Golgi-Dependent Copper Homeostasis Sustains Synaptic Development and Mitochondrial Content

Total Page:16

File Type:pdf, Size:1020Kb

Golgi-Dependent Copper Homeostasis Sustains Synaptic Development and Mitochondrial Content Research Articles: Cellular/Molecular Golgi-Dependent Copper Homeostasis Sustains Synaptic Development and Mitochondrial Content https://doi.org/10.1523/JNEUROSCI.1284-20.2020 Cite as: J. Neurosci 2020; 10.1523/JNEUROSCI.1284-20.2020 Received: 22 May 2020 Revised: 2 October 2020 Accepted: 9 November 2020 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2020 the authors 1 2 Golgi-Dependent Copper Homeostasis Sustains Synaptic 3 Development and Mitochondrial Content. 4 5 Cortnie Hartwig*1, Gretchen Macías Méndez*2, Shatabdi Bhattacharjee*3, Alysia D. Vrailas- 6 Mortimer*4, Stephanie A. Zlatic1, Amanda A. H. Freeman5, Avanti Gokhale1, Mafalda Concilli6, 7 Erica Werner1, Christie Sapp Savas1, Samantha Rudin-Rush1, Laura Palmer1, Nicole Shearing1, 8 Lindsey Margewich4, Jacob McArthy4, Savanah Taylor4, Blaine Roberts7, Vladimir Lupashin8, 9 Roman S. Polishchuk6, Daniel N. Cox3, Ramon A. Jorquera2,9#, Victor Faundez1# 10 11 Abbreviated title: Copper Homeostasis Sustains Synaptic Mitochondria 12 13 14 Departments of Cell Biology1 and Biochemistry7, and the Center for the Study of Human Health5 USA, 15 30322, Emory University, Atlanta, Georgia, USA, 30322. Neuroscience Department, Universidad Central 16 del Caribe, Bayamon, Puerto Rico2. Neuroscience Institute, Center for Behavioral Neuroscience, Georgia 17 State University, Atlanta, Georgia 303023. School of Biological Sciences Illinois State University, Normal, 18 IL 6179014. Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy6. Department of 19 Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AK, 722058. Institute 20 of Biomedical Sciences, Santiago, Chile9. 21 22 #Address Correspondence to RJ ([email protected]) and VF ([email protected]) 23 * These authors contributed equally 24 25 Number of pages: 36 26 Number of figures: 10 plus 2 extended data 27 Number of words for abstract, introduction, and discussion: 153, 666, and 1490 28 29 Acknowledgements 30 This work was supported by grants from the National Institutes of Health 1RF1AG060285 to VF, 31 R01NS108778 to RJ, R15AR070505 to AVM, Telethon TIGEM-CBDM9 to RP, R01NS086082 to 32 DNC, R01GM083144 to VL, and 5K12GM000680-19 to CH. We are indebted to the Faundez lab 33 members for their comments. Stocks obtained from the Bloomington Drosophila Stock Center 34 (NIH P40OD018537) were used in this study. 35 36 Conflict of Interests 37 There are no interests to declare by all authors 2 38 Abstract 39 40 Rare genetic diseases preponderantly affect the nervous system causing 41 neurodegeneration to neurodevelopmental disorders. This is the case for both Menkes and 42 Wilson disease, arising from mutations in ATP7A and ATP7B, respectively. The ATP7A and 43 ATP7B proteins localize to the Golgi and regulate copper homeostasis. We demonstrate genetic 44 and biochemical interactions between ATP7 paralogs with the Conserved Oligomeric Golgi 45 complex, or COG complex, a Golgi apparatus vesicular tether. Disruption of Drosophila copper 46 homeostasis by ATP7 tissue-specific transgenic expression caused alterations in epidermis, 47 aminergic, sensory, and motor neurons. Prominent among neuronal phenotypes was a 48 decreased mitochondrial content at synapses, a phenotype that paralleled with alterations of 49 synaptic morphology, transmission, and plasticity. These neuronal and synaptic phenotypes 50 caused by transgenic expression of ATP7 were rescued by downregulation of COG complex 51 subunits. We conclude that the integrity of Golgi-dependent copper homeostasis mechanisms, 52 requiring ATP7 and COG, are necessary to maintain mitochondria functional integrity and 53 localization to synapses. 54 55 56 57 Significance Statement 58 59 Menkes and Wilson disease affect copper homeostasis and characteristically afflict the 60 nervous system. However, their molecular neuropathology mechanisms remain mostly 61 unexplored. We demonstrate that copper homeostasis in neurons is maintained by two factors 62 that localize to the Golgi apparatus, ATP7 and the COG complex. Disruption of these 63 mechanisms affect mitochondrial function and localization to synapses as well as 64 neurotransmission and synaptic plasticity. These findings suggest communication between the 65 Golgi apparatus and mitochondria through homeostatically controlled cellular copper levels and 66 copper-dependent enzymatic activities in both organelles. 67 68 69 70 71 72 73 74 75 2 3 76 77 Introduction 78 Rare diseases include genetic maladies that disproportionately affect the nervous 79 system with phenotypes ranging from neurodegeneration to behavioral impairments (Sanders 80 et al., 2019; Lee et al., 2020). The vast collection of mutated human genes and neurological 81 symptomatology offers a wide field for the discovery of novel cellular mechanisms necessary 82 for neuronal function. Here we focus on rare neurological diseases affecting ATP7A, ATP7B, and 83 the COG complex subunit genes, whose products localize to the Golgi complex at steady state 84 (Kaler, 2011; Polishchuk and Lutsenko, 2013; Climer et al., 2015). We report that these ATP7 85 paralogs and the COG complex converge to maintain copper homeostasis and, unexpectedly, 86 mitochondrial distribution in neurons. 87 Mutations in the ATP7A cause Menkes disease, a systemic copper-depletion affliction 88 caused by intestinal copper malabsorption. Menkes is characterized by childhood systemic and 89 neurological phenotypes. Menkes’ brain phenotypes result from this systemic copper depletion 90 and span from intellectual disability to widespread gray matter neurodegeneration. (Menkes, 91 1988, 1999; Kaler, 2011; Zlatic et al., 2015; Hartwig et al., 2019; Guthrie et al., 2020). These 92 Menkes disease phenotype are caused in part by defects in the activity of copper-dependent 93 enzymes that either traverse the Golgi complex or localize to mitochondria (Lutsenko et al., 94 2007; Zlatic et al., 2015). In contrast, with the systemic depletion of copper observed in 95 Menkes patients, cell-autonomous ATP7A gene defects cause a cellular overload of copper due 96 to impaired copper efflux from cells (Camakaris et al., 1980; Morgan et al., 2019). This ATP7A 97 cell-autonomous copper phenotype can be recapitulated systemically in Wilson disease. Wilson 98 disease is caused by mutations in the ATP7A paralogue, ATP7B, a copper transporter gene 99 expressed preferentially in the liver. Wilson disease leads to organismal copper overload due to 100 defective copper excretion by the liver. This systemic copper overload causes liver damage, 101 psychiatric symptoms, and lenticular neurodegeneration at late stages of disease (Lutsenko et 102 al., 2007; Kaler, 2011). 103 ATP7A and ATP7B are P-type ATPases residing in the Golgi complex at steady state 104 where they contribute to cellular copper homeostasis. These ATPases sequester copper into the 105 Golgi lumen away from the cytoplasm by a mechanism that requires ATP hydrolysis to drive 106 copper transport. Furthermore, after a copper challenge, these ATPases are translocated to the 107 plasma membrane where they pump copper outside of the cell (Petris et al., 1996; Kaler, 2011; 108 Polishchuk and Lutsenko, 2013; Polishchuk et al., 2014). In turn, extracellular copper is taken up 109 by the activity of a plasma membrane copper transporter CTR1 (Kuo et al., 2001; Lutsenko et 110 al., 2007; Kaler, 2011). The expression of ATP7A and CTR1 is controlled by the activity of the 111 COG complex, which tethers vesicles to the Golgi complex (Comstra et al., 2017). The COG 112 complex is an octamer localized to the Golgi apparatus and required for incoming vesicle fusion 113 with the Golgi. Elimination of any one of the eight COG subunits leads to Golgi fragmentation 3 4 114 due to destabilization and degradation of the whole octamer (Ungar et al., 2002; Zolov and 115 Lupashin, 2005; Climer et al., 2015; Bailey Blackburn et al., 2016). Human mutations in seven of 116 the eight COG subunits cause a group of diseases collectively known as congenital disorder of 117 glycosylation type II (Wu et al., 2004; Kranz et al., 2007; Foulquier, 2009; Climer et al., 2015). 118 These rare disorders are characterized, in part, by neurodevelopmental pathology and 119 behavioral phenotypes which are loosely similar to neurological phenotypes in Menkes disease. 120 However, whether congenital disorder of glycosylation type II neurological phenotypes may be 121 linked to copper metabolism remains unanswered (Climer et al., 2018). 122 The convergence of neurological, neurodevelopmental, and psychiatric phenotypes in 123 these three diseases with proteins localizing to the Golgi complex, point to fundamental, 124 neuronal mechanisms necessary to maintain cellular copper homeostasis. These phenotypes 125 raise the question: how are the activities of copper transporters and the COG complex 126 coordinated to maintain copper homeostasis in cells, tissues, and organisms? Here we 127 demonstrate that ATP7 paralogues and the COG complex, both Golgi localized machineries, 128 control synapse development, neurotransmission, and the subcellular localization of 129 mitochondria at synapses. 130 4 5 131 MATERIAL AND METHODS 132 133
Recommended publications
  • Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.
    [Show full text]
  • Large-Scale Rnai Screening Uncovers New Therapeutic Targets in the Human Parasite
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.05.935833; this version posted February 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Large-scale RNAi screening uncovers new therapeutic targets in the human parasite 2 Schistosoma mansoni 3 4 Jipeng Wang1*, Carlos Paz1*, Gilda Padalino2, Avril Coghlan3, Zhigang Lu3, Irina Gradinaru1, 5 Julie N.R. Collins1, Matthew Berriman3, Karl F. Hoffmann2, James J. Collins III1†. 6 7 8 1Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas 75390 9 2Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, 10 Aberystwyth, Wales, UK. 11 3Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK 12 *Equal Contribution 13 14 15 16 17 18 19 20 21 22 23 †To whom correspondence should be addressed 24 [email protected] 25 UT Southwestern Medical Center 26 Department of Pharmacology 27 6001 Forest Park. Rd. 28 Dallas, TX 75390 29 United States of America bioRxiv preprint doi: https://doi.org/10.1101/2020.02.05.935833; this version posted February 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 30 ABSTRACT 31 Schistosomes kill 250,000 people every year and are responsible for serious morbidity in 240 32 million of the world’s poorest people.
    [Show full text]
  • Open Data for Differential Network Analysis in Glioma
    International Journal of Molecular Sciences Article Open Data for Differential Network Analysis in Glioma , Claire Jean-Quartier * y , Fleur Jeanquartier y and Andreas Holzinger Holzinger Group HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz 2/V, 8036 Graz, Austria; [email protected] (F.J.); [email protected] (A.H.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 27 October 2019; Accepted: 3 January 2020; Published: 15 January 2020 Abstract: The complexity of cancer diseases demands bioinformatic techniques and translational research based on big data and personalized medicine. Open data enables researchers to accelerate cancer studies, save resources and foster collaboration. Several tools and programming approaches are available for analyzing data, including annotation, clustering, comparison and extrapolation, merging, enrichment, functional association and statistics. We exploit openly available data via cancer gene expression analysis, we apply refinement as well as enrichment analysis via gene ontology and conclude with graph-based visualization of involved protein interaction networks as a basis for signaling. The different databases allowed for the construction of huge networks or specified ones consisting of high-confidence interactions only. Several genes associated to glioma were isolated via a network analysis from top hub nodes as well as from an outlier analysis. The latter approach highlights a mitogen-activated protein kinase next to a member of histondeacetylases and a protein phosphatase as genes uncommonly associated with glioma. Cluster analysis from top hub nodes lists several identified glioma-associated gene products to function within protein complexes, including epidermal growth factors as well as cell cycle proteins or RAS proto-oncogenes.
    [Show full text]
  • (Siberian Roe Deer and Grey Brocket Deer) Unravelled by Chromosome-Specific DNA Sequencing Alexey I
    Nova Southeastern University NSUWorks Biology Faculty Articles Department of Biological Sciences 8-11-2016 Contrasting Origin of B Chromosomes in Two Cervids (Siberian Roe Deer and Grey Brocket Deer) Unravelled by Chromosome-Specific DNA Sequencing Alexey I. Makunin Institute of Molecular and Cell Biology - Novosibirsk, Russia; St. Petersburg State University - Russia Ilya G. Kichigin Institute of Molecular and Cell Biology - Novosibirsk, Russia Denis M. Larkin University of London - United Kingdom Patricia C. M. O'Brien Cambridge University - United Kingdom Malcolm A. Ferguson-Smith University of Cambridge - United Kingdom See next page for additional authors Follow this and additional works at: https://nsuworks.nova.edu/cnso_bio_facarticles Part of the Animal Sciences Commons, and the Genetics and Genomics Commons NSUWorks Citation Makunin, Alexey I.; Ilya G. Kichigin; Denis M. Larkin; Patricia C. M. O'Brien; Malcolm A. Ferguson-Smith; Fengtang Yang; Anastasiya A. Proskuryakova; Nadezhda V. Vorobieva; Ekaterina N. Chernyaeva; Stephen J. O'Brien; Alexander S. Graphodatsky; and Vladimir Trifonov. 2016. "Contrasting Origin of B Chromosomes in Two Cervids (Siberian Roe Deer and Grey Brocket Deer) Unravelled by Chromosome-Specific DNA eS quencing." BMC Genomics 17, (618): 1-14. doi:10.1186/s12864-016-2933-6. This Article is brought to you for free and open access by the Department of Biological Sciences at NSUWorks. It has been accepted for inclusion in Biology Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Authors Alexey I. Makunin, Ilya G. Kichigin, Denis M. Larkin, Patricia C. M. O'Brien, Malcolm A. Ferguson-Smith, Fengtang Yang, Anastasiya A.
    [Show full text]
  • Golgi-Dependent Copper Homeostasis Sustains Synaptic Development and Mitochondrial Content
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.22.110627; this version posted May 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Golgi-Dependent Copper Homeostasis Sustains Synaptic Development and Mitochondrial Content. Cortnie Hartwig*1, Gretchen Macías Méndez*2, Shatabdi Bhattacharjee*3, Alysia D. Vrailas- Mortimer*4, Stephanie A. Zlatic1, Amanda A. H. Freeman5, Avanti Gokhale1, Mafalda Concilli6, Christie Sapp Savas1, Samantha Rudin-Rush1, Laura Palmer1, Nicole Shearing1, Lindsey Margewich4, Jacob McArthy4, Savanah Taylor4, Blaine Roberts7, Vladimir Lupashin8, Roman S. Polishchuk6, Daniel N. Cox3, Ramon A. Jorquera2,9#, Victor Faundez1# Abbreviated title: Copper Homeostasis Sustains Synaptic Mitochondria Departments of Cell Biology1 and Biochemistry7, and the Center for the Study of Human Health5 USA, 30322, Emory University, Atlanta, Georgia, USA, 30322. Neuroscience Department, Universidad Central del Caribe, Bayamon, Puerto Rico2. Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 303023. School of Biological Sciences Illinois State University, Normal, IL 6179014. Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy6. Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AK, 722058. Institute of Biomedical Sciences, Santiago, Chile9. #Address Correspondence to RJ ([email protected]) and VF ([email protected]) * These authors contributed equally Number of pages: 36 Number of figures: 9 plus 2 extended data Number of words for abstract, introduction, and discussion: 149, 650, and 1500 Acknowledgements This work was supported by grants from the National Institutes of Health 1RF1AG060285 to VF, R01NS108778 to RJ, R15AR070505 to AVM, TelethonTIGEM-CBDM9 to RP, R01NS086082 to DNC, R01GM083144 to VL, and 5K12GM000680-19 to CH.
    [Show full text]
  • Simpintlists Package
    simpIntLists Package May 20, 2021 R topics documented: simpIntLists-package . .1 ArabidopsisBioGRIDInteractionEntrezId . .4 ArabidopsisBioGRIDInteractionOfficial . .6 ArabidopsisBioGRIDInteractionUniqueId . .7 C.ElegansBioGRIDInteractionEntrezId . .9 C.ElegansBioGRIDInteractionOfficial . 11 C.ElegansBioGRIDInteractionUniqueId . 13 findInteractionList . 14 FruitFlyBioGRIDInteractionEntrezId . 16 FruitFlyBioGRIDInteractionOfficial . 18 FruitFlyBioGRIDInteractionUniqueId . 19 HumanBioGRIDInteractionEntrezId . 21 HumanBioGRIDInteractionOfficial . 22 HumanBioGRIDInteractionUniqueId . 23 MouseBioGRIDInteractionEntrezId . 24 MouseBioGRIDInteractionOfficial . 25 MouseBioGRIDInteractionUniqueId . 27 S.PombeBioGRIDInteractionEntrezId . 28 S.PombeBioGRIDInteractionOfficial . 30 S.PombeBioGRIDInteractionUniqueId . 33 YeastBioGRIDInteractionEntrezId . 35 YeastBioGRIDInteractionOfficial . 38 YeastBioGRIDInteractionUniqueId . 41 Index 46 simpIntLists-package The package contains BioGRID interactions for various organ- isms in a simple format Description The package contains BioGRID interactions for arabidopsis(thale cress), c.elegans, fruit fly, human, mouse, yeast( budding yeast ) and S.pombe (fission yeast) . Entrez ids, official names and unique ids can be used to find proteins. 1 2 simpIntLists-package Details simpIntLists-package 3 Package: simpIntLists Type: Package Version: 1.0 Date: 2011-01-18 License: GPL version 2 or newer LazyLoad: yes Author(s) Kircicegi KORKMAZ, Volkan ATALAY, Rengul CETIN ATALAY Maintainer: Kircicegi KORKMAZ <[email protected]> References
    [Show full text]
  • Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome
    CJASN ePress. Published on November 10, 2017 as doi: 10.2215/CJN.04120417 Article Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome Jillian K. Warejko, Weizhen Tan, Ankana Daga, David Schapiro, Jennifer A. Lawson, Shirlee Shril, Svjetlana Lovric, Shazia Ashraf, Jia Rao, Tobias Hermle, Tilman Jobst-Schwan, Eugen Widmeier, Amar J. Majmundar, Ronen Schneider, Heon Yung Gee, J. Magdalena Schmidt, Asaf Vivante, Amelie T. van der Ven, Hadas Ityel, Jing Chen, Carolin E. Sadowski, Stefan Kohl, Werner L. Pabst, Makiko Nakayama, Michael J.G. Somers, Nancy M. Rodig, Ghaleb Daouk, Michelle Baum, Deborah R. Stein, Michael A. Ferguson, Avram Z. Traum, Neveen A. Soliman, Jameela A. Kari, Sherif El Desoky, Hanan Fathy, Martin Zenker, Sevcan A. Bakkaloglu, Dominik Mu¨ller, Aytul Noyan, Fatih Ozaltin, Due to the number of Melissa A. Cadnapaphornchai, Seema Hashmi, Jeffrey Hopcian, Jeffrey B. Kopp, Nadine Benador, Detlef Bockenhauer, contributing authors, the affiliations are Radovan Bogdanovic, Natasˇa Stajic, Gil Chernin, Robert Ettenger, Henry Fehrenbach, Markus Kemper, provided in the Reyner Loza Munarriz, Ludmila Podracka, Rainer Bu¨scher, Erkin Serdaroglu, Velibor Tasic, Shrikant Mane, Supplemental Richard P. Lifton, Daniela A. Braun, and Friedhelm Hildebrandt Material. Correspondence: Abstract Dr. Friedhelm Background and objectives Steroid-resistant nephrotic syndrome overwhelmingly progresses to ESRD. More Hildebrandt, Division than 30 monogenic genes have been identified to cause steroid-resistant nephrotic syndrome. We previously of Nephrology, detected causative mutations using targeted panel sequencing in 30% of patients with steroid-resistant nephrotic Department of Medicine, Boston syndrome. Panel sequencing has a number of limitations when compared with whole exome sequencing. We Children’s Hospital, employed whole exome sequencing to detect monogenic causes of steroid-resistant nephrotic syndrome in an 300 Longwood international cohort of 300 families.
    [Show full text]
  • University of Groningen Fatal Outcome Due to Deficiency of Subunit 6
    University of Groningen Fatal outcome due to deficiency of subunit 6 of the conserved oligomeric Golgi complex leading to a new type of congenital disorders of glycosylation Lübbehusen, Jürgen; Thiel, Christian; Rind, Nina; Ungar, Daniel; Prinsen, Berthil H C M T; de Koning, Tom J; van Hasselt, Peter M; Körner, Christian Published in: Human Molecular Genetics DOI: 10.1093/hmg/ddq278 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2010 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Lübbehusen, J., Thiel, C., Rind, N., Ungar, D., Prinsen, B. H. C. M. T., de Koning, T. J., van Hasselt, P. M., & Körner, C. (2010). Fatal outcome due to deficiency of subunit 6 of the conserved oligomeric Golgi complex leading to a new type of congenital disorders of glycosylation. Human Molecular Genetics, 19(18), 3623-3633. https://doi.org/10.1093/hmg/ddq278 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal.
    [Show full text]
  • Detection of H3k4me3 Identifies Neurohiv Signatures, Genomic
    viruses Article Detection of H3K4me3 Identifies NeuroHIV Signatures, Genomic Effects of Methamphetamine and Addiction Pathways in Postmortem HIV+ Brain Specimens that Are Not Amenable to Transcriptome Analysis Liana Basova 1, Alexander Lindsey 1, Anne Marie McGovern 1, Ronald J. Ellis 2 and Maria Cecilia Garibaldi Marcondes 1,* 1 San Diego Biomedical Research Institute, San Diego, CA 92121, USA; [email protected] (L.B.); [email protected] (A.L.); [email protected] (A.M.M.) 2 Departments of Neurosciences and Psychiatry, University of California San Diego, San Diego, CA 92103, USA; [email protected] * Correspondence: [email protected] Abstract: Human postmortem specimens are extremely valuable resources for investigating trans- lational hypotheses. Tissue repositories collect clinically assessed specimens from people with and without HIV, including age, viral load, treatments, substance use patterns and cognitive functions. One challenge is the limited number of specimens suitable for transcriptional studies, mainly due to poor RNA quality resulting from long postmortem intervals. We hypothesized that epigenomic Citation: Basova, L.; Lindsey, A.; signatures would be more stable than RNA for assessing global changes associated with outcomes McGovern, A.M.; Ellis, R.J.; of interest. We found that H3K27Ac or RNA Polymerase (Pol) were not consistently detected by Marcondes, M.C.G. Detection of H3K4me3 Identifies NeuroHIV Chromatin Immunoprecipitation (ChIP), while the enhancer H3K4me3 histone modification was Signatures, Genomic Effects of abundant and stable up to the 72 h postmortem. We tested our ability to use H3K4me3 in human Methamphetamine and Addiction prefrontal cortex from HIV+ individuals meeting criteria for methamphetamine use disorder or not Pathways in Postmortem HIV+ Brain (Meth +/−) which exhibited poor RNA quality and were not suitable for transcriptional profiling.
    [Show full text]
  • An Integrative Genomic Analysis of the Longshanks Selection Experiment for Longer Limbs in Mice
    bioRxiv preprint doi: https://doi.org/10.1101/378711; this version posted August 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title: 2 An integrative genomic analysis of the Longshanks selection experiment for longer limbs in mice 3 Short Title: 4 Genomic response to selection for longer limbs 5 One-sentence summary: 6 Genome sequencing of mice selected for longer limbs reveals that rapid selection response is 7 due to both discrete loci and polygenic adaptation 8 Authors: 9 João P. L. Castro 1,*, Michelle N. Yancoskie 1,*, Marta Marchini 2, Stefanie Belohlavy 3, Marek 10 Kučka 1, William H. Beluch 1, Ronald Naumann 4, Isabella Skuplik 2, John Cobb 2, Nick H. 11 Barton 3, Campbell Rolian2,†, Yingguang Frank Chan 1,† 12 Affiliations: 13 1. Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany 14 2. University of Calgary, Calgary AB, Canada 15 3. IST Austria, Klosterneuburg, Austria 16 4. Max Planck Institute for Cell Biology and Genetics, Dresden, Germany 17 Corresponding author: 18 Campbell Rolian 19 Yingguang Frank Chan 20 * indicates equal contribution 21 † indicates equal contribution 22 Abstract: 23 Evolutionary studies are often limited by missing data that are critical to understanding the 24 history of selection. Selection experiments, which reproduce rapid evolution under controlled 25 conditions, are excellent tools to study how genomes evolve under strong selection. Here we 1 bioRxiv preprint doi: https://doi.org/10.1101/378711; this version posted August 19, 2018.
    [Show full text]
  • (Siberian Roe Deer and Grey Brocket Deer) Unravelled by Chromosome- Specific DNA Sequencing Alexey I
    Makunin et al. BMC Genomics (2016) 17:618 DOI 10.1186/s12864-016-2933-6 RESEARCH ARTICLE Open Access Contrasting origin of B chromosomes in two cervids (Siberian roe deer and grey brocket deer) unravelled by chromosome- specific DNA sequencing Alexey I. Makunin1,2*, Ilya G. Kichigin1, Denis M. Larkin3, Patricia C. M. O’Brien4, Malcolm A. Ferguson-Smith4, Fengtang Yang5, Anastasiya A. Proskuryakova1, Nadezhda V. Vorobieva1, Ekaterina N. Chernyaeva2, Stephen J. O’Brien2, Alexander S. Graphodatsky1,6 and Vladimir A. Trifonov1,6 Abstract Background: B chromosomes are dispensable and variable karyotypic elements found in some species of animals, plants and fungi. They often originate from duplications and translocations of host genomic regions or result from hybridization. In most species, little is known about their DNA content. Here we perform high-throughput sequencing and analysis of B chromosomes of roe deer and brocket deer, the only representatives of Cetartiodactyla known to have B chromosomes. Results: In this study we developed an approach to identify genomic regions present on chromosomes by high-throughput sequencing of DNA generated from flow-sorted chromosomes using degenerate-oligonucleotide- primed PCR. Application of this method on small cattle autosomes revealed a previously described KIT gene region translocation associated with colour sidedness. Implementing this approach to B chromosomes from two cervid species, Siberian roe deer (Capreolus pygargus) and grey brocket deer (Mazama gouazoubira), revealed dramatically different genetic content: roe deer B chromosomes consisted of two duplicated genomic regions (a total of 1. 42-1.98 Mbp) involving three genes, while grey brocket deer B chromosomes contained 26 duplicated regions (a total of 8.28-9.31 Mbp) with 34 complete and 21 partial genes, including KIT and RET protooncogenes, previously found on supernumerary chromosomes in canids.
    [Show full text]
  • Genetic Testing for Developmental Disabilities, Intellectual Disability, and Autism Spectrum Disorder Technical Brief Number 23
    Technical Brief Number 23 Genetic Testing for Developmental Disabilities, Intellectual Disability, and Autism Spectrum Disorder Technical Brief Number 23 Genetic Testing for Developmental Disabilities, Intellectual Disability, and Autism Spectrum Disorder Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 540 Gaither Road Rockville, MD 20850 www.ahrq.gov Contract No. 290-2012-00011-I Prepared by: ECRI Institute–Penn Medicine Evidence-based Practice Center Plymouth Meeting, PA Investigators: Fang Sun, M.D., Ph.D. Jeff Oristaglio, Ph.D. Susan E. Levy, M.D., M.P.H. Hakon Hakonarson, M.D., Ph.D. Nancy Sullivan, B.A. Joann Fontanarosa, Ph.D. Karen M. Schoelles, M.D., M.S., FACP AHRQ Publication No. 15-EHC024-EF June 2015 This report is based on research conducted by the ECRI–Penn Medicine AHRQ Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (290-2012-00011-I). The findings and conclusions in this document are those of the authors, who are responsible for its contents; the findings and conclusions do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services. The information in this report is intended to help health care decisionmakers—patients and clinicians, health system leaders, and policymakers, among others—make well-informed decisions and thereby improve the quality of health care services. This report is not intended to be a substitute for the application of clinical judgment.
    [Show full text]