Evolving Neural Fields for Problems
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Artificial Development of Neural-Symbolic Networks
University of Exeter Department of Computer Science Artificial Development of Neural-Symbolic Networks Joseph Paul Townsend March 2014 Supervised by Dr. Ed Keedwell and Dr. Antony Galton Submitted by Joseph Paul Townsend, to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Computer Science , March 2014. This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identi- fied and that no material has previously been submitted and approved for the award of a degree by this or any other University. (signature) ................................................................................................. 1 Abstract Artificial neural networks (ANNs) and logic programs have both been suggested as means of modelling human cognition. While ANNs are adaptable and relatively noise resis- tant, the information they represent is distributed across various neurons and is therefore difficult to interpret. On the contrary, symbolic systems such as logic programs are in- terpretable but less adaptable. Human cognition is performed in a network of biological neurons and yet is capable of representing symbols, and therefore an ideal model would combine the strengths of the two approaches. This is the goal of Neural-Symbolic In- tegration [4, 16, 21, 40], in which ANNs are used to produce interpretable, adaptable representations of logic programs and other symbolic models. One neural-symbolic model of reasoning is SHRUTI [89, 95], argued to exhibit biological plausibility in that it captures some aspects of real biological processes. -
A Novel Generative Encoding for Evolving Modular, Regular and Scalable Networks
A Novel Generative Encoding for Evolving Modular, Regular and Scalable Networks Marcin Suchorzewski Jeff Clune Artificial Intelligence Laboratory Creative Machines Laboratory West Pomeranian University of Technology Cornell University [email protected] [email protected] ABSTRACT 1. INTRODUCTION In this paper we introduce the Developmental Symbolic En- Networks designed by humans and evolution have certain coding (DSE), a new generative encoding for evolving net- properties that are thought to enhance both their perfor- works (e.g. neural or boolean). DSE combines elements of mance and adaptability, such as modularity, regularity, hier- two powerful generative encodings, Cellular Encoding and archy, scalability, and being scale-free [12, 11, 1]. In this pa- HyperNEAT, in order to evolve networks that are modular, per we introduce a new generative representation called the regular, scale-free, and scalable. Generating networks with Developmental Symbolic Encoding that evolves networks these properties is important because they can enhance per- that possess these properties. We first review the mean- formance and evolvability. We test DSE’s ability to gener- ing of these terms before discussing them with respect to ate scale-free and modular networks by explicitly rewarding previous evolutionary algorithms. these properties and seeing whether evolution can produce Modularity is the encapsulation of function within mostly networks that possess them. We compare the networks DSE independently operating units, where the internal workings evolves to those of HyperNEAT. The results show that both of the module tend to only affect the rest of the structure encodings can produce scale-free networks, although DSE through the module’s inputs and outputs [12, 11]. -
The Genetic Architecture of Economic and Political Preferences
1 The Genetic Architecture of Economic and Political Preferences Daniel J. Benjamin1*, David Cesarini2, Matthijs J.H.M. van der Loos3, Christopher T. Dawes4, Philipp D. Koellinger3, Patrik K.E. Magnusson5, Christopher F. Chabris6, Dalton Conley7, David Laibson8, Magnus Johannesson9, and Peter M. Visscher10 1Department of Economics, Cornell University, 480 Uris Hall, Ithaca, NY 14853, USA. 2Center for Experimental Social Science, Department of Economics, New York University, 19 W. 4th Street, New York, NY 10012, USA. 3 Department of Applied Economics, Erasmus Universiteit Rotterdam, Post Box 1738, 3000 DR Rotterdam, Netherlands. 4 Department of Politics, New York University, 19 W. 4th Street, New York, NY 10012, USA. 5 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Box 281, SE- 171 77 Stockholm, Sweden. 6 Department of Psychology, Union College, 807 Union Street, Schenectady, NY 12308, USA. 7 Department of Sociology, New York University, Department of Sociology, New York University, 295 Lafayette Street, 4th floor, New York, NY 10012, USA. 8 Department of Economics, Harvard University, Littauer Center, 1805 Cambridge Street, Cambridge, MA 02138, USA. 9 Department of Economics, Stockholm School of Economics, Box 6501, SE-113 83 Stockholm, Sweden. 10 University of Queensland Diamantina Institute, Level 4, R Wing, Princess Alexandra Hospital, Ipswich Road, Woolloongabba 4102, Australia. Classification: Social Sciences; Economic Sciences; Social Sciences; Political Sciences; Biological Sciences; Genetics. Manuscript information: 12 text pages, 1 Figure, 2 Tables. *To whom correspondence should be addressed: phone: +1 607 255 2355. E-mail: [email protected]. 2 Abstract: Preferences are fundamental constructs in all models of economic and political behavior and important precursors to many lifetime outcomes. -
Artificial Biochemical Networks : Evolving Dynamical Systems to Control Dynamical Systems
This is a repository copy of Artificial Biochemical Networks : Evolving Dynamical Systems to Control Dynamical Systems. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/75277/ Version: Accepted Version Article: Lones, Michael Adam, Fuente, Luis Alberto, Turner, Alexander Phillip et al. (4 more authors) (2014) Artificial Biochemical Networks : Evolving Dynamical Systems to Control Dynamical Systems. IEEE Transactions on Evolutionary Computation. 6423886. pp. 145- 166. ISSN 1089-778X https://doi.org/10.1109/tevc.2013.2243732 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, PREPRINT, ACCEPTED FOR PUBLICATION DECEMBER 2012 1 Artificial Biochemical Networks: Evolving Dynamical Systems to Control Dynamical Systems Michael A. Lones, Senior Member, IEEE, Luis A. Fuente, Alexander P. Turner, Leo S. D. Caves, Susan Stepney, Stephen L. Smith, Member, IEEE, and Andy M. Tyrrell, Senior Member, IEEE Abstract—Biological organisms exist within environments in different evolutionary algorithms have been used to design which complex, non-linear dynamics are ubiquitous. -
Genetic Correlations Reveal the Shared Genetic Architecture of Transcription in Human Peripheral Blood
Hemani, G. (2017). Genetic correlations reveal the shared genetic architecture of transcription in human peripheral blood. Nature Communications, 8, [483]. https://doi.org/10.1038/s41467-017-00473- z Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1038/s41467-017-00473-z Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Nature Publishing Group at https://www.nature.com/articles/s41467-017-00473-z . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ ARTICLE DOI: 10.1038/s41467-017-00473-z OPEN Genetic correlations reveal the shared genetic architecture of transcription in human peripheral blood Samuel W. Lukowski 1, Luke R. Lloyd-Jones1,2, Alexander Holloway2, Holger Kirsten3,4, Gibran Hemani 5,6, Jian Yang 1,2, Kerrin Small 7, Jing Zhao8, Andres Metspalu9, Emmanouil T. Dermitzakis10, Greg Gibson 8, Timothy D. Spector7, Joachim Thiery4,11, Markus Scholz 3,4, Grant W. Montgomery1,12, Tonu Esko 9, Peter M. Visscher 1,2 & Joseph E. Powell1,2 Transcript co-expression is regulated by a combination of shared genetic and environmental factors. Here, we estimate the proportion of co-expression that is due to shared genetic variance. -
Artificial Intelligence Vs (General) Artificial Intelligence 3
ISSN 0798 1015 HOME Revista ESPACIOS ÍNDICES / Index A LOS AUTORES / To the ! ! AUTORS ! Vol. 40 (Number 4) Year 2019. Page 3 ¿Will machines ever rule the world? ¿Las máquinas dominarán el mundo? PEDROZA, Mauricio 1; VILLAMIZAR, Gustavo 2; MENDEZ, James 3 Received: 11/08/2018 • Approved: 16/12/2018 • Published 04/02/2019 Contents 1. Introduction 2. (Narrow) Artificial Intelligence vs (General) Artificial Intelligence 3. Machines designed as tools of man 4. Machines thought as similar to man 5. Conclusions Acknowledgments Bibliographic references ABSTRACT: RESUMEN: From ancient automatons, to the latest technologies Desde los antiguos autómatas hasta las últimas of robotics and supercomputing, the continued tecnologías de la robótica, el continuo progreso de la progress of mankind has led man to even question his humanidad ha llevado al hombre a cuestionar incluso future status as a dominant species. “Will machines su estatus futuro como especie dominante. "¿Alguna ever rule the world?” or more precisely: Do we want vez dominarán las máquinas el mundo?" O más machines to rule the world? Theoretical and precisamente: ¿Queremos que las máquinas dominen technological challenges involved in this choice will be el mundo? Los retos teóricos y tecnológicos que se considered both under the conservative approach of plantean en esta elección serán considerados tanto "machines designed as tools of man" and in the bajo el enfoque conservador de "máquinas que sirven scenario of "machines thought as similar to man". al hombre" como en el escenario de "máquinas Keywords: Artificial Intelligence, Cognitive Machines, equiparables al hombre" Narrow Artificial Intelligence Strong Artificial Palabras clave: Inteligencia Artificial, Máquinas Intelligence, Artificial General Intelligence. -
An Introduction to Quantitative Genetics I Heather a Lawson Advanced Genetics Spring2018 Outline
An Introduction to Quantitative Genetics I Heather A Lawson Advanced Genetics Spring2018 Outline • What is Quantitative Genetics? • Genotypic Values and Genetic Effects • Heritability • Linkage Disequilibrium and Genome-Wide Association Quantitative Genetics • The theory of the statistical relationship between genotypic variation and phenotypic variation. 1. What is the cause of phenotypic variation in natural populations? 2. What is the genetic architecture and molecular basis of phenotypic variation in natural populations? • Genotype • The genetic constitution of an organism or cell; also refers to the specific set of alleles inherited at a locus • Phenotype • Any measureable characteristic of an individual, such as height, arm length, test score, hair color, disease status, migration of proteins or DNA in a gel, etc. Nature Versus Nurture • Is a phenotype the result of genes or the environment? • False dichotomy • If NATURE: my genes made me do it! • If NURTURE: my mother made me do it! • The features of an organisms are due to an interaction of the individual’s genotype and environment Genetic Architecture: “sum” of the genetic effects upon a phenotype, including additive,dominance and parent-of-origin effects of several genes, pleiotropy and epistasis Different genetic architectures Different effects on the phenotype Types of Traits • Monogenic traits (rare) • Discrete binary characters • Modified by genetic and environmental background • Polygenic traits (common) • Discrete (e.g. bristle number on flies) or continuous (human height) -
Artificial Intelligence and Broadband Divide
Artificial Intelligence and Broadband Divide State of ict Connectivity in Asia and the Pacific 2017 The Economic and Social Commission for Asia and the Pacific (ESCAP) serves as the United Nations’ regional hub promoting cooperation among countries to achieve inclusive and sustainable development. The largest regional intergovernmental platform with 53 Member States and 9 associate members, ESCAP has emerged as a strong regional think-tank offering countries sound analytical products that shed insight into the evolving economic, social and environmental dynamics of the region. The Commission’s strategic focus is to deliver on the 2030 Agenda for Sustainable Development, which it does by reinforcing and deepening regional cooperation and integration to advance connectivity, financial cooperation and market integration. ESCAP’s research and analysis coupled with its policy advisory services, capacity building and technical assistance to governments aims to support countries’ sustainable and inclusive development ambitions. The shaded areas of the map indicate ESCAP members and associate members. Information and statistics presented in this publication include only those member and associate member States located in the Asia-Pacific region. Disclaimer: This report of the Information and Communications Technology and Disaster Risk Reduction Division provides policy-relevant analysis on regional trends and challenges in support of the development of the Asia-Pacific Information Superhighway and inclusive development. The views expressed herein are those of the authors, and do not necessarily reflect the views of the United Nations. This report has been issued without formal editing, and the designations employed and material presented do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. -
Evolution of Neural Fields for Visual Discrimination and Multiple Pole Balancing Tasks
Honda Research Institute Europe GmbH https://www.honda-ri.de/ NEATfields: Evolution of neural fields for visual discrimination and multiple pole balancing tasks Benjamin Inden, Yaochu Jin, Robert Haschke, Helge Ritter 2010 Preprint: This is an accepted article published in Genetic and Evolutionary Computation Conference. The final authenticated version is available online at: https://doi.org/[DOI not available] Powered by TCPDF (www.tcpdf.org) NEATfields: Evolution of neural fields for visual discrimination and multiple pole balancing tasks ABSTRACT networks can be optimized. However, a few challenges have We have developed a novel extension of the NEAT neuroevo- to be addressed. For example, it is desirable that the exist- lution method, termed NEATfields, to solve problems with ing function of a network should not be fully disrupted when large input and output spaces. NEATfields networks are lay- adding new elements to the network. It is also not obvious ered into two-dimensional fields of identical or similar sub- how to recombine neural networks with arbitrary topologies, networks with an arbitrary topology. The subnetworks are or genomes of neural networks with variable lengths. evolved with genetic operations similar to those used in the Another grand challenge in evolving neural networks is NEAT neuroevolution method. We show that information the scalability issue: the evolution of solutions for tasks of a processing within the neural fields can be organized by pro- large dimension. This problem is particularly serious when viding suitable building blocks to evolution. NEATfields can a direct encoding scheme is used for representing the neural solve a number of visual discrimination tasks and a newly network, where the length of the genome grows linearly with introduced multiple pole balancing task. -
Insights Into the Genetic Architecture of the Human Face
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.12.090555; this version posted May 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Insights into the genetic architecture of the human face Julie D. White1†*, Karlijne Indencleef2,3,4†*, Sahin Naqvi5,6, Ryan J. Eller7, Jasmien Roosenboom8, Myoung Keun Lee8, Jiarui Li2,3, Jaaved Mohammed5,9, Stephen Richmond10, Ellen E. Quillen11,12, Heather L. Norton13, Eleanor Feingold14, Tomek Swigut5,9, Mary L. Marazita8,14, Hilde Peeters15, Greet Hens4, John R. Shaffer8,14, Joanna Wysocka5,9, Susan Walsh7, Seth M. Weinberg8,14,16, Mark D. Shriver1, Peter Claes2,3,15,17,18* Affiliations: 1Department of Anthropology, Pennsylvania State University, State College, PA, 16802, USA 2Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, 3000, Belgium 3Medical Imaging Research Center, UZ Leuven, Leuven, 3000, Belgium 4Department of Otorhinolaryngology, KU Leuven, Leuven, 3000, Belgium 5Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA 6Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA 7Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA 8Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, -
A Global Overview of Pleiotropy and Genetic Architecture in Complex Traits
bioRxiv preprint doi: https://doi.org/10.1101/500090; this version posted December 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A global overview of pleiotropy and genetic architecture in complex traits Authors: Kyoko Watanabe1, Sven Stringer1, Oleksandr Frei2, Maša Umićević Mirkov1, Tinca J.C. Polderman1, Sophie van der Sluis1,3, Ole A. Andreassen2,4, Benjamin M. Neale5-7, Danielle Posthuma1,3* Affiliations: 1. Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands. 2. NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Criminal Medicine, University of Oslo, Oslo, Norway 3. Department of Clinical Genetics, Section of Complex Trait Genetics, Neuroscience Campus Amsterdam, VU Medical Center, Amsterdam, the Netherlands. 4. Division of Mental health and addiction Oslo University hospital, Oslo, Norway 5. Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA 6. Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA 7. Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA *Correspondence to: Danielle Posthuma, Department of Complex Trait Genetics, VU University, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands. Phone: +31 20 5982823, Fax: +31 20 5986926, Email: [email protected] Word count: Abstract 181 words, Main text 5,762 words and Methods 4,572 words References: 40 Display items: 4 figures and 2 tables Extended Data: 11 figures Supplementary Information: Text 3,401 words and 25 tables 1 1 bioRxiv preprint doi: https://doi.org/10.1101/500090; this version posted December 19, 2018. -
The Importance of Genetic Redundancy in Evolution
TREE 2688 No. of Pages 14 Trends in Ecology & Evolution Review The Importance of Genetic Redundancy in Evolution Áki J. Láruson,1,3,*,@ Sam Yeaman,2,@ and Katie E. Lotterhos1,3,@ Genetic redundancy has been defined in many different ways at different levels Highlights of biological organization. Here, we briefly review the general concept of redun- The use of the term ‘genetic redundancy’ dancy and focus on the evolutionary importance of redundancy in terms of the has changed over the past 100 years. number of genotypes that give rise to the same phenotype. We discuss the chal- The amount of redundancy in the lenges in determining redundancy empirically, with published experimental mapping of genotype to phenotype is a examples, and demonstrate the use of the C-score metric to quantify redun- critical parameter for evolutionary out- dancy in evolution studies. We contrast the implicit assumptions of redundancy comes under a range of models. in quantitative versus population genetic models, show how this contributes to Distinguishing the conceptual terms signatures of allele frequency shifts, and highlight how the rapid accumulation ‘genotypic redundancy’ and ‘segregating of genome-wide association data provides an avenue for further understanding redundancy’ promotes clearer language the prevalence and role of redundancy in evolution. to further the study of redundancy at all levels of evolutionary biology. History of Redundancy in Evolutionary Studies Empirical determination of redundancy is Redundancy describes a situation in which there is an excess of causal components in a system, challenging, but there are approaches above the minimum needed for its proper function. Understanding how redundancy is built into which allow for the quantitative inference of redundancy.