Large-Scale Monitoring of Resistance to Coumaphos, Amitraz, and Pyrethroids in Varroa Destructor

Total Page:16

File Type:pdf, Size:1020Kb

Large-Scale Monitoring of Resistance to Coumaphos, Amitraz, and Pyrethroids in Varroa Destructor insects Article Large-Scale Monitoring of Resistance to Coumaphos, Amitraz, and Pyrethroids in Varroa destructor Carmen Sara Hernández-Rodríguez 1, Óscar Marín 1, Fernando Calatayud 2, María José Mahiques 3, Ana Mompó 3, Inmaculada Segura 3, Enrique Simó 2 and Joel González-Cabrera 1,* 1 Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Dr. Moliner 50, 46100 Burjassot, Spain; [email protected] (C.S.H.-R.); [email protected] (Ó.M.) 2 Agrupación de Defensa Sanitaria Apícola APIADS, Calle Raval 75B, 46193 Montroi, Spain; [email protected] (F.C.); [email protected] (E.S.) 3 Agrupación de Defensa Sanitaria Apícola APICAL y APIVAL, C/Sants de la Pedra 75, 03830 Muro de Alcoy, Spain; [email protected] (M.J.M.); [email protected] (A.M.); [email protected] (I.S.) * Correspondence: [email protected]; Tel.: +34-963-543-122 Simple Summary: Varroa destructor, a parasitic mite of Apis mellifera, is causing severe damages to honey bee colonies worldwide. There are very few acaricides available to manage the parasite, and so the evolution of the mite’s resistance to acaricides poses a serious threat to controlling the mite. Using a combined approach that includes bioassays and genotyping, we estimated the expected efficacy of the treatments with acaricide products based on coumaphos, amitraz, and pyrethroids in apiaries from one of the most important beekeeping regions in Spain. This information was shared with the beekeeping community so that they can take informed and scientific-based decisions in the most convenient way to manage the parasite. Abstract: Varroa destructor is an ectoparasitic mite causing devastating damages to honey bee colonies Citation: Hernández-Rodríguez, C.S.; around the world. Its impact is considered a major factor contributing to the significant seasonal losses Marín, Ó.; Calatayud, F.; Mahiques, of colonies recorded every year. Beekeepers usually rely on a reduced set of acaricides to manage the M.J.; Mompó, A.; Segura, I.; Simó, E.; parasite, usually the pyrethroids tau-fluvalinate or flumethrin, the organophosphate coumaphos, and González-Cabrera, J. Large-Scale the formamidine amitraz. However, the evolution of resistance in the mite populations is leading Monitoring of Resistance to to an unsustainable scenario with almost no alternatives to reach an adequate control of the mite. Coumaphos, Amitraz, and Here, we present the results from the first large-scale and extensive monitoring of the susceptibility Pyrethroids in Varroa destructor. to acaricides in the Comunitat Valenciana, one of the most prominent apicultural regions in Spain. Insects 2021, 12, 27. https://doi.org/ Our ultimate goal is to provide beekeepers with timely information to help them decide what would 10.3390/insects12010027 be the best alternative for a long-term control of the mites in their apiaries. Our data show that there is a significant variation in the expected efficacy of coumaphos and pyrethroids across the Received: 23 November 2020 Accepted: 30 December 2020 region, indicating the presence of a different ratio of resistant individuals to these acaricides in each Published: 4 January 2021 population. On the other hand, the expected efficacy of amitraz was more consistent, though slightly below the expected efficacy according to the label. Publisher’s Note: MDPI stays neu- tral with regard to jurisdictional clai- Keywords: acaricides; honey bees; bioassay; TaqMan; genotyping; acaricide resistance ms in published maps and institutio- nal affiliations. 1. Introduction Copyright: © 2021 by the authors. Li- The ectoparasitic mite Varroa destructor is considered a major pest of the Western honey censee MDPI, Basel, Switzerland. bee (Apis mellifera L.) [1]. This mite feeds mostly on the fat body of immature and adult bees This article is an open access article and vectors numerous lethal viruses, compromising the natural honey bee defenses [2,3]. distributed under the terms and con- These severe damages make V. destructor one of the main factors contributing to the many ditions of the Creative Commons At- seasonal losses of honey bee colonies around the world [4,5]. tribution (CC BY) license (https:// Varroa destructor shifted its host from the Eastern honey bee (Apis cerana F.) to the West- creativecommons.org/licenses/by/ ern honey bee in the late 1950s in Asia, but at present it is widely distributed throughout 4.0/). Insects 2021, 12, 27. https://doi.org/10.3390/insects12010027 https://www.mdpi.com/journal/insects Insects 2021, 12, 27 2 of 12 the world [6]. In Spain, V. destructor was first detected in 1985, and currently it can be found all over the country [7,8]. Varroa destructor reproduces throughout the spring and summer, and so the population is larger in autumn. Thus, treatments to control the mite are usually applied in that season to increase the possibility of overwintering success [9]. In this country, as in many others, it is mandatory to apply at least one acaricide treatment per year to manage the parasite (Royal Decree RD608/2006). However, beekeepers usually perform at least another treatment in the summer in case they detect mites in their colonies. The acaricides authorized to control V. destructor in Spain include “hard acaricides” (based on pyrethroids such as tau-fluvalinate and flumethrin, the formamidine amitraz, and the organophosphate coumaphos), together with “soft acaricides” (mostly based on formic or oxalic acid or the essential oil thymol) ([10]; www.aemps.gob.es/). Integrated pest management (IPM) strategies encourage the combined use of both types of acaricides and other beekeeping practices to reach better long-term control of the mite, but beekeepers have relied mainly on hard acaricides because they are faster and usually more effective [1]. The intensive use of pyrethroids to control Varroa for decades resulted in the evolution of the mite’s resistance to these acaricides in apiaries from several countries [11–15]. Since the emergence of resistance to pyrethroids, beekeepers switched to coumaphos as the best alternative to control the parasite, but the intensive treatment regime with this compound resulted in the evolution of resistance in many locations as well [16–18]. In this scenario, the alternatives to control V. destructor have been drastically reduced to a treatment with amitraz and soft acaricides. Currently, the extensive use of amitraz exerts an intense selec- tion pressure over populations, threatening them with the evolution of resistance to this compound. Indeed, a reduction in the efficacy of amitraz for Varroa control, which may be associated with the evolution of its resistance, has already been reported elsewhere [19–22]. The mechanism of resistance to pyrethroids in V. destructor is well known. It is as- sociated with mutations at the residue L925 of the major target site for pyrethroids—the voltage-gated sodium channel (VGSC) [12,23–25]. To detect these amino acid substitu- tions, TaqMan allelic discrimination assays have been developed [12,23,24]. This is a high throughput diagnostics technique capable of detecting mutations in individual mites. On the other hand, the molecular mechanisms causing the resistance to coumaphos and amitraz in V. destructor are still unknown, and so the reduction in the efficacy to control V. de- structor in apiaries using treatments based on these two acaricides can only be confirmed by bioassays with a direct exposition of mites to the acaricidal products [16–18]. The European Union (EU) is the world’s second largest honey producer after China. Spain is the country with the highest number of hives in Europe (more than three million hives) and the second largest producer of honey in the EU, with almost 30,000 tons per year (https://ec.europa.eu/info/food-farming-fisheries/animals-and-animal-products/ animal-products/honey_en). The Comunitat Valenciana is a Spanish extensive region of 23,255 km2 comprising three provinces with an important professionalized beekeeping sector. It has 358,327 hives in 2459 beekeeping operations, being the region with the second highest honey production in Spain. Almost all the hives (98%) are mobile, carrying out mi- gratory beekeeping throughout the year (https://www.mapa.gob.es/es/ganaderia/temas/ produccion-y-mercados-ganaderos/indicadoreseconomicossectordelamiel2018comentarios_ tcm30-419675.pdf). Despite the treatments to manage the mite, Varroa parasitism is far from being con- trolled, and it is a persistent problem in all honey-producing countries [1,26]. It seems plausible that the continuous presence of varroosis in beehives around the world is related to the resistance to acaricidal products. In Spain, this correlation has not been confirmed yet since there is no program to track the efficacy of the treatments or the evolution of resistance in Spanish apiaries. The lack of knowledge of the incidence and prevalence of varroosis in all the territories of this country led us to plan a systematic study in the Comunitat Valenciana region. The goal of this study is to determine the efficacy of the three groups of hard acaricides in V. destructor populations from apiaries located throughout the Insects 2021, 12, 27 3 of 12 three provinces of the region. This study is coordinated with the Department of Agricul- ture, Environment, Climate Change and Rural Development of the regional government (Generalitat Valenciana, www.gva.es) and Sanitary Defense Groups (abbreviated as ADS in Spanish) of the beekeeping sector. Our aim is to provide beekeepers with information about the impact of varroosis in their colonies and to estimate the expected efficacy for each apiary of acaricide treatments based on pyrethroids, coumaphos, and amitraz. 2. Materials and Methods 2.1. Mites Varroa destructor females were collected from apiaries located in the three provinces of the Comunitat Valenciana region (Spain): Castellón, Valencia, and Alicante. The collection of mites for this study was carried out in two consecutive annual beekeeping seasons: In the first period, 90 apiaries were sampled from April to July 2018, and in the second period, 89 different apiaries were sampled from November 2018 to July 2019 (Table1, Tables S1 and S2).
Recommended publications
  • Guidance on Identification of Alternatives to New Pops
    Stockholm Convention on Persistent Organic Pollutants Guidance on identification of alternatives to new POPs Secretariat of the Stockholm Convention Concept of “Substitution” under the Stockholm Convention • The substitution is a strategy promoted by the Stockholm Convention to reach its objectives • Parties that are still producing or using the new POPs listed in Annex A, will need to search and identify alternatives to replace them • In the case of PFOS and for the exemptions for uses allowed by the Convention, these group of chemicals will be eventually prohibited and Parties are therefore encouraged to find alternatives to substitute them 2 Availability of alternatives • Currently, some countries have phased out the use of some of the new POPs, and there are feasible alternatives available to replace them Alternatives Chemical Name Use Ethoprop, oxamyl Pesticide to control banana root borer Cyfluthrin, Imidacloprid Pesticide to control tobacco wireworms Azadirachtin, bifenthrin, boric acid, carbaryl, Pesticide to control capsaicin, cypermethrin, cyfluthrin, ants and/or deltamethrin, diazinon, dichlorvos, cockroaches esfenvalerate, imidacloprid, lamda-cyhalothrin, Chlordecone malathion, permethrin, piperonyl butoxide, pyrethrins, pyriproxyfen, resmethrin, s- bioallerthrin, tetramethrin Bacillus thuringiensis, cultural practices such Pest management as crop rotation, intercropping, and trap cropping; barrier methods, such as screens, and bagging of fruit; use of traps such as pheromone and light traps to attract and kill insects. 3
    [Show full text]
  • Pesticide Registration Review; Testing, Vehicle Testing, and Modeling Proposed Interim Decisions for Several A
    Federal Register / Vol. 84, No. 218 / Tuesday, November 12, 2019 / Notices 61055 mile benefit. Finally, Calsonic Kansei ENVIRONMENTAL PROTECTION number: (703) 305–7106; email address: used the LCCP model to estimate the AGENCY [email protected]. benefits of the technology, and this [EPA–HQ–OPP–2017–0750; FRL–10001–71] SUPPLEMENTARY INFORMATION: modeling also supported a credit value I. General Information of 1.1 grams/mile. Details of the bench Pesticide Registration Review; testing, vehicle testing, and modeling Proposed Interim Decisions for Several A. Does this action apply to me? are available in Nissan’s application. Pyrethroids; Notice of Availability This action is directed to the public III. EPA Decision Process AGENCY: Environmental Protection in general, and may be of interest to a Agency (EPA). wide range of stakeholders including EPA has reviewed the applications for environmental, human health, farm ACTION: Notice. completeness and is now making the worker, and agricultural advocates; the applications available for public review SUMMARY: This notice announces the chemical industry; pesticide users; and and comment as required by the availability of EPA’s proposed interim members of the public interested in the regulations. The off-cycle credit registration review decisions and opens sale, distribution, or use of pesticides. applications submitted by the a 60-day public comment period on the Since others also may be interested, the manufacturer (with confidential proposed interim decisions for the Agency has not attempted to describe all business information redacted) have following pesticides: cyphenothrin, the specific entities that may be affected been placed in the public docket (see flumethrin, imiprothrin, by this action.
    [Show full text]
  • (Bpeo) Assessment: Discharge of Fish Farm Chemical Treatment Agents from a Wellboat
    MARINE (SCOTLAND) ACT 2010, PART 4: MARINE LICENSING BEST PRACTICABLE ENVIRONMENTAL OPTION (BPEO) ASSESSMENT: DISCHARGE OF FISH FARM CHEMICAL TREATMENT AGENTS FROM A WELLBOAT 1. Introduction 1.1 Background to application This Best Practicable Environmental Option (BPEO) assessment supports an application for a sea disposal licence under the Marine (Scotland) Act 2010, Part 4, Marine licensing. The purpose of this application is to ensure that all possible options are available as a treatment disposal method which in turn allows greater flexibility and allows all options for the fish to have an effective treatment when needed. The sites currently use tarpaulin treatments to administer any necessary sea lice medicines however as a responsible operator we are ensuring that all treatment methods are available to use to use to ensure best welfare of the stock. 1.2 Source of materials List the treatment products you wish to discharge following treatment. Excis, Alphamax, AMX, Salmosan, Salmosan Vet, Azasure or Paramove 50 E.g. Materials –Excis- are supplied by: Materials are manufactured by: Novartis Animal Health UK Ltd Vericore Ltd New Cambridge House Kinnoull Road Litlington Kingsway West Nr Royston Dundee DD2 3XR Herts SG8 0SS Alphamax/AMX Materials are supplied by:- AMX™ Company name:PHARMAQ Limited Address:Unit 15, Sandleheath Industrial Estate Fordingbridge, Hampshire SP6 1PA Telephone:01425 656081 Fax:01425 657992 Materials are manufactured by:- PHARMAQ AS Skogmo Industriomrade N-7863 OVERHALLA, Norway Tel - +47 74 28 08 00 Email:[email protected] Website:www.pharmaq.no Salmosan/Salmosan Vet Manufacturer/Supplier: Fish Vet Group Tel: +44 (0) 1463 717774 22 Carsegate Road Fax: +44 (0) 1463 717775 Inverness eMail: [email protected] IV3 8EX Scotland UK · Further information obtainable from: +44 (0) 1463 717774 eMail: [email protected] · Emergency telephone number: UK : +44 (0) 845 0093342 International: +44 (0) 1233 849729 (24/7) AZASURE Materials are supplied by:- Europharma Scotland Ltd.
    [Show full text]
  • Genetically Modified Baculoviruses for Pest
    INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS This page intentionally left blank INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS EDITED BY LAWRENCE I. GILBERT SARJEET S. GILL Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Academic Press is an imprint of Elsevier Academic Press, 32 Jamestown Road, London, NW1 7BU, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA ª 2010 Elsevier B.V. All rights reserved The chapters first appeared in Comprehensive Molecular Insect Science, edited by Lawrence I. Gilbert, Kostas Iatrou, and Sarjeet S. Gill (Elsevier, B.V. 2005). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publishers. Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (þ44) 1865 843830, fax (þ44) 1865 853333, e-mail [email protected]. Requests may also be completed on-line via the homepage (http://www.elsevier.com/locate/permissions). Library of Congress Cataloging-in-Publication Data Insect control : biological and synthetic agents / editors-in-chief: Lawrence I. Gilbert, Sarjeet S. Gill. – 1st ed. p. cm. Includes bibliographical references and index. ISBN 978-0-12-381449-4 (alk. paper) 1. Insect pests–Control. 2. Insecticides. I. Gilbert, Lawrence I. (Lawrence Irwin), 1929- II. Gill, Sarjeet S. SB931.I42 2010 632’.7–dc22 2010010547 A catalogue record for this book is available from the British Library ISBN 978-0-12-381449-4 Cover Images: (Top Left) Important pest insect targeted by neonicotinoid insecticides: Sweet-potato whitefly, Bemisia tabaci; (Top Right) Control (bottom) and tebufenozide intoxicated by ingestion (top) larvae of the white tussock moth, from Chapter 4; (Bottom) Mode of action of Cry1A toxins, from Addendum A7.
    [Show full text]
  • 4. Chemical and Physical Information
    PYRETHRINS AND PYRETHROIDS 131 4. CHEMICAL AND PHYSICAL INFORMATION 4.1 CHEMICAL IDENTITY The naturally-occurring pyrethrins, extracted from chrysanthemum flowers, are esters of chrysanthemic acid (Pyrethrin I, Cinerin I, and Jasmolin I) and esters of pyrethric acid (Pyrethrin II, Cinerin II, and Jasmolin II). In the United States, the pyrethrum extract is standardized as 45–55% w/w total pyrethrins. The typical proportion of Pyrethrins I to II is 0.2:2.8, while the ratio of pyrethrins:cinerins:jasmolins is 71:21:7 (Tomlin 1997). Information regarding the chemical identity of the pyrethrins is presented in Table 4-1. Pyrethroids are synthetic esters derived from the naturally-occurring pyrethrins. One exception to the axiom that all pyrethroids are esters of carboxylic acids is noteworthy. There is a group of oxime ethers that exhibits insecticidal activity similar in nature to the pyrethrins and pyrethroid esters (Davies 1985). Little data exist regarding these compounds, and no commercial products have been produced. Commercially available pyrethroids include allethrin, bifenthrin, bioresmethrin, cyfluthrin, cyhalothrin, cypermethrin, deltamethrin, esfenvalerate (fenvalerate), flucythrinate, flumethrin, fluvalinate, fenpropathrin, permethrin, phenothrin, resmethrin, tefluthrin, tetramethrin, and tralomethrin. Information regarding the chemical identity of pyrethroids is shown in Table 4-2. With the exception of deltamethrin, pyrethroids are a complex mixture of isomers rather than one single pure compound. For pyrethroids possessing the cyclopropane moiety, isomerism about the cyclopropane ring greatly influences the toxicity of these insecticides. The presence of two chiral centers in the ring results in two pairs of diastereomers. The diastereomers and their nonsuperimposable mirror images (enantiomers) are illustrated in Figure 4-1.
    [Show full text]
  • Pyrethroid Registration: Review and Updates Daniel Dawson, Phd AMCA Legislative and Regulatory Committee Chemical Control Subcommittee Talk Outline
    Pyrethroid Registration: Review and Updates Daniel Dawson, PhD AMCA Legislative and Regulatory Committee Chemical Control Subcommittee Talk Outline Pyrethroid Overview Re-registration Registration Food Quality Protection Act Safety Factor Pyrethroids Synthetic pyrethrins Natural pesticides derived from chrysanthemums Neurotoxic Mode of Action Sodium channel blocker Paralyzes effected organism Toxic to arthropods Generally of low toxicity to vertebrates Can be toxic to fish Pyrethrin I Pyrethroids Pyrethrins degrade rapidly via solar radiation Pyrethroids chemically altered Be more resistant to solar degredation Resmethrin: Class 1 Pyrethroid Increase bio-activity Useful for Agricultural production Pest control Vector risk Changes bring increased risks Humans Cypermethrin: Class 2 Pyrethroid Non-target species Cyano-group Pyrethroid Use >3500 registered products Pets Treated Clothing Agriculture Mosquito Control Permethrin Resmethrin D-Phenothrin Re-registration As part of the Federal Insecticide Fungicide, and Rodenticide Act (FIFRA): Pesticides registered before 1984 had to be reviewed Ensure compliance with scientific and regulatory standards Authorized reregistration reviews 1988 Scientific studies Input from stakeholders Summarized in Reregistration Eligibility Decisions (REDs) Completed some 384 “cases” of pesticides by 2008 Concurrently, the Food Quality Protection Act (FQPA) required the reassessment tolerances of pesticides in food for human safety Completed 99% of tolerance assessment
    [Show full text]
  • Monitoring for Resistance to Organophosphorus and Pyrethroid Insecticides in Varroa Mite Populations
    INSECTICIDE RESISTANCE AND RESISTANCE MANAGEMENT Monitoring for Resistance to Organophosphorus and Pyrethroid Insecticides in Varroa Mite Populations 1,2 3 1 4 LAMBERT H. B. KANGA, JOHN ADAMCZYK, KEITH MARSHALL, AND ROBERT COX J. Econ. Entomol. 103(5): 1797Ð1802 (2010); DOI: 10.1603/EC10064 ABSTRACT The occurrence of resistance in Varroa mite populations is a serious threat to the beekeeping industry and to crops that rely on the honey bee for pollination. Integrated pest management strategies for control of this pest include the judicious use of insecticides. To monitor Þeld populations of Varroa mite for insecticide resistance, a glass vial bioassay procedure was developed to use in the development of a resistance management strategy. Diagnostic concen- trations needed to separate susceptible genotypes from resistant individuals were determined for cypermethrin (0.1 ␮g per vial), ßuvalinate (5.0 ␮g per vial), malathion (0.01 ␮g per vial), coumaphos (10.0 ␮g per vial), diazinon (5.0 ␮g per vial), methomyl (0.5 ␮g per vial), propoxur (0.1 ␮g per vial), and endosulfan (2.5 ␮g per vial). Resistance to organophosphorus insecticides (malathion, coumaphos) and pyrethroids (cypermetrhrin, ßuvalinate) was widespread in both La Media Ranch, TX, and Wewahitchka, FL, from 2007 to 2009. There was no resistance to endosulfan, diazinon, methomyl, and propoxur in Þeld populations of Varroa mite in the two locations where resistance was monitored. The seasonal patterns of resistance in Wewahitchka were different from those of La Media Ranch. In the former location, the frequency of resistance to all insecticides tested decreased signiÞcantly from 2007 to 2009, whereas it increased in the latter location.
    [Show full text]
  • Lifetime Organophosphorous Insecticide Use Among Private Pesticide Applicators in the Agricultural Health Study
    Journal of Exposure Science and Environmental Epidemiology (2012) 22, 584 -- 592 & 2012 Nature America, Inc. All rights reserved 1559-0631/12 www.nature.com/jes ORIGINAL ARTICLE Lifetime organophosphorous insecticide use among private pesticide applicators in the Agricultural Health Study Jane A. Hoppin1, Stuart Long2, David M. Umbach3, Jay H. Lubin4, Sarah E. Starks5, Fred Gerr5, Kent Thomas6, Cynthia J. Hines7, Scott Weichenthal8, Freya Kamel1, Stella Koutros9, Michael Alavanja9, Laura E. Beane Freeman9 and Dale P. Sandler1 Organophosphorous insecticides (OPs) are the most commonly used insecticides in US agriculture, but little information is available regarding specific OP use by individual farmers. We describe OP use for licensed private pesticide applicators from Iowa and North Carolina in the Agricultural Health Study (AHS) using lifetime pesticide use data from 701 randomly selected male participants collected at three time periods. Of 27 OPs studied, 20 were used by 41%. Overall, 95% had ever applied at least one OP. The median number of different OPs used was 4 (maximum ¼ 13). Malathion was the most commonly used OP (74%) followed by chlorpyrifos (54%). OP use declined over time. At the first interview (1993--1997), 68% of participants had applied OPs in the past year; by the last interview (2005--2007), only 42% had. Similarly, median annual application days of OPs declined from 13.5 to 6 days. Although OP use was common, the specific OPs used varied by state, time period, and individual. Much of the variability in OP use was associated with the choice of OP, rather than the frequency or duration of application.
    [Show full text]
  • Biodetoxification of Coumaphos Insecticide Using Immobilized Escherichia Coli Expressing Organophosphorus Hydrolase Enzyme on Cell Surface
    Biotechnol. Bioprocess Eng. 2000, 5: 436-440 Biodetoxification of Coumaphos Insecticide Using Immobilized Escherichia coli Expressing Organophosphorus Hydrolase Enzyme on Cell Surface Ayman H. Mansee2, Wilfred Chen1, and Ashok Mulchandani1* 1 Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA 2 On leave from Pesticide Chemistry Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt Abstract Recently, we reported an improved technology for the degradation of organophos- phate nerve agents using whole cells of genetically engineered Escherichia coli that anchored and displayed the enzyme organophosphorus hydrolase on the cell surface. In this paper we report the immobilization of these cells on highly porous sintered glass beads and the subse- quent application of the immobilized cell in a continuous-flow packed bed bioreactor for the biodetoxification of a widely used insecticide, coumaphos. Keywords: OPH, pesticides, nerve agents, bioreactor, porous sintered glass beads INTRODUCTION (APHIS) operates a Tick Eradication Program designed to prevent the re-introduction of Cattle Fever into the Neurotoxic organophosphates (OPs), amongst the United States through ticks (Boophilus microplus and most toxic compound known, are widely used as pesti- Boophilus annulatus) on cattle imported from Mexico. cides, insecticides and chemical warfare agents. In the The primary tool used in the eradication program is a United States annually over 40 million kg of organo- series of dipping vats placed at the border crossing phosphate pesticides are consumed [1] while another 20 points. Cattle coming in from Mexico must be dipped million kg are produced for export [2]. Chlorpyrifos in vats before entering the US. Currently, coumaphos is (lorsban) and parathion are two of most popular pesti- the pesticide of choice for this application.
    [Show full text]
  • Managing Pests Around the Home Suggestions for the General Public
    Home Pest Control Rev. 2/14 Managing Pests Around the Home Suggestions for the General Public What are household pests? Most household pests are insects and are commonly called "bugs." Other organisms such as spiders, scorpions, centipedes, millipedes, ticks, sowbugs, pillbugs, mites, rats, mice, snakes, bats, squirrels, birds, molds and fungi may enter homes. In Tennessee, one or more of about 40 common pests are found in every home at one time or another. Even the most conscientious person cannot always avoid an occasional pest infestation. Where are these pests found? Under optimal conditions, large populations of an insect, rodent or other pest can occur in your yard, home, farm or neighborhood. Large numbers of a pest species can develop in trees, stumps, flower beds, mulch, leaf litter, garbage, wood piles, ditch banks, animal carcasses, stored products, spilled materials, sewer lines and other sites. Pests enter homes through openings in the walls, floors, around pipes or cracks, under doors or windows. Pests seeking shelter build nests or hibernate within the walls, attic or in living quarters. What attracts them to your home? Pests are attracted by light, warm air, moisture and food. Odors from a dead bird, rodent, dead insects or nest in a wall, soured mop or spilled materials can also be attractive. They seek protection and shelter in dark cavities in walls or crawl spaces. What can I do to prevent pest problems in my home? Luckily, many pests are easily controlled. This publication will explain how to manage the most common household pests found in Tennessee. We have placed special importance on controlling pests by limiting their access to food, water and shelter.
    [Show full text]
  • Accreditation No: 15028
    SCOPE OF ACCREDITATION - No. 15028 Page 1 of 4 ACCREDITATION NO: 15028 Eurofins Agroscience Testing Pty Ltd Chemical Testing Laboratory Unit F6, Building F 16 Mars Road LANE COVE NSW 2066 CONTACT: Ms K Ford PHONE: (02) 9900 8442 FAX: MOBILE: 0421 609 757 EMAIL: [email protected] WEB SITE: www.eurofins.com.au FACILITIES: Public testing service This facility complies with the requirements of ISO/IEC 17025:2005 7.37 Plastics .11 Chemical analyses Analysis of polyethylene products listed as determination(s) by technique(s) using method(s) - Bifenthrin by GC using in-house AATM-P94 7.52 Residues and contaminants in foods and agricultural materials .02 Pesticides Analysis of animal feeds, animal tissues (fat, kidney, liver, muscle), cereals, fruit, grains, juices/juice concentrate, pasture, pulses, oil seeds, vegetables listed as determination(s) by technique(s) using method(s) - Fungicides: Azoxystrobin; benalaxyl; benomyl; bitertanol; boscalid; bupirimate; carbendazim; carboxin; cyproconazole; difenoconazole; dimethomorph; epoxiconazole; fenarimol; fenbuconazole; fenhexamid; fenpyroximate; fludioxinil; fluquinconazole; flusilazole; flutriafol; hexaconazole; imazilil; ipconazole; iprodione; kresoxim-methyl; mancozeb; maneb; metalaxyl; metiram; myclobutanil; oxadixyl; penconazole; procymidone; propiconazole; propineb; pyraclostrobin; tebuconazole; tetraconazole; thiabendazole; thiram; triadimefon; triadimenol; tridemorph; trifloxystrobin; vinclozolin; zineb; ziram Herbicides: Ametryn; atrazine; carfentrazone ethyl; clethodim; clomazone; clopyralid;
    [Show full text]
  • Recent Advances on Detection of Insecticides Using Optical Sensors
    sensors Review Recent Advances on Detection of Insecticides Using Optical Sensors Nurul Illya Muhamad Fauzi 1, Yap Wing Fen 1,2,*, Nur Alia Sheh Omar 1,2 and Hazwani Suhaila Hashim 2 1 Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; [email protected] (N.I.M.F.); [email protected] (N.A.S.O.) 2 Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; [email protected] * Correspondence: [email protected] Abstract: Insecticides are enormously important to industry requirements and market demands in agriculture. Despite their usefulness, these insecticides can pose a dangerous risk to the safety of food, environment and all living things through various mechanisms of action. Concern about the environmental impact of repeated use of insecticides has prompted many researchers to develop rapid, economical, uncomplicated and user-friendly analytical method for the detection of insecticides. In this regards, optical sensors are considered as favorable methods for insecticides analysis because of their special features including rapid detection time, low cost, easy to use and high selectivity and sensitivity. In this review, current progresses of incorporation between recognition elements and optical sensors for insecticide detection are discussed and evaluated well, by categorizing it based on insecticide chemical classes, including the range of detection and limit of detection. Additionally, this review aims to provide powerful insights to researchers for the future development of optical sensors in the detection of insecticides. Citation: Fauzi, N.I.M.; Fen, Y.W.; Omar, N.A.S.; Hashim, H.S. Recent Keywords: insecticides; optical sensor; recognition element Advances on Detection of Insecticides Using Optical Sensors.
    [Show full text]