Variational of Surface Gravity Waves Over Bathymetry BOUSSINESQ
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Part II-1 Water Wave Mechanics
Chapter 1 EM 1110-2-1100 WATER WAVE MECHANICS (Part II) 1 August 2008 (Change 2) Table of Contents Page II-1-1. Introduction ............................................................II-1-1 II-1-2. Regular Waves .........................................................II-1-3 a. Introduction ...........................................................II-1-3 b. Definition of wave parameters .............................................II-1-4 c. Linear wave theory ......................................................II-1-5 (1) Introduction .......................................................II-1-5 (2) Wave celerity, length, and period.......................................II-1-6 (3) The sinusoidal wave profile...........................................II-1-9 (4) Some useful functions ...............................................II-1-9 (5) Local fluid velocities and accelerations .................................II-1-12 (6) Water particle displacements .........................................II-1-13 (7) Subsurface pressure ................................................II-1-21 (8) Group velocity ....................................................II-1-22 (9) Wave energy and power.............................................II-1-26 (10)Summary of linear wave theory.......................................II-1-29 d. Nonlinear wave theories .................................................II-1-30 (1) Introduction ......................................................II-1-30 (2) Stokes finite-amplitude wave theory ...................................II-1-32 -
Title Relation Between Wave Characteristics of Cnoidal Wave
Relation between Wave Characteristics of Cnoidal Wave Title Theory Derived by Laitone and by Chappelear Author(s) YAMAGUCHI, Masataka; TSUCHIYA, Yoshito Bulletin of the Disaster Prevention Research Institute (1974), Citation 24(3): 217-231 Issue Date 1974-09 URL http://hdl.handle.net/2433/124843 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Bull. Disas. Prey. Res. Inst., Kyoto Univ., Vol. 24, Part 3, No. 225,September, 1974 217 Relation between Wave Characteristics of Cnoidal Wave Theory Derived by Laitone and by Chappelear By Masataka YAMAGUCHIand Yoshito TSUCHIYA (Manuscriptreceived October5, 1974) Abstract This paper presents the relation between wave characteristicsof the secondorder approxi- mate solutionof the cnoidal wave theory derived by Laitone and by Chappelear. If the expansionparameters Lo and L3in the Chappeleartheory are expanded in a series of the ratio of wave height to water depth and the expressionsfor wave characteristics of the secondorder approximatesolution of the cnoidalwave theory by Chappelearare rewritten in a series form to the second order of the ratio, the expressions for wave characteristics of the cnoidalwave theory derived by Chappelearagree exactly with the ones by Laitone, whichare convertedfrom the depth below the wave trough to the mean water depth. The limitingarea betweenthese theories for practical applicationis proposed,based on numerical comparison. In addition, somewave characteristicssuch as wave energy, energy flux in the cnoidal waves and so on are calculated. 1. Introduction In recent years, the various higher order solutions of finite amplitude waves based on the perturbation method have been extended with the progress of wave theories. For example, systematic deviations of the cnoidal wave theory, which is a nonlinear shallow water wave theory, have been made by Kellern, Laitone2), and Chappelears> respectively. -
Is Hydrology Kinematic?
HYDROLOGICAL PROCESSES Hydrol. Process. 16, 667–716 (2002) DOI: 10.1002/hyp.306 Is hydrology kinematic? V. P. Singh* Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803-6405, USA Abstract: A wide range of phenomena, natural as well as man-made, in physical, chemical and biological hydrology exhibit characteristics similar to those of kinematic waves. The question we ask is: can these phenomena be described using the theory of kinematic waves? Since the range of phenomena is wide, another question we ask is: how prevalent are kinematic waves? If they are widely pervasive, does that mean hydrology is kinematic or close to it? This paper addresses these issues, which are perceived to be fundamental to advancing the state-of-the-art of water science and engineering. Copyright 2002 John Wiley & Sons, Ltd. KEY WORDS biological hydrology; chemical hydrology; physical hydrology; kinematic wave theory; kinematics; flux laws INTRODUCTION There is a wide range of natural and man-made physical, chemical and biological flow phenomena that exhibit wave characteristics. The term ‘wave’ implies a disturbance travelling upstream, downstream or remaining stationary. We can visualize a water wave propagating where the water itself stays very much where it was before the wave was produced. We witness other waves which travel as well, such as heat waves, pressure waves, sound waves, etc. There is obviously the motion of matter, but there can also be the motion of form and other properties of the matter. The flow phenomena, according to the nature of particles composing them, can be distinguished into two categories: (1) flows of discrete noncoherent particles and (2) flows of continuous coherent particles. -
Spectral Analysis
Ocean Environment Sep. 2014 Kwang Hyo Jung, Ph.D Assistant Professor Dept. of Naval Architecture & Ocean Engineering Pusan National University Introduction Project Phase and Functions Appraise Screen new development development Identify Commence basic Complete detail development options options & define Design & define design & opportunity & Data acquisition base case equipment & material place order LLE Final Investment Field Feasibility Decision Const. and Development Pre-FEED FEED Detail Eng. Procurement Study Installation Planning (3 - 5 M) (6 - 8 M) (33 - 36 M) 1st Production 45/40 Tendering for FEED Tendering for EPCI Single Source 30/25 (4 - 6 M) (11 - 15 M) Design Competition 20/15 15/10 0 - 10/- 5 - 15/-10 - 25/-15 Cost Estimate Accuracy (%) EstimateAccuracy Cost - 40/- 25 Equipment Bills of Material & Concept options Process systems & Material Purchase order & Process blocks defined Definition information Ocean Water Properties Density, Viscosity, Salinity and Temperature Temperature • The largest thermocline occurs near the water surface. • The temperature of water is the highest at the surface and decays down to nearly constant value just above 0 at a depth below 1000 m. • This decay is much faster in the colder polar region compared to the tropical region and varies between the winter and summer seasons. Salinity • The variation of salinity is less profound, except near the coastal region. • The river run-off introduces enough fresh water in circulation near the coast producing a variable horizontal as well as vertical salinity. • In the open sea. the salinity is less variable having an average value of about 35 ‰ (permille, parts per thousand). Viscosity • The dynamic viscosity may be obtained by multiplying the viscosity with mass density. -
Engenharias, Ciência E Tecnologia 6
Luís Fernando Paulista Cotian (Organizador) Engenharias, Ciência e Tecnologia 6 Atena Editora 2019 2019 by Atena Editora Copyright da Atena Editora Editora Chefe: Profª Drª Antonella Carvalho de Oliveira Diagramação e Edição de Arte: Geraldo Alves e Lorena Prestes Revisão: Os autores Conselho Editorial Prof. Dr. Alan Mario Zuffo – Universidade Federal de Mato Grosso do Sul Prof. Dr. Álvaro Augusto de Borba Barreto – Universidade Federal de Pelotas Prof. Dr. Antonio Carlos Frasson – Universidade Tecnológica Federal do Paraná Prof. Dr. Antonio Isidro-Filho – Universidade de Brasília Profª Drª Cristina Gaio – Universidade de Lisboa Prof. Dr. Constantino Ribeiro de Oliveira Junior – Universidade Estadual de Ponta Grossa Profª Drª Daiane Garabeli Trojan – Universidade Norte do Paraná Prof. Dr. Darllan Collins da Cunha e Silva – Universidade Estadual Paulista Profª Drª Deusilene Souza Vieira Dall’Acqua – Universidade Federal de Rondônia Prof. Dr. Eloi Rufato Junior – Universidade Tecnológica Federal do Paraná Prof. Dr. Fábio Steiner – Universidade Estadual de Mato Grosso do Sul Prof. Dr. Gianfábio Pimentel Franco – Universidade Federal de Santa Maria Prof. Dr. Gilmei Fleck – Universidade Estadual do Oeste do Paraná Profª Drª Girlene Santos de Souza – Universidade Federal do Recôncavo da Bahia Profª Drª Ivone Goulart Lopes – Istituto Internazionele delle Figlie de Maria Ausiliatrice Profª Drª Juliane Sant’Ana Bento – Universidade Federal do Rio Grande do Sul Prof. Dr. Julio Candido de Meirelles Junior – Universidade Federal Fluminense Prof. Dr. Jorge González Aguilera – Universidade Federal de Mato Grosso do Sul Profª Drª Lina Maria Gonçalves – Universidade Federal do Tocantins Profª Drª Natiéli Piovesan – Instituto Federal do Rio Grande do Norte Profª Drª Paola Andressa Scortegagna – Universidade Estadual de Ponta Grossa Profª Drª Raissa Rachel Salustriano da Silva Matos – Universidade Federal do Maranhão Prof. -
Shallow Water Simulation of Overland Flows in Idealised Catchments
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo Shallow Water Simulation of Overland Flows in Idealised Catchments Dr. Dongfang Liang (corresponding author) Tel: +44 1223 764829; E-mail: [email protected] Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK Mr. Ilhan Özgen Tel: +49 30 31472428; E-mail: [email protected] Chair of Water Resources Management and Modeling of Hydrosystems, Technische Universität Berlin, Berlin, Germany Prof. Reinhard Hinkelmann Tel: 49 30 31472307; E-mail: [email protected] Chair of Water Resources Management and Modeling of Hydrosystems, Technische Universität Berlin, Berlin, Germany Prof. Yang Xiao [email protected] State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China Dr. Jack M. Chen [email protected] Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK 1 Abstract This paper investigates the relationship between the rainfall and runoff in idealised catchments, either with or without obstacle arrays, using an extensively-validated fully- dynamic shallow water model. This two-dimensional hydrodynamic model allows a direct transformation of the spatially distributed rainfall into the flow hydrograph at the catchment outlet. The model was first verified by reproducing the analytical and experimental results in both one-dimensional and two-dimensional situations. Then, dimensional analyses were exploited in deriving the dimensionless S-curve, which is able to generically depict the relationship between the rainfall and runoff. For a frictionless plane catchment, with or without an obstacle array, the dimensionless S- curve seems to be insensitive to the rainfall intensity, catchment area and slope, especially in the early steep-rising section of the curve. -
Comparison of Various Spectral Models for the Prediction of the 100-Year Design Wave Height
MATEC Web of Conferences 203, 01020 (2018) https://doi.org/10.1051/matecconf/201820301020 ICCOEE 2018 Comparison of Various Spectral Models for the Prediction of the 100-Year Design Wave Height Sayyid Zainal Abidin Syed Ahmad1, 2,*, Mohd Khairi Abu Husain1, Noor Irza Mohd Zaki1, Mohd Hairil Mohd2 and Gholamhossein Najafian3 1Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia 2Universiti Malaysia Terengganu, 21030 Kuala Nerus, Malaysia 3School of Engineering, Universiti of Liverpool, Liverpool, United Kingdom Abstract. Offshore structures are exposed to random wave loading in the ocean environment, and hence the probability distribution of the extreme values of their response to wave loading is required for their safe and economical design. In most cases, the dominant load on offshore structures is due to wind-generated random waves where the ocean surface elevation is defined using appropriate ocean wave energy spectra. Several spectral models have been proposed to describe a particular sea state that is used in the design of offshore structures. These models are derived from analysis of observed ocean waves and are thus empirical in nature. The spectral models popular in the offshore industry include Pierson-Moskowitz spectrum and JONSWAP spectrum. While the offshore industry recognizes that different methods of simulating ocean surface elevation lead to different estimation of design wave height, no systematic investigation has been conducted. Hence, the aim of this study is to investigate the effects of predicting the 100-year responses from various wave spectrum models. In this paper, the Monte Carlo time simulation (MCTS) procedure has been used to compare the magnitude of the 100-year extreme responses derived from different spectral models. -
11 Ardhuin CLIVAR Stokesdrift
Stokes drift and vertical shear at the sea surface: upper ocean transport, mixing, remote sensing Fabrice Ardhuin (SIO/MPL) Adapted from Sutherland et al. (JPO 2016) (26 N, 36 W) Stokes drift | CLIVAR surface current workshop | F. Ardhuin | Slide 1 1. Oscillating motions can transport mass… Linear Airy wave theory, monochromatic waves in deep water - Phase speed: C ~ 10 m/s Quadratic quantities: - Orbital velocity: u =(ak) C ~ 1 m/s , Wave energy: E = ⍴g a2/2 [J/m2] 2 - Stokes drift: US =(ak) C ~ 0.1 m/s , Mass transport: Mw = E/C [kg/m/s] (depth integrated. Mw =E/C is very general) linear Eulerian velocity non-linear Eulerian velocity Eulerian mean velocity horizontal displacement vertical displacement Lagragian mean velocity same transport Stokes drift | CLIVAR surface current workshop | F. Ardhuin | Slide 2 2. Beyond simple waves - Non-linear effects: limited for monochromatic waves in deep water - Random waves: Kenyon (1969) ESA (2019, SKIM RfMS) Rascle et al. (JGR 2006) Stokes drift | CLIVAR surface current workshop | F. Ardhuin | Slide 3 2. Beyond simple waves - Random waves (continued): it is not just the wind : average Us for 5 to 10 m/s is 20% higher at PAPA (data courtesy J. Thomson / CDIP) compared to East Atlantic buoy 62069. Up to 0.5 Hz Up to 0.5 Hz Stokes drift | CLIVAR surface current workshop | F. Ardhuin | Slide 4 2. Beyond simple waves … and context Now compared to PAPA currents (courtesy of Cronin et al. PMEL) Stokes drift | CLIVAR surface current workshop | F. Ardhuin | Slide 5 2. Beyond simple waves -Nonlinear random waves …? harmonics, modulation … -Breaking: Pizzo et al. -
Analysis of Different Methods for Wave Generation and Absorption in a CFD-Based Numerical Wave Tank
Journal of Marine Science and Engineering Article Analysis of Different Methods for Wave Generation and Absorption in a CFD-Based Numerical Wave Tank Adria Moreno Miquel 1 ID , Arun Kamath 2,* ID , Mayilvahanan Alagan Chella 3 ID , Renata Archetti 1 ID and Hans Bihs 2 ID 1 Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; [email protected] (A.M.M.); [email protected] (R.A.) 2 Department of Civil and Environmental Engineering, NTNU Trondheim, 7491 Trondheim, Norway; [email protected] 3 Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; [email protected] * Correspondence: [email protected] Received: 30 April 2018; Accepted: 10 June 2018; Published: 14 June 2018 Abstract: In this paper, the performance of different wave generation and absorption methods in computational fluid dynamics (CFD)-based numerical wave tanks (NWTs) is analyzed. The open-source CFD code REEF3D is used, which solves the Reynolds-averaged Navier–Stokes (RANS) equations to simulate two-phase flow problems. The water surface is computed with the level set method (LSM), and turbulence is modeled with the k-w model. The NWT includes different methods to generate and absorb waves: the relaxation method, the Dirichlet-type method and active wave absorption. A sensitivity analysis has been conducted in order to quantify and compare the differences in terms of absorption quality between these methods. A reflection analysis based on an arbitrary number of wave gauges has been adopted to conduct the study. Tests include reflection analysis of linear, second- and fifth-order Stokes waves, solitary waves, cnoidal waves and irregular waves generated in an NWT. -
Dispersion Kernels for Water Wave Simulation
Dispersion Kernels for Water Wave Simulation Jose´ A. Canabal1 David Miraut1 Nils Thuerey2 Theodore Kim3;4 Javier Portilla5 Miguel A. Otaduy1 1URJC Madrid 2Technical University of Munich 3Pixar Animation Studios 4Universiy of California, Santa Barbara 5Instituto de Optica, CSIC Figure 1: Rain on the pond. Our wave simulation method captures the gravity waves present in the wakes produced by the paper birds, as well as the capillary waves produced by rain drops, all with correct scale-dependent velocities. The waves reflect on all the objects in the scene, both static and dynamic. The domain is 4 meters wide, and is simulated on a 1024 × 1024 grid, at just 1:6 sec. per frame. Abstract thesizing height field waves with correct dispersion [Tessendorf 2004b]. However, handling obstacle boundaries in the frequency We propose a method to simulate the rich, scale-dependent dynam- domain is computationally expensive, and quickly renders any ap- ics of water waves. Our method preserves the dispersion proper- proach in this direction impractical. Thus, users have to resort to lo- ties of real waves, yet it supports interactions with obstacles and is calized three-dimensional simulations [Nielsen and Bridson 2011], computationally efficient. Fundamentally, it computes wave accel- precomputations [Jeschke and Wojtan 2015], or height field ap- erations by way of applying a dispersion kernel as a spatially variant proaches with spatial filtering techniques [Kass and Miller 1990; filter, which we are able to compute efficiently using two core tech- Tessendorf 2008]. While the latter methods are typically fast, they nical contributions. First, we design novel, accurate, and compact only roughly approximate or even neglect dispersion effects. -
Chapter 20 Airy Wave Theory and Breaker Height
CHAPTER 20 AIRY WAVE THEORY AND BREAKER HEIGHT PREDICTION Paul D. Komar and Michael K. Gaughan School of Oceanography Oregon State University Corvallis, Oregon 97331 ABSTRACT Using a critical value for Yt> = H./ h. as a wave breaking criterion, where Hb and hb are respectively the wave breaker height and depth, applying Airy wave theory, and assuming conservation of the wave energy flux, one obtains 1/5 2 2/5 Hb = k g (TH. ) relating Hb to the wave period T and to the deep-water wave height H^ . Three sets of laboratory data and one set of field data yield k = 0.39 for the dimensionless coefficient. The relationship, based on Airy wave theory and empirically fitted to the data, is much more successful in predicting wave breaker heights than is the commonly used equation of Munk, based on solitary wave theory. In addition, the relationship is applicable over the entire practical range of wave steepness values. INTRODUCTION Engineers and scientists interested in the nearshore region often find it necessary to calculate the expected breaker heights of a wave train from its deep-water characteristics. Wave forecast procedures, for example, yield estimates of the deep-water wave height, H„ , and period T . From these values it is desirable to estimate the heights of these waves when they arrive and break on a particular beach. The procedure that is commonly followed (CERC Tech. Report No. 4, 1966) is to utilize the theoretical equation 405 406 COASTAL ENGINEERING H, = (1) b 3.3(H„/L„)1/3 or its graphical equivalent, where He is the breaker height. -
ICHE 2014 | Book of Abstracts | Keynotes
11th International Conference on Hydroscience & Engineering (ICHE2014) Book of Abstracts Hamburg, Germany, 28 September to 2 October 2014 Table of Contents Keynotes ..................................................................................................................................... 4 Oral Presentations ................................................................................................................... 15 Water Resources Planning and Management ...................................................................... 15 Experimental and Computational Hydraulics ...................................................................... 34 Groundwater Hydrology, Irrigation ..................................................................................... 77 Urban Water Management ................................................................................................... 90 River, Estuarine and Coastal Dynamics ............................................................................... 96 Sediment Transport and Morphodynamics......................................................................... 128 Interaction between Offshore Utilisation and the Environment ......................................... 174 Climate Change, Adaptation and Long-Term Predictions ................................................. 183 Eco-Hydraulics and Eco-Hydrology .................................................................................. 211 Integrated Modeling of Hydro-Systems .............................................................................