MATH 304 Linear Algebra Lecture 20: Inner Product Spaces. Orthogonal Sets. Norm the Notion of Norm Generalizes the Notion of Length of a Vector in Rn

Total Page:16

File Type:pdf, Size:1020Kb

MATH 304 Linear Algebra Lecture 20: Inner Product Spaces. Orthogonal Sets. Norm the Notion of Norm Generalizes the Notion of Length of a Vector in Rn MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. Norm The notion of norm generalizes the notion of length of a vector in Rn. Definition. Let V be a vector space. A function α : V → R is called a norm on V if it has the following properties: (i) α(x) ≥ 0, α(x) = 0 only for x = 0 (positivity) (ii) α(rx) = |r| α(x) for all r ∈ R (homogeneity) (iii) α(x + y) ≤ α(x) + α(y) (triangle inequality) Notation. The norm of a vector x ∈ V is usually denoted kxk. Different norms on V are distinguished by subscripts, e.g., kxk1 and kxk2. n n Examples. V = R , x = (x1, x2,..., xn) ∈ R . • kxk∞ = max(|x1|, |x2|,..., |xn|). p p p 1/p • kxkp = |x1| + |x2| + ··· + |xn| , p ≥ 1. Examples. V = C[a, b], f : [a, b] → R. • kf k∞ = max |f (x)|. a≤x≤b b 1/p p • kf kp = |f (x)| dx , p ≥ 1. Za Normed vector space Definition. A normed vector space is a vector space endowed with a norm. The norm defines a distance function on the normed vector space: dist(x, y) = kx − yk. Then we say that a sequence x1, x2,... converges to a vector x if dist(x, xn) → 0 as n → ∞. Also, we say that a vector x is a good approximation of a vector x0 if dist(x, x0) is small. Inner product The notion of inner product generalizes the notion of dot product of vectors in Rn. Definition. Let V be a vector space. A function β : V × V → R, usually denoted β(x, y) = hx, yi, is called an inner product on V if it is positive, symmetric, and bilinear. That is, if (i) hx, xi≥ 0, hx, xi = 0 only for x = 0 (positivity) (ii) hx, yi = hy, xi (symmetry) (iii) hrx, yi = rhx, yi (homogeneity) (iv) hx + y, zi = hx, zi + hy, zi (distributive law) An inner product space is a vector space endowed with an inner product. Examples. V = Rn. • hx, yi = x · y = x1y1 + x2y2 + ··· + xnyn. • hx, yi = d1x1y1 + d2x2y2 + ··· + dnxnyn, where d1, d2,..., dn > 0. • hx, yi = (Dx) · (Dy), where D is an invertible n×n matrix. Problem. Find an inner product on R2 such that he1, e1i = 2, he2, e2i = 3, and he1, e2i = −1, where e1 = (1, 0), e2 = (0, 1). 2 Let x = (x1, x2), y = (y1, y2) ∈ R . Then x = x1e1 + x2e2, y = y1e1 + y2e2. Using bilinearity, we obtain hx, yi = hx1e1 + x2e2, y1e1 + y2e2i = x1he1, y1e1 + y2e2i + x2he2, y1e1 + y2e2i = x1y1he1, e1i + x1y2he1, e2i + x2y1he2, e1i + x2y2he2, e2i = 2x1y1 − x1y2 − x2y1 + 3x2y2. It remains to check that hx, xi > 0 for x =6 0. 2 2 2 2 2 hx, xi = 2x1 − 2x1x2 + 3x2 =(x1 − x2) + x1 + 2x2 . Example. V = Mm,n(R), space of m×n matrices. • hA, Bi = trace (ABT ). m n If A = (aij ) and B = (bij ), then hA, Bi = aij bij . i=1 j=1 P P Examples. V = C[a, b]. b • hf , gi = f (x)g(x) dx. Za b • hf , gi = f (x)g(x)w(x) dx, Za where w is bounded, piecewise continuous, and w > 0 everywhere on [a, b]. w is called the weight function. Theorem Suppose hx, yi is an inner product on a vector space V . Then hx, yi2 ≤hx, xihy, yi for all x, y ∈ V . Proof: For any t ∈ R let vt = x + ty. Then 2 hvt, vti = hx, xi + 2thx, yi + t hy, yi. The right-hand side is a quadratic polynomial in t (provided that y =6 0). Since hvt, vti≥ 0 for all t, the discriminant D is nonpositive. But D = 4hx, yi2 − 4hx, xihy, yi. Cauchy-Schwarz Inequality: |hx, yi| ≤ hx, xi hy, yi. p p Cauchy-Schwarz Inequality: |hx, yi| ≤ hx, xi hy, yi. p p Corollary 1 |x · y|≤|x||y| for all x, y ∈ Rn. Equivalently, for all xi , yi ∈ R, 2 2 2 2 2 (x1y1 + ··· + xnyn) ≤ (x1 + ··· + xn )(y1 + ··· + yn ). Corollary 2 For any f , g ∈ C[a, b], b 2 b b f (x)g(x) dx ≤ |f (x)|2 dx · |g(x)|2 dx. Za Za Za Norms induced by inner products Theorem Suppose hx, yi is an inner product on a vector space V . Then kxk = hx, xi is a norm. Proof: Positivity is obvious. Homogeneity:p krxk = hrx, rxi = r 2hx, xi = |r| hx, xi. Triangle inequalityp (followsp from Cauchy-Schwarz’s):p kx + yk2 = hx + y, x + yi = hx, xi + hx, yi + hy, xi + hy, yi ≤hx, xi + |hx, yi| + |hy, xi| + hy, yi ≤ kxk2 + 2kxk kyk + kyk2 = (kxk + kyk)2. Examples. • The length of a vector in Rn, 2 2 2 |x| = x1 + x2 + ··· + xn , is the norm inducedp by the dot product x · y = x1y1 + x2y2 + ··· + xnyn. b 1/2 2 • The norm kf k2 = |f (x)| dx on the Za vector space C[a, b] is induced by the inner product b hf , gi = f (x)g(x) dx. Za Angle Since |hx, yi| ≤ kxk kyk, we can define the angle between nonzero vectors in any vector space with an inner product (and induced norm): hx, yi ∠(x, y) = arccos . kxk kyk Then hx, yi = kxk kyk cos ∠(x, y). In particular, vectors x and y are orthogonal (denoted x ⊥ y) if hx, yi = 0. x x + y y Pythagorean Law: x ⊥ y =⇒ kx + yk2 = kxk2 + kyk2 Proof: kx + yk2 = hx + y, x + yi = hx, xi + hx, yi + hy, xi + hy, yi = hx, xi + hy, yi = kxk2 + kyk2. y x − y x x + y x y Parallelogram Identity: kx + yk2 + kx − yk2 = 2kxk2 + 2kyk2 Proof: kx+yk2 = hx+y, x+yi = hx, xi + hx, yi + hy, xi + hy, yi. Similarly, kx−yk2 = hx, xi−hx, yi−hy, xi + hy, yi. Then kx+yk2 + kx−yk2 = 2hx, xi + 2hy, yi = 2kxk2 + 2kyk2. Orthogonal sets Let V be an inner product space with an inner product h·, ·i and the induced norm k · k. Definition. A nonempty set S ⊂ V of nonzero vectors is called an orthogonal set if all vectors in S are mutually orthogonal. That is, 0 ∈/ S and hx, yi = 0 for any x, y ∈ S, x =6 y. An orthogonal set S ⊂ V is called orthonormal if kxk = 1 for any x ∈ S. Remark. Vectors v1, v2,..., vk ∈ V form an orthonormal set if and only if 1 if i = j hv , v i = i j 0 if i =6 j Examples. • V = Rn, hx, yi = x · y. The standard basis e1 = (1, 0, 0,..., 0), e2 = (0, 1, 0,..., 0), . , en = (0, 0, 0,..., 1). It is an orthonormal set. • V = R3, hx, yi = x · y. v1 = (3, 5, 4), v2 = (3, −5, 4), v3 = (4, 0, −3). v1 · v2 = 0, v1 · v3 = 0, v2 · v3 = 0, v1 · v1 = 50, v2 · v2 = 50, v3 · v3 = 25. Thus the set {v1, v2, v3} is orthogonal but not orthonormal. An orthonormal set is formed by v1 v2 1 2 normalized vectors w = kv1k, w = kv2k, v3 3 w = kv3k. π • V = C[−π, π], hf , gi = f (x)g(x) dx. Z−π f1(x) = sin x, f2(x) = sin 2x, ..., fn(x) = sin nx, ... π π if m = n hfm, fni = sin(mx)sin(nx) dx = −π 0 if m =6 n Z Thus the set {f1, f2, f3,... } is orthogonal but not orthonormal. It is orthonormal with respect to a scaled inner product 1 π hhf , gii = f (x)g(x) dx. π Z−π Orthogonality =⇒ linear independence Theorem Suppose v1, v2,..., vk are nonzero vectors that form an orthogonal set. Then v1, v2,..., vk are linearly independent. Proof: Suppose t1v1 + t2v2 + ··· + tk vk = 0 for some t1, t2,..., tk ∈ R. Then for any index 1 ≤ i ≤ k we have ht1v1 + t2v2 + ··· + tk vk , vi i = h0, vi i = 0. =⇒ t1hv1, vi i + t2hv2, vi i + ··· + tk hvk , vi i = 0 By orthogonality, ti hvi , vi i = 0 =⇒ ti = 0. Orthonormal bases Let v1, v2,..., vn be an orthonormal basis for an inner product space V . Theorem Let x = x1v1 + x2v2 + ··· + xnvn and y = y1v1 + y2v2 + ··· + ynvn, where xi , yj ∈ R. Then (i) hx, yi = x1y1 + x2y2 + ··· + xnyn, 2 2 2 (ii) kxk = x1 + x2 + ··· + xn . Proof: (ii) followsp from (i) when y = x. n n n n hx, yi = xi vi , yj vj = xi vi , yj vj * i=1 j=1 + i=1 * j=1 + X n nX Xn X = xi yj hvi , vj i = xi yi . i=1 j=1 i=1 X X X Orthogonal projection Theorem Let V be an inner product space and V0 be a finite-dimensional subspace of V . Then any vector x ∈ V is uniquely represented as x = p + o, where p ∈ V0 and o ⊥ V0. The component p is the orthogonal projection of the vector x onto the subspace V0. We have kok = kx − pk = min kx − vk. v∈V0 That is, the distance from x to the subspace V0 is kok. x o p V0 Let V be an inner product space. Let p be the orthogonal projection of a vector x ∈ V onto a finite-dimensional subspace V0. If V0 is a one-dimensional subspace spanned by a hx, vi vector v then p = v. hv, vi If v1, v2,..., vn is an orthogonal basis for V0 then hx, v1i hx, v2i hx, vni p = v1 + v2 + ··· + vn. hv1, v1i hv2, v2i hvn, vni n hx, vj i hx, vi i Indeed, hp, vi i = hvj , vi i = hvi , vi i = hx, vi i hvj , vj i hvi , vi i j=1 X =⇒ hx−p, vi i =0 =⇒ x−p ⊥ vi =⇒ x−p ⊥ V0..
Recommended publications
  • On the Bicoset of a Bivector Space
    International J.Math. Combin. Vol.4 (2009), 01-08 On the Bicoset of a Bivector Space Agboola A.A.A.† and Akinola L.S.‡ † Department of Mathematics, University of Agriculture, Abeokuta, Nigeria ‡ Department of Mathematics and computer Science, Fountain University, Osogbo, Nigeria E-mail: [email protected], [email protected] Abstract: The study of bivector spaces was first intiated by Vasantha Kandasamy in [1]. The objective of this paper is to present the concept of bicoset of a bivector space and obtain some of its elementary properties. Key Words: bigroup, bivector space, bicoset, bisum, direct bisum, inner biproduct space, biprojection. AMS(2000): 20Kxx, 20L05. §1. Introduction and Preliminaries The study of bialgebraic structures is a new development in the field of abstract algebra. Some of the bialgebraic structures already developed and studied and now available in several literature include: bigroups, bisemi-groups, biloops, bigroupoids, birings, binear-rings, bisemi- rings, biseminear-rings, bivector spaces and a host of others. Since the concept of bialgebraic structure is pivoted on the union of two non-empty subsets of a given algebraic structure for example a group, the usual problem arising from the union of two substructures of such an algebraic structure which generally do not form any algebraic structure has been resolved. With this new concept, several interesting algebraic properties could be obtained which are not present in the parent algebraic structure. In [1], Vasantha Kandasamy initiated the study of bivector spaces. Further studies on bivector spaces were presented by Vasantha Kandasamy and others in [2], [4] and [5]. In the present work however, we look at the bicoset of a bivector space and obtain some of its elementary properties.
    [Show full text]
  • Introduction to Linear Bialgebra
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of New Mexico University of New Mexico UNM Digital Repository Mathematics and Statistics Faculty and Staff Publications Academic Department Resources 2005 INTRODUCTION TO LINEAR BIALGEBRA Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy K. Ilanthenral Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Analysis Commons, Discrete Mathematics and Combinatorics Commons, and the Other Mathematics Commons Recommended Citation Smarandache, Florentin; W.B. Vasantha Kandasamy; and K. Ilanthenral. "INTRODUCTION TO LINEAR BIALGEBRA." (2005). https://digitalrepository.unm.edu/math_fsp/232 This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. INTRODUCTION TO LINEAR BIALGEBRA W. B. Vasantha Kandasamy Department of Mathematics Indian Institute of Technology, Madras Chennai – 600036, India e-mail: [email protected] web: http://mat.iitm.ac.in/~wbv Florentin Smarandache Department of Mathematics University of New Mexico Gallup, NM 87301, USA e-mail: [email protected] K. Ilanthenral Editor, Maths Tiger, Quarterly Journal Flat No.11, Mayura Park, 16, Kazhikundram Main Road, Tharamani, Chennai – 600 113, India e-mail: [email protected] HEXIS Phoenix, Arizona 2005 1 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N.
    [Show full text]
  • A New Description of Space and Time Using Clifford Multivectors
    A new description of space and time using Clifford multivectors James M. Chappell† , Nicolangelo Iannella† , Azhar Iqbal† , Mark Chappell‡ , Derek Abbott† †School of Electrical and Electronic Engineering, University of Adelaide, South Australia 5005, Australia ‡Griffith Institute, Griffith University, Queensland 4122, Australia Abstract Following the development of the special theory of relativity in 1905, Minkowski pro- posed a unified space and time structure consisting of three space dimensions and one time dimension, with relativistic effects then being natural consequences of this space- time geometry. In this paper, we illustrate how Clifford’s geometric algebra that utilizes multivectors to represent spacetime, provides an elegant mathematical framework for the study of relativistic phenomena. We show, with several examples, how the application of geometric algebra leads to the correct relativistic description of the physical phenomena being considered. This approach not only provides a compact mathematical representa- tion to tackle such phenomena, but also suggests some novel insights into the nature of time. Keywords: Geometric algebra, Clifford space, Spacetime, Multivectors, Algebraic framework 1. Introduction The physical world, based on early investigations, was deemed to possess three inde- pendent freedoms of translation, referred to as the three dimensions of space. This naive conclusion is also supported by more sophisticated analysis such as the existence of only five regular polyhedra and the inverse square force laws. If we lived in a world with four spatial dimensions, for example, we would be able to construct six regular solids, and in arXiv:1205.5195v2 [math-ph] 11 Oct 2012 five dimensions and above we would find only three [1].
    [Show full text]
  • The Matroid Theorem We First Review Our Definitions: a Subset System Is A
    CMPSCI611: The Matroid Theorem Lecture 5 We first review our definitions: A subset system is a set E together with a set of subsets of E, called I, such that I is closed under inclusion. This means that if X ⊆ Y and Y ∈ I, then X ∈ I. The optimization problem for a subset system (E, I) has as input a positive weight for each element of E. Its output is a set X ∈ I such that X has at least as much total weight as any other set in I. A subset system is a matroid if it satisfies the exchange property: If i and i0 are sets in I and i has fewer elements than i0, then there exists an element e ∈ i0 \ i such that i ∪ {e} ∈ I. 1 The Generic Greedy Algorithm Given any finite subset system (E, I), we find a set in I as follows: • Set X to ∅. • Sort the elements of E by weight, heaviest first. • For each element of E in this order, add it to X iff the result is in I. • Return X. Today we prove: Theorem: For any subset system (E, I), the greedy al- gorithm solves the optimization problem for (E, I) if and only if (E, I) is a matroid. 2 Theorem: For any subset system (E, I), the greedy al- gorithm solves the optimization problem for (E, I) if and only if (E, I) is a matroid. Proof: We will show first that if (E, I) is a matroid, then the greedy algorithm is correct. Assume that (E, I) satisfies the exchange property.
    [Show full text]
  • 21. Orthonormal Bases
    21. Orthonormal Bases The canonical/standard basis 011 001 001 B C B C B C B0C B1C B0C e1 = B.C ; e2 = B.C ; : : : ; en = B.C B.C B.C B.C @.A @.A @.A 0 0 1 has many useful properties. • Each of the standard basis vectors has unit length: q p T jjeijj = ei ei = ei ei = 1: • The standard basis vectors are orthogonal (in other words, at right angles or perpendicular). T ei ej = ei ej = 0 when i 6= j This is summarized by ( 1 i = j eT e = δ = ; i j ij 0 i 6= j where δij is the Kronecker delta. Notice that the Kronecker delta gives the entries of the identity matrix. Given column vectors v and w, we have seen that the dot product v w is the same as the matrix multiplication vT w. This is the inner product on n T R . We can also form the outer product vw , which gives a square matrix. 1 The outer product on the standard basis vectors is interesting. Set T Π1 = e1e1 011 B C B0C = B.C 1 0 ::: 0 B.C @.A 0 01 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 0 . T Πn = enen 001 B C B0C = B.C 0 0 ::: 1 B.C @.A 1 00 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 1 In short, Πi is the diagonal square matrix with a 1 in the ith diagonal position and zeros everywhere else.
    [Show full text]
  • CONTINUITY in the ALEXIEWICZ NORM Dedicated to Prof. J
    131 (2006) MATHEMATICA BOHEMICA No. 2, 189{196 CONTINUITY IN THE ALEXIEWICZ NORM Erik Talvila, Abbotsford (Received October 19, 2005) Dedicated to Prof. J. Kurzweil on the occasion of his 80th birthday Abstract. If f is a Henstock-Kurzweil integrable function on the real line, the Alexiewicz norm of f is kfk = sup j I fj where the supremum is taken over all intervals I ⊂ . Define I the translation τx by τxfR(y) = f(y − x). Then kτxf − fk tends to 0 as x tends to 0, i.e., f is continuous in the Alexiewicz norm. For particular functions, kτxf − fk can tend to 0 arbitrarily slowly. In general, kτxf − fk > osc fjxj as x ! 0, where osc f is the oscillation of f. It is shown that if F is a primitive of f then kτxF − F k kfkjxj. An example 1 6 1 shows that the function y 7! τxF (y) − F (y) need not be in L . However, if f 2 L then kτxF − F k1 6 kfk1jxj. For a positive weight function w on the real line, necessary and sufficient conditions on w are given so that k(τxf − f)wk ! 0 as x ! 0 whenever fw is Henstock-Kurzweil integrable. Applications are made to the Poisson integral on the disc and half-plane. All of the results also hold with the distributional Denjoy integral, which arises from the completion of the space of Henstock-Kurzweil integrable functions as a subspace of Schwartz distributions. Keywords: Henstock-Kurzweil integral, Alexiewicz norm, distributional Denjoy integral, Poisson integral MSC 2000 : 26A39, 46Bxx 1.
    [Show full text]
  • Lecture 4: April 8, 2021 1 Orthogonality and Orthonormality
    Mathematical Toolkit Spring 2021 Lecture 4: April 8, 2021 Lecturer: Avrim Blum (notes based on notes from Madhur Tulsiani) 1 Orthogonality and orthonormality Definition 1.1 Two vectors u, v in an inner product space are said to be orthogonal if hu, vi = 0. A set of vectors S ⊆ V is said to consist of mutually orthogonal vectors if hu, vi = 0 for all u 6= v, u, v 2 S. A set of S ⊆ V is said to be orthonormal if hu, vi = 0 for all u 6= v, u, v 2 S and kuk = 1 for all u 2 S. Proposition 1.2 A set S ⊆ V n f0V g consisting of mutually orthogonal vectors is linearly inde- pendent. Proposition 1.3 (Gram-Schmidt orthogonalization) Given a finite set fv1,..., vng of linearly independent vectors, there exists a set of orthonormal vectors fw1,..., wng such that Span (fw1,..., wng) = Span (fv1,..., vng) . Proof: By induction. The case with one vector is trivial. Given the statement for k vectors and orthonormal fw1,..., wkg such that Span (fw1,..., wkg) = Span (fv1,..., vkg) , define k u + u = v − hw , v i · w and w = k 1 . k+1 k+1 ∑ i k+1 i k+1 k k i=1 uk+1 We can now check that the set fw1,..., wk+1g satisfies the required conditions. Unit length is clear, so let’s check orthogonality: k uk+1, wj = vk+1, wj − ∑ hwi, vk+1i · wi, wj = vk+1, wj − wj, vk+1 = 0. i=1 Corollary 1.4 Every finite dimensional inner product space has an orthonormal basis.
    [Show full text]
  • Cardinality Constrained Combinatorial Optimization: Complexity and Polyhedra
    Takustraße 7 Konrad-Zuse-Zentrum D-14195 Berlin-Dahlem fur¨ Informationstechnik Berlin Germany RUDIGER¨ STEPHAN1 Cardinality Constrained Combinatorial Optimization: Complexity and Polyhedra 1Email: [email protected] ZIB-Report 08-48 (December 2008) Cardinality Constrained Combinatorial Optimization: Complexity and Polyhedra R¨udigerStephan Abstract Given a combinatorial optimization problem and a subset N of natural numbers, we obtain a cardinality constrained version of this problem by permitting only those feasible solutions whose cardinalities are elements of N. In this paper we briefly touch on questions that addresses common grounds and differences of the complexity of a combinatorial optimization problem and its cardinality constrained version. Afterwards we focus on polytopes associated with cardinality constrained combinatorial optimiza- tion problems. Given an integer programming formulation for a combina- torial optimization problem, by essentially adding Gr¨otschel’s cardinality forcing inequalities [11], we obtain an integer programming formulation for its cardinality restricted version. Since the cardinality forcing inequal- ities in their original form are mostly not facet defining for the associated polyhedra, we discuss possibilities to strengthen them. In [13] a variation of the cardinality forcing inequalities were successfully integrated in the system of linear inequalities for the matroid polytope to provide a com- plete linear description of the cardinality constrained matroid polytope. We identify this polytope as a master polytope for our class of problems, since many combinatorial optimization problems can be formulated over the intersection of matroids. 1 Introduction, Basics, and Complexity Given a combinatorial optimization problem and a subset N of natural numbers, we obtain a cardinality constrained version of this problem by permitting only those feasible solutions whose cardinalities are elements of N.
    [Show full text]
  • THE DIMENSION of a VECTOR SPACE 1. Introduction This Handout
    THE DIMENSION OF A VECTOR SPACE KEITH CONRAD 1. Introduction This handout is a supplementary discussion leading up to the definition of dimension of a vector space and some of its properties. We start by defining the span of a finite set of vectors and linear independence of a finite set of vectors, which are combined to define the all-important concept of a basis. Definition 1.1. Let V be a vector space over a field F . For any finite subset fv1; : : : ; vng of V , its span is the set of all of its linear combinations: Span(v1; : : : ; vn) = fc1v1 + ··· + cnvn : ci 2 F g: Example 1.2. In F 3, Span((1; 0; 0); (0; 1; 0)) is the xy-plane in F 3. Example 1.3. If v is a single vector in V then Span(v) = fcv : c 2 F g = F v is the set of scalar multiples of v, which for nonzero v should be thought of geometrically as a line (through the origin, since it includes 0 · v = 0). Since sums of linear combinations are linear combinations and the scalar multiple of a linear combination is a linear combination, Span(v1; : : : ; vn) is a subspace of V . It may not be all of V , of course. Definition 1.4. If fv1; : : : ; vng satisfies Span(fv1; : : : ; vng) = V , that is, if every vector in V is a linear combination from fv1; : : : ; vng, then we say this set spans V or it is a spanning set for V . Example 1.5. In F 2, the set f(1; 0); (0; 1); (1; 1)g is a spanning set of F 2.
    [Show full text]
  • Bases for Infinite Dimensional Vector Spaces Math 513 Linear Algebra Supplement
    BASES FOR INFINITE DIMENSIONAL VECTOR SPACES MATH 513 LINEAR ALGEBRA SUPPLEMENT Professor Karen E. Smith We have proven that every finitely generated vector space has a basis. But what about vector spaces that are not finitely generated, such as the space of all continuous real valued functions on the interval [0; 1]? Does such a vector space have a basis? By definition, a basis for a vector space V is a linearly independent set which generates V . But we must be careful what we mean by linear combinations from an infinite set of vectors. The definition of a vector space gives us a rule for adding two vectors, but not for adding together infinitely many vectors. By successive additions, such as (v1 + v2) + v3, it makes sense to add any finite set of vectors, but in general, there is no way to ascribe meaning to an infinite sum of vectors in a vector space. Therefore, when we say that a vector space V is generated by or spanned by an infinite set of vectors fv1; v2;::: g, we mean that each vector v in V is a finite linear combination λi1 vi1 + ··· + λin vin of the vi's. Likewise, an infinite set of vectors fv1; v2;::: g is said to be linearly independent if the only finite linear combination of the vi's that is zero is the trivial linear combination. So a set fv1; v2; v3;:::; g is a basis for V if and only if every element of V can be be written in a unique way as a finite linear combination of elements from the set.
    [Show full text]
  • Glossary of Linear Algebra Terms
    INNER PRODUCT SPACES AND THE GRAM-SCHMIDT PROCESS A. HAVENS 1. The Dot Product and Orthogonality 1.1. Review of the Dot Product. We first recall the notion of the dot product, which gives us a familiar example of an inner product structure on the real vector spaces Rn. This product is connected to the Euclidean geometry of Rn, via lengths and angles measured in Rn. Later, we will introduce inner product spaces in general, and use their structure to define general notions of length and angle on other vector spaces. Definition 1.1. The dot product of real n-vectors in the Euclidean vector space Rn is the scalar product · : Rn × Rn ! R given by the rule n n ! n X X X (u; v) = uiei; viei 7! uivi : i=1 i=1 i n Here BS := (e1;:::; en) is the standard basis of R . With respect to our conventions on basis and matrix multiplication, we may also express the dot product as the matrix-vector product 2 3 v1 6 7 t î ó 6 . 7 u v = u1 : : : un 6 . 7 : 4 5 vn It is a good exercise to verify the following proposition. Proposition 1.1. Let u; v; w 2 Rn be any real n-vectors, and s; t 2 R be any scalars. The Euclidean dot product (u; v) 7! u · v satisfies the following properties. (i:) The dot product is symmetric: u · v = v · u. (ii:) The dot product is bilinear: • (su) · v = s(u · v) = u · (sv), • (u + v) · w = u · w + v · w.
    [Show full text]
  • MTH 304: General Topology Semester 2, 2017-2018
    MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds..........................
    [Show full text]