Large-Scale Rnai Screening Uncovers New Therapeutic Targets in the Human Parasite
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia. -
862F50a0ea63c82ca473bf845b5
Brain region Type Enriched GO annotation Gene symbol AQR, ARMC7, BTBD9, HACL1, KCTD10, KCTD13, LSM6, MT2A, MYBPC1, POLD2, SRPX, TNFAIP1, USP25, EC Common type DNA replication, Protein catabolic process, Transport USP28, ZMYND19 EC Common type Transport KIAA1549, MBD5, MYO5B, RAB11A, RAB11FIP1, RAB11FIP2, RAB11FIP3, RAB11FIP4, RAB11FIP5, REPS1 ACD, BMP2K, C1orf63, CDK13, CLK3, CYLC2, DDX3Y, FOXJ3, GNL3L, GRPEL1, KIAA2022, MACROD2, Cellular component organization, Kinase activity, Localization, EC Common type NANOG, PAK1IP1, PCBP1, PCMT1, PLOD1, PLOD2, POT1, PRPS1L1, RASGEF1C, RBM15B, RPS7, RSBN1L, Response to stimulus, Transcription SALL1, SEC16A, TDRD6, TERF1, TERF2IP, TINF2, YTHDF1, YTHDF3, ZC3HAV1L, ZNF281 AGFG1, AKR1C3, ARIH1, ARIH2, BCL10, BFAR, BIRC2, BIRC3, BIRC6, BIRC7, C9orf89, CADPS2, CNOT4, DDX58, DIABLO, DTX1, DTX3L, DZIP3, EIF4E2, EML4, EPS15, EXTL3, FBXL19, FCHO2, GPR108, HLTF, HPCA, HTRA2, INF2, ISG15, KIAA1107, KIAA1797, LNX2, LOC147791, LRSAM1, LTN1, MAGEL2, MAP3K1, MARCH5, MARCH7, MC1R, MFN1, MGRN1, MID1, MID2, MKRN1, MKRN2, MKRN3, MRAP, MUL1, NAIP, PARP9, PCNP, PDZRN3, PJA2, PLCD4, RBCK1, RLIM, RMND5B, RNF10, RNF103, RNF11, RNF111, RNF114, DNA repair, Apoptosis, Protein catabolic process, Protein EC Common type RNF115, RNF125, RNF126, RNF128, RNF13, RNF130, RNF138, RNF14, RNF144A, RNF150, RNF165, RNF166, metabolic process, Protein modification process RNF167, RNF181, RNF182, RNF25, RNF26, RNF38, RNF4, RNF41, RSPRY1, SGCE, SH3RF2, STRADB, TMBIM6, TMEM189, TOPORS, TRAF7, TRIM2, TRIM25, TRIM26, TRIM27, TRIM32, TRIM35, TRIM39, -
Open Data for Differential Network Analysis in Glioma
International Journal of Molecular Sciences Article Open Data for Differential Network Analysis in Glioma , Claire Jean-Quartier * y , Fleur Jeanquartier y and Andreas Holzinger Holzinger Group HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz 2/V, 8036 Graz, Austria; [email protected] (F.J.); [email protected] (A.H.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 27 October 2019; Accepted: 3 January 2020; Published: 15 January 2020 Abstract: The complexity of cancer diseases demands bioinformatic techniques and translational research based on big data and personalized medicine. Open data enables researchers to accelerate cancer studies, save resources and foster collaboration. Several tools and programming approaches are available for analyzing data, including annotation, clustering, comparison and extrapolation, merging, enrichment, functional association and statistics. We exploit openly available data via cancer gene expression analysis, we apply refinement as well as enrichment analysis via gene ontology and conclude with graph-based visualization of involved protein interaction networks as a basis for signaling. The different databases allowed for the construction of huge networks or specified ones consisting of high-confidence interactions only. Several genes associated to glioma were isolated via a network analysis from top hub nodes as well as from an outlier analysis. The latter approach highlights a mitogen-activated protein kinase next to a member of histondeacetylases and a protein phosphatase as genes uncommonly associated with glioma. Cluster analysis from top hub nodes lists several identified glioma-associated gene products to function within protein complexes, including epidermal growth factors as well as cell cycle proteins or RAS proto-oncogenes. -
STRIPAK Complexes in Cell Signaling and Cancer
Oncogene (2016), 1–9 © 2016 Macmillan Publishers Limited All rights reserved 0950-9232/16 www.nature.com/onc REVIEW STRIPAK complexes in cell signaling and cancer Z Shi1,2, S Jiao1 and Z Zhou1,3 Striatin-interacting phosphatase and kinase (STRIPAK) complexes are striatin-centered multicomponent supramolecular structures containing both kinases and phosphatases. STRIPAK complexes are evolutionarily conserved and have critical roles in protein (de) phosphorylation. Recent studies indicate that STRIPAK complexes are emerging mediators and regulators of multiple vital signaling pathways including Hippo, MAPK (mitogen-activated protein kinase), nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are extensively involved in a variety of fundamental biological processes ranging from cell growth, differentiation, proliferation and apoptosis to metabolism, immune regulation and tumorigenesis. Growing evidence correlates dysregulation of STRIPAK complexes with human diseases including cancer. In this review, we summarize the current understanding of the assembly and functions of STRIPAK complexes, with a special focus on cell signaling and cancer. Oncogene advance online publication, 15 February 2016; doi:10.1038/onc.2016.9 INTRODUCTION in the central nervous system and STRN4 is mostly abundant in Recent proteomic studies identified a group of novel multi- the brain and lung, whereas STRN3 is ubiquitously expressed in 5–9 component complexes named striatin (STRN)-interacting phos- almost all tissues. STRNs share a -
(Siberian Roe Deer and Grey Brocket Deer) Unravelled by Chromosome-Specific DNA Sequencing Alexey I
Nova Southeastern University NSUWorks Biology Faculty Articles Department of Biological Sciences 8-11-2016 Contrasting Origin of B Chromosomes in Two Cervids (Siberian Roe Deer and Grey Brocket Deer) Unravelled by Chromosome-Specific DNA Sequencing Alexey I. Makunin Institute of Molecular and Cell Biology - Novosibirsk, Russia; St. Petersburg State University - Russia Ilya G. Kichigin Institute of Molecular and Cell Biology - Novosibirsk, Russia Denis M. Larkin University of London - United Kingdom Patricia C. M. O'Brien Cambridge University - United Kingdom Malcolm A. Ferguson-Smith University of Cambridge - United Kingdom See next page for additional authors Follow this and additional works at: https://nsuworks.nova.edu/cnso_bio_facarticles Part of the Animal Sciences Commons, and the Genetics and Genomics Commons NSUWorks Citation Makunin, Alexey I.; Ilya G. Kichigin; Denis M. Larkin; Patricia C. M. O'Brien; Malcolm A. Ferguson-Smith; Fengtang Yang; Anastasiya A. Proskuryakova; Nadezhda V. Vorobieva; Ekaterina N. Chernyaeva; Stephen J. O'Brien; Alexander S. Graphodatsky; and Vladimir Trifonov. 2016. "Contrasting Origin of B Chromosomes in Two Cervids (Siberian Roe Deer and Grey Brocket Deer) Unravelled by Chromosome-Specific DNA eS quencing." BMC Genomics 17, (618): 1-14. doi:10.1186/s12864-016-2933-6. This Article is brought to you for free and open access by the Department of Biological Sciences at NSUWorks. It has been accepted for inclusion in Biology Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Authors Alexey I. Makunin, Ilya G. Kichigin, Denis M. Larkin, Patricia C. M. O'Brien, Malcolm A. Ferguson-Smith, Fengtang Yang, Anastasiya A. -
Golgi-Dependent Copper Homeostasis Sustains Synaptic Development and Mitochondrial Content
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.22.110627; this version posted May 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Golgi-Dependent Copper Homeostasis Sustains Synaptic Development and Mitochondrial Content. Cortnie Hartwig*1, Gretchen Macías Méndez*2, Shatabdi Bhattacharjee*3, Alysia D. Vrailas- Mortimer*4, Stephanie A. Zlatic1, Amanda A. H. Freeman5, Avanti Gokhale1, Mafalda Concilli6, Christie Sapp Savas1, Samantha Rudin-Rush1, Laura Palmer1, Nicole Shearing1, Lindsey Margewich4, Jacob McArthy4, Savanah Taylor4, Blaine Roberts7, Vladimir Lupashin8, Roman S. Polishchuk6, Daniel N. Cox3, Ramon A. Jorquera2,9#, Victor Faundez1# Abbreviated title: Copper Homeostasis Sustains Synaptic Mitochondria Departments of Cell Biology1 and Biochemistry7, and the Center for the Study of Human Health5 USA, 30322, Emory University, Atlanta, Georgia, USA, 30322. Neuroscience Department, Universidad Central del Caribe, Bayamon, Puerto Rico2. Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 303023. School of Biological Sciences Illinois State University, Normal, IL 6179014. Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy6. Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AK, 722058. Institute of Biomedical Sciences, Santiago, Chile9. #Address Correspondence to RJ ([email protected]) and VF ([email protected]) * These authors contributed equally Number of pages: 36 Number of figures: 9 plus 2 extended data Number of words for abstract, introduction, and discussion: 149, 650, and 1500 Acknowledgements This work was supported by grants from the National Institutes of Health 1RF1AG060285 to VF, R01NS108778 to RJ, R15AR070505 to AVM, TelethonTIGEM-CBDM9 to RP, R01NS086082 to DNC, R01GM083144 to VL, and 5K12GM000680-19 to CH. -
Golgi-Dependent Copper Homeostasis Sustains Synaptic Development and Mitochondrial Content
Research Articles: Cellular/Molecular Golgi-Dependent Copper Homeostasis Sustains Synaptic Development and Mitochondrial Content https://doi.org/10.1523/JNEUROSCI.1284-20.2020 Cite as: J. Neurosci 2020; 10.1523/JNEUROSCI.1284-20.2020 Received: 22 May 2020 Revised: 2 October 2020 Accepted: 9 November 2020 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2020 the authors 1 2 Golgi-Dependent Copper Homeostasis Sustains Synaptic 3 Development and Mitochondrial Content. 4 5 Cortnie Hartwig*1, Gretchen Macías Méndez*2, Shatabdi Bhattacharjee*3, Alysia D. Vrailas- 6 Mortimer*4, Stephanie A. Zlatic1, Amanda A. H. Freeman5, Avanti Gokhale1, Mafalda Concilli6, 7 Erica Werner1, Christie Sapp Savas1, Samantha Rudin-Rush1, Laura Palmer1, Nicole Shearing1, 8 Lindsey Margewich4, Jacob McArthy4, Savanah Taylor4, Blaine Roberts7, Vladimir Lupashin8, 9 Roman S. Polishchuk6, Daniel N. Cox3, Ramon A. Jorquera2,9#, Victor Faundez1# 10 11 Abbreviated title: Copper Homeostasis Sustains Synaptic Mitochondria 12 13 14 Departments of Cell Biology1 and Biochemistry7, and the Center for the Study of Human Health5 USA, 15 30322, Emory University, Atlanta, Georgia, USA, 30322. Neuroscience Department, Universidad Central 16 del Caribe, Bayamon, Puerto Rico2. Neuroscience Institute, Center for Behavioral Neuroscience, Georgia 17 State University, Atlanta, Georgia 303023. School of Biological Sciences Illinois State University, Normal, 18 IL 6179014. -
Simpintlists Package
simpIntLists Package May 20, 2021 R topics documented: simpIntLists-package . .1 ArabidopsisBioGRIDInteractionEntrezId . .4 ArabidopsisBioGRIDInteractionOfficial . .6 ArabidopsisBioGRIDInteractionUniqueId . .7 C.ElegansBioGRIDInteractionEntrezId . .9 C.ElegansBioGRIDInteractionOfficial . 11 C.ElegansBioGRIDInteractionUniqueId . 13 findInteractionList . 14 FruitFlyBioGRIDInteractionEntrezId . 16 FruitFlyBioGRIDInteractionOfficial . 18 FruitFlyBioGRIDInteractionUniqueId . 19 HumanBioGRIDInteractionEntrezId . 21 HumanBioGRIDInteractionOfficial . 22 HumanBioGRIDInteractionUniqueId . 23 MouseBioGRIDInteractionEntrezId . 24 MouseBioGRIDInteractionOfficial . 25 MouseBioGRIDInteractionUniqueId . 27 S.PombeBioGRIDInteractionEntrezId . 28 S.PombeBioGRIDInteractionOfficial . 30 S.PombeBioGRIDInteractionUniqueId . 33 YeastBioGRIDInteractionEntrezId . 35 YeastBioGRIDInteractionOfficial . 38 YeastBioGRIDInteractionUniqueId . 41 Index 46 simpIntLists-package The package contains BioGRID interactions for various organ- isms in a simple format Description The package contains BioGRID interactions for arabidopsis(thale cress), c.elegans, fruit fly, human, mouse, yeast( budding yeast ) and S.pombe (fission yeast) . Entrez ids, official names and unique ids can be used to find proteins. 1 2 simpIntLists-package Details simpIntLists-package 3 Package: simpIntLists Type: Package Version: 1.0 Date: 2011-01-18 License: GPL version 2 or newer LazyLoad: yes Author(s) Kircicegi KORKMAZ, Volkan ATALAY, Rengul CETIN ATALAY Maintainer: Kircicegi KORKMAZ <[email protected]> References -
MOB (Mps One Binder) Proteins in the Hippo Pathway and Cancer
Review MOB (Mps one Binder) Proteins in the Hippo Pathway and Cancer Ramazan Gundogdu 1 and Alexander Hergovich 2,* 1 Vocational School of Health Services, Bingol University, 12000 Bingol, Turkey; [email protected] 2 UCL Cancer Institute, University College London, WC1E 6BT, London, United Kingdom * Correspondence: [email protected]; Tel.: +44 20 7679 2000; Fax: +44 20 7679 6817 Received: 1 May 2019; Accepted: 4 June 2019; Published: 10 June 2019 Abstract: The family of MOBs (monopolar spindle-one-binder proteins) is highly conserved in the eukaryotic kingdom. MOBs represent globular scaffold proteins without any known enzymatic activities. They can act as signal transducers in essential intracellular pathways. MOBs have diverse cancer-associated cellular functions through regulatory interactions with members of the NDR/LATS kinase family. By forming additional complexes with serine/threonine protein kinases of the germinal centre kinase families, other enzymes and scaffolding factors, MOBs appear to be linked to an even broader disease spectrum. Here, we review our current understanding of this emerging protein family, with emphases on post-translational modifications, protein-protein interactions, and cellular processes that are possibly linked to cancer and other diseases. In particular, we summarise the roles of MOBs as core components of the Hippo tissue growth and regeneration pathway. Keywords: Mps one binder; Hippo pathway; protein kinase; signal transduction; phosphorylation; protein-protein interactions; structure biology; STK38; NDR; LATS; MST; STRIPAK 1. Introduction The family of MOBs (monopolar spindle-one-binder proteins) is highly conserved in eukaryotes [1–4]. To our knowledge, at least two different MOBs have been found in every eukaryote analysed so far. -
Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome
CJASN ePress. Published on November 10, 2017 as doi: 10.2215/CJN.04120417 Article Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome Jillian K. Warejko, Weizhen Tan, Ankana Daga, David Schapiro, Jennifer A. Lawson, Shirlee Shril, Svjetlana Lovric, Shazia Ashraf, Jia Rao, Tobias Hermle, Tilman Jobst-Schwan, Eugen Widmeier, Amar J. Majmundar, Ronen Schneider, Heon Yung Gee, J. Magdalena Schmidt, Asaf Vivante, Amelie T. van der Ven, Hadas Ityel, Jing Chen, Carolin E. Sadowski, Stefan Kohl, Werner L. Pabst, Makiko Nakayama, Michael J.G. Somers, Nancy M. Rodig, Ghaleb Daouk, Michelle Baum, Deborah R. Stein, Michael A. Ferguson, Avram Z. Traum, Neveen A. Soliman, Jameela A. Kari, Sherif El Desoky, Hanan Fathy, Martin Zenker, Sevcan A. Bakkaloglu, Dominik Mu¨ller, Aytul Noyan, Fatih Ozaltin, Due to the number of Melissa A. Cadnapaphornchai, Seema Hashmi, Jeffrey Hopcian, Jeffrey B. Kopp, Nadine Benador, Detlef Bockenhauer, contributing authors, the affiliations are Radovan Bogdanovic, Natasˇa Stajic, Gil Chernin, Robert Ettenger, Henry Fehrenbach, Markus Kemper, provided in the Reyner Loza Munarriz, Ludmila Podracka, Rainer Bu¨scher, Erkin Serdaroglu, Velibor Tasic, Shrikant Mane, Supplemental Richard P. Lifton, Daniela A. Braun, and Friedhelm Hildebrandt Material. Correspondence: Abstract Dr. Friedhelm Background and objectives Steroid-resistant nephrotic syndrome overwhelmingly progresses to ESRD. More Hildebrandt, Division than 30 monogenic genes have been identified to cause steroid-resistant nephrotic syndrome. We previously of Nephrology, detected causative mutations using targeted panel sequencing in 30% of patients with steroid-resistant nephrotic Department of Medicine, Boston syndrome. Panel sequencing has a number of limitations when compared with whole exome sequencing. We Children’s Hospital, employed whole exome sequencing to detect monogenic causes of steroid-resistant nephrotic syndrome in an 300 Longwood international cohort of 300 families. -
University of Groningen Fatal Outcome Due to Deficiency of Subunit 6
University of Groningen Fatal outcome due to deficiency of subunit 6 of the conserved oligomeric Golgi complex leading to a new type of congenital disorders of glycosylation Lübbehusen, Jürgen; Thiel, Christian; Rind, Nina; Ungar, Daniel; Prinsen, Berthil H C M T; de Koning, Tom J; van Hasselt, Peter M; Körner, Christian Published in: Human Molecular Genetics DOI: 10.1093/hmg/ddq278 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2010 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Lübbehusen, J., Thiel, C., Rind, N., Ungar, D., Prinsen, B. H. C. M. T., de Koning, T. J., van Hasselt, P. M., & Körner, C. (2010). Fatal outcome due to deficiency of subunit 6 of the conserved oligomeric Golgi complex leading to a new type of congenital disorders of glycosylation. Human Molecular Genetics, 19(18), 3623-3633. https://doi.org/10.1093/hmg/ddq278 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. -
The 2Q37-Deletion Syndrome: an Update of the Clinical Spectrum Including Overweight, Brachydactyly and Behavioural Features in 14 New Patients
European Journal of Human Genetics (2013) 21, 602–612 & 2013 Macmillan Publishers Limited All rights reserved 1018-4813/13 www.nature.com/ejhg ARTICLE The 2q37-deletion syndrome: an update of the clinical spectrum including overweight, brachydactyly and behavioural features in 14 new patients Camille Leroy1,2,3, Emilie Landais1,2,4, Sylvain Briault5, Albert David6, Olivier Tassy7, Nicolas Gruchy8, Bruno Delobel9, Marie-Jose´ Gre´goire10, Bruno Leheup3,11, Laurence Taine12, Didier Lacombe12, Marie-Ange Delrue12, Annick Toutain13, Agathe Paubel13, Francine Mugneret14, Christel Thauvin-Robinet3,15, Ste´phanie Arpin13, Cedric Le Caignec6, Philippe Jonveaux3,10, Myle`ne Beri10, Nathalie Leporrier8, Jacques Motte16, Caroline Fiquet17,18, Olivier Brichet16, Monique Mozelle-Nivoix1,3, Pascal Sabouraud16, Nathalie Golovkine19, Nathalie Bednarek20, Dominique Gaillard1,2,3 and Martine Doco-Fenzy*,1,2,3,18 The 2q37 locus is one of the most commonly deleted subtelomeric regions. Such a deletion has been identified in 4100 patients by telomeric fluorescence in situ hybridization (FISH) analysis and, less frequently, by array-based comparative genomic hybridization (array-CGH). A recognizable ‘2q37-deletion syndrome’ or Albright’s hereditary osteodystrophy-like syndrome has been previously described. To better map the deletion and further refine this deletional syndrome, we formed a collaboration with the Association of French Language Cytogeneticists to collect 14 new intellectually deficient patients with a distal or interstitial 2q37 deletion characterized by FISH and array-CGH. Patients exhibited facial dysmorphism (13/14) and brachydactyly (10/14), associated with behavioural problems, autism or autism spectrum disorders of varying severity and overweight or obesity. The deletions in these 14 new patients measured from 2.6 to 8.8 Mb.