignforwindturbines. 39 2.2 Implicitrepresentations . 40 2.2.1 KarlSims’creatures . 40 2.2.2 Hornby’sL-systems . 41 2.2.3 EnvironmentawareL-systems. 44 2.3 Cellularrepresentations . 45 2.3.1 Virtualcreatures . 46 2.3.2 Skyscraperframes . 47 2.3.3 Trussstructures . .. .. .. .. .. .. .. .. .. 48 2.3.4 Environmentawareness . 50 2.4 Conclusion .............................. 51 1 CONTENTS 3 An Evolutionary algorithm for blueprints 55 3.1 TheBlindBuilderrepresentation . 55 3.1.1 Variationoperators. 57 3.2 Designofsimple3dobjects .
    [Show full text]
  • Evolving Gene Expression to Reconfigure Analogue Devices
    EVOLVING GENE EXPRESSION TO RECONFIGURE ANALOGUE DEVICES Kester Dean Clegg Thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy. Department of Computer Science May, 2008 Abstract Repeated, morphological functionality, from limbs to leaves, is widespread in nature. Pattern formation in early embryo development has shed light on how and why the same genes are expressed in different locations or at different times. Practitioners working in evolutionary computation have long regarded nature’s reuse of modular functionality with admiration. But repeating na- ture’s trick has proven difficult. To date, no one has managed to evolve the design for a car, a house or a plane. Or indeed anything where the number of interdependent parts exposed to random mutation is large. It seems that while we can use evolutionary algorithms for search-based optimisation with great success, we cannot use them to tackle large, complex designs where functional reuse is essential. This thesis argues that the modular functionality provided by gene reuse could play an important part in evolutionary computation being able to scale, and that by expressing subsets of genes in specific contexts, successive stages of phenotype configuration can be controlled by evolutionary search. We present a conceptual model of context-specific gene expression and show how a ge- nome representation can hold many genes, only a few of which need be ex- pressed in a solution. As genes are expressed in different contexts, their func- tional role in a solution changes. By allowing gene expression to discover phe- notype solutions, evolutionary search can guide itself across multiple search domains.
    [Show full text]
  • Melomics: a Case-Study of AI in Spain Research Groups in the Spanish Computer Sci - Ences
    Column Worldwide AI Australia Spain n Traditionally focused on good old-fashioned Carlos Sánchez Quintana, Francisco Moreno Arcas, David Albar - AI and robotics, the Spanish AI community holds a vigorous computational intelligence racín Molina, Jose David Fernández Rodríguez, Francisco J. Vico substrate. Neuromorphic, evolutionary, or fuzzylike systems have been developed by many Melomics: A Case-Study of AI in Spain research groups in the Spanish computer sci - ences. It is no surprise, then, that these nature- grounded efforts start to emerge, enriching the In Spain there are 74 universities, many of which have computer sci - AI catalogue of research projects and publica - ence departments that host AI-related research groups. AEPIA, the tions and, eventually, leading to new directions Spanish society for AI research, was founded in 1983 and has been of basic or applied research. In this article, we vigorously promoting the advancement of AI since then. Along with review the contribution of Melomics in compu - several other societies and communities of interest, it promotes var - tational creativity. ious periodic conferences and workshops. The Artificial Intelligence Research Institute (IIIA) of the Spanish National Research Council constitutes one of the flagships of local AI research. Ramón López de Mántaras, IIIA’s renowned director, was one of the pioneers of AI in Spain, and he also was the recipient of the prestigious AAAI Engle - more Award in 2011. Other researchers that have reached an out - standing position, and lead important research groups in Spain, include Antonio Bahamonde (University of Oviedo), Federico Barber (Polytechnic University of Madrid), Vicent Botti (Polytechnic Uni - versity of Valencia), and Amparo Vila (University of Granada).
    [Show full text]
  • A Review of Morphogenetic Engineering (Running Title: a Review of Morphogenetic Engineering)
    A Review of Morphogenetic Engineering (Running title: A Review of Morphogenetic Engineering) Ren´eDoursat*1, Hiroki Sayama2, and Olivier Michel3 1School of Biomedical Engineering, Drexel University 3141 Chestnut Street, Philadelphia, PA 19104, US ([email protected]) *corresp. author 2Department of Bioengineering, Binghamton University SUNY PO Box 6000, Binghamton, NY 13902, US ([email protected]) 3Facult´edes Sciences et Technologie, Universit´ede Cr´eteil 61, ave du G´en´eral de Gaulle, 94010 Cr´eteilCedex, France ([email protected]) Abstract Generally, phenomena of spontaneous pattern formation are random and repetitive, whereas elaborate devices are the deterministic product of human design. Yet, biological organisms and collective insect constructions are exceptional examples of complex systems that are both ar- chitectured and self-organized. Can we understand their precise self-formation capabilities and integrate them with technological planning? Can physical systems be endowed with informa- tion, or informational systems be embedded in physics, to create autonomous morphologies and functions? To answer these questions, we have launched in 2009, and developed through a series of workshops and a collective book, a new field of research called Morphogenetic Engi- neering. It is the first initiative of its kind to rally and promote models and implementations of complex self-architecturing systems. Particular emphasis is set on the programmability and com- putational abilities of self-organization, properties that are often underappreciated in complex systems science|while, conversely, the benefits of self-organization are often underappreciated in engineering methodologies1. Keywords: agent-based modeling, artificial life, collective construction, complex systems, evo- lutionary development, generative grammars, morphogenesis, self-organization, swarm robotics, systems engineering.
    [Show full text]
  • Hello, World: Artificial Intelligence and Its Use in the Public Sector
    Hello, World: Artificial intelligence and its use in the public sector Jamie Berryhill Kévin Kok Heang Rob Clogher Keegan McBride November 2019 | http://oe.cd/helloworld OECD Working Papers on Public Governance No. 36 Cover images are the European Parliament and the dome of Germany’s Reichstag building processed through Deep Learning algorithms to match the style of Van Gogh paintings. tw Hello, World: Artificial Intelligence and its Use in the Public Sector Authors: Jamie Berryhill, Kévin Kok Heang, Rob Clogher, Keegan McBride PUBE 2 This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area. 1. Note by Tukey: The information in this document with reference to ‘Cyprus’ relates to the southern part of the island. There is no single authority representing both Turkish and Greek Cypriot people on the island. Turkey recognises the Turkish Republic of Northern Cyprus (TRNC). Until a lasting and equitable solution is found within the context of the United Nations, Turkey shall preserve its position concerning the ‘Cyprus issue’. 2. Note by all the European Union Member States of the OECD and the European Commission: The Republic of Cyprus is recognised by all members of the United Nations with the exception of Turkey. The information in this document relates to the area under the effective control of the Government of the Republic of Cyprus. HELLO, WORLD: ARTIFICIAL INTELLIGENCE AND ITS USE IN THE PUBLIC SECTOR © OECD 2019 3 Foreword Artificial Intelligence (AI) is an area of research and technology application that can have a significant impact on public policies and services in many ways.
    [Show full text]
  • Phenotypic, Developmental and Computational Resources: Scaling in Artificial Development
    Phenotypic, Developmental and Computational Resources: Scaling in Artificial Development Gunnar Tufte Norwegian University of Science and Technology Department of Computer and Information Science Sem Selandsvei 7-9 7491 Trondheim Norway [email protected] ABSTRACT Algorithms (EAs) is the aspect of scalability. In the work Developmental systems have inherent properties favourable of Kitano [20] the scaling issue was addressed by searching for scaling. The possibility to generate very large scale for an effective encoding in order to generate more complex structures combined with gene regulation opens for systems network structures. The urge towards evolution of complex where the genome size do not reflect the size and complexity network structures was motivated by a need to handle scal- of the phenotype. Despite the presence of scalability in na- ing of the complexity of solvable problems. ture there is limited knowledge of what makes a developmen- The proposed solution was a developmental system i.e. an tal mapping scalable. As such, there is few artificial system indirect mapping. In contrast, in a direct mapping approach that show true scaling. Scaling for any system, biological there is a single phenotype, defined by the genotype. This or artificial, is a question of resources. Toward an under- implies that each element in the phenotype is represented ex- standing of the challenges of scalability the issue of scaling plicitly in the genotype. As such, introducing mechanisms, is investigated in an aspect of resources within the develop- inspired by development, into evolutionary computation was mental model itself. The resources are decompositioned into motivated by a need to overcome limitations in such direct domains that can be scaled separately each may influence on mapping approaches, e.g.
    [Show full text]
  • Artificial Development
    ARTIFICIAL DEVELOPMENT Simon Harding and Wolfgang Banzhaf1 1 Department of Computer Science, Memorial University Abstract There is growing interest in the use of analogies of biological development for problem solving in computer science. Nature is extremely intricate when com- pared to human designs, and incorporates features such as the ability to scale, adapt and self-repair that could be usefully incorporated into human-designed artifacts. In this chapter, we discuss how the metaphor of biological develop- ment can be used in artificial systems and highlight some of the challenges of this emerging field. Keywords: Developmental systems, genetic algorithms, pattern formation 1. Introduction Organic processes can serve as inspiration for computational systems. The design and functionality of organic systems is both a challenge and an exis- tence proof of achievements of Nature posed to the human designer. In this context it has turned out that the level of complexity commanded in the design of natural systems is still unparalleled. To put the scalability of biological sys- tems into perspective: Microsoft’s latest version of Windows has 106 lines of code, some Linux distributions have 107 lines of computer code, but there are 1014 cells in the human body each much more complex than a line of code. Such complexity would be out of reach of human designers, who even struggle to keep the simplest designs and manufacturing processes defect-free. With the increasing complexity of both hardware and software, there is need is growing for new design techniques that allow us to work with such complexity. Evolutionary algorithms that mimic Darwinian evolution have provided part of the answer to this problem.
    [Show full text]